

ACM Journal of Educational Resources in Computing, Vol. 3, No. 3, September 2003, Article 01.

Improving Student Performance by Evaluating
How Well Students Test Their Own Programs
STEPHEN H. EDWARDS
Virginia Tech

Students need to learn more software testing skills. This paper presents an approach to teaching software testing
in a way that will encourage students to practice testing skills in many classes and give them concrete feedback
on their testing performance, without requiring a new course, any new faculty resources, or a significant number
of lecture hours in each course where testing will be practiced. The strategy is to give students basic exposure
to test-driven development, and then provide an automated tool that will assess student submissions on-demand
and provide feedback for improvement. This approach has been demonstrated in an undergraduate program-
ming languages course using a prototype tool. The results have been positive, with students expressing appre-
ciation for the practical benefits of test-driven development on programming assignments. Experimental analy-
sis of student programs shows a 28% reduction in defects per thousand lines of code.
Categories and Subject Descriptors: K.3.2 [Computers and Education]: Computer and Information Science
Education; D.2.5 [Software Engineering]: Testing and Debugging—testing tools
General Terms: Measurement
Additional Key Words and Phrases: test-driven development, test-first coding, extreme programming, agile
methods, teaching software testing

1. INTRODUCTION
The productivity goals of most software companies can be summed up simply: increase
the quality of produced software while decreasing the cost and time of development. At
the same time, however, the problem of software defects, or “bugs,” continues to grow
under this pressure. According to a recent article, “defective code remains the hobgoblin
of the software industry, accounting for as much as 45% of computer-system downtime
and costing U.S. companies about $100 billion [in the year 2000] in lost productivity and
repairs” [Ricadela, 2001]. Software testing is an indispensable tool in moving toward the
goal of greater software quality, and often consumes a great deal of development re-
sources in practice [Harrold, 2000; Boehm, 1976; Beizer, 1990].

Unfortunately, testing is perceived as tedious, uncreative, boring work by practitio-
ners, less than 15% of whom ever receive any formal training in the subject [Wilson,
1995]. Despite the importance of the topic, most computer science curricula provide
only minimal coverage of the topic. A recent article in Communications of the ACM ex-
horts faculty to teach more software testing; “Students today are not well equipped to
apply widely practiced techniques … They are graduating with a serious gap in the
knowledge they need to be effective software developers” [Shepard, Lamb, & Kelly,
2001].
__

Author’s address: Department of Computer Science, Virginia Tech, 660 McBryde Hall MS 0106, Blacksburg,
VA 24061; email: edwards@cs.vt.edu
Permission to make digital/hard copy of part of this work for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit or commercial advantage, the copyright notice, the
title of the publication, and its date of appear, and notice is given that copying is by permission of the ACM,
Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permis-
sion and/or a fee. Permission may be requested from the Publications Dept., ACM, Inc., 1515 Broadway, New
York, NY 10036, USA, fax:+1(212) 869-0481, permissions@acm.org
© 2004 ACM 1531-4278/04/0900-ART01 $5.00

2 • S. H. Edwards

ACM Journal of Educational Resources in Computing, Vol. 3, No. 3, September 2003.

Despite the importance of software testing, testing skills are often elusive in under-
graduate curricula [Bourque et al., 2001; Bagert et al., 1999]. This may be because test
ing pervades all aspects of software development and seems poorly suited as the sole
topic for a new course. Even computer science freshmen need exposure to basic testing
ideas so they can appropriately “test” small assignments. On the other hand, many test-
ing ideas are not easy to internalize until one has had significant development experience.
There does not appear to be one “right” place in the undergraduate experience to place
this kind of learning. This conclusion echoes current recommendations for undergradu-
ate software engineering training [Bagert et al., 1999]: software testing is a crosscutting
or recurring area that must be visited multiple times with increasing levels of depth and
maturity throughout the curriculum.

At the same time, however, most undergraduate computer science curricula are al-
ready overstuffed with content, and there is little room to infuse significant coverage of a
crosscutting topic in many courses. The goal, then, is to teach software testing in a way
that will encourage students to practice testing skills in many classes and give them con-
crete feedback on their testing performance, without requiring a new course, any new
faculty resources, or a significant number of lecture hours in each course where testing
will be practiced. This alternative approach is made possible by reframing the way stu-
dent programming assignments are assessed: a student should be given the responsibility
of demonstrating the correctness of his or her own code. Students are expected and re-
quired to submit test cases for this purpose along with their code, and assessing student
performance includes a meaningful assessment of how correctly and thoroughly the tests
conform to the problem. The key to providing rapid, concrete, and immediate feedback
is an automated assessment tool to which students can submit their code. Experimental
evidence suggests that this approach may significantly improve the quality of student
solutions, in terms of the number of latent defects present in the “final solutions” turned
in. As a result, it is worth exploring the practicality of applying this technique across a
series of courses or even an entire computer science curriculum.

1.1 RELATED WORK: TEACHING SOFTWARE TESTING
Periodic panel sessions and speakers at SIGCSE have suggested that software engineer-
ing concepts in general should be incorporated throughout the undergraduate computer
science curriculum [McCauley et al., 1995; McCauley et al., 2000]. While some of the
goals are the same as those in this paper—ensuring students acquire sufficient knowledge
of best practices for managing development tasks—the focus in such related work is
broad, rather than specific to testing. Hilburn and Towhidnejad [2000] have discussed
software quality as an important overarching concern worthy of special attention in this
regard, although no specific proposals for including testing-based assessment are pre-
sented.

Other educators and practitioners have specifically addressed the topic of teaching
software testing. Shepard, Lamb, and Kelly [2001] make an appeal for educators to
teach more testing, but offer little concrete direction. Goldwasser [2002] describes an
interesting classroom technique where students submit test cases along with their code.
After the due date, all student test suites are run against all student submissions, and extra
credit is given both to the strongest survivor and to the most deviously successful test

Improving Students Performance • 3

ACM Journal of Educational Resources in Computing, Vol. 3, No. 3, September 2003.

data. Overall, however, Jones is the most outspoken educator on the subject [Jones,
2000a; Jones, 2001a; Jones, 2001b; Jones, 2001c]. He has suggested systematically in-
corporating testing practices across the undergraduate curriculum, with the specific aim
of producing students who are more realistically prepared for real-world testing tasks
upon graduation. Jones has suggested that instructors use testing strategies as an aid in
writing more focused and effective program assignment specifications. He has also sug-
gested that a similar approach can be used by instructors in assessing the correctness of
student submissions. His SPRAE framework is aimed at teaching students the founda-
tion skills needed for on-the-job testing in industry [Jones, 2000b]. While Jones shares
many of the same goals with the work reported here, and his work is the most closely
related, the key differences are the use of test-driven development, the focus on evaluat-
ing testing practices rather than code writing skills, and the rapid-turnaround feedback
emphasized in this paper.

1.2 RELATED WORK: AUTOMATIC GRADING
Without considering testing practices, CS educators have developed many approaches to
automatically assessing student program assignments. Many informal grading systems
have been developed in-house, although the results are often difficult to port among insti-
tutions, and sometimes even among course instructors. Isong [2001] describes an ap-
proach typical of such grading systems. Her automated program checker focuses on
compiling and executing student programs against instructor-provided test cases, and
then assigning a grade based on comparing the actual output of the student program
against expected results provided by the instructor. Like many other in-house grading
systems, Isong’s checker is written as a collection of Unix shell scripts.

Reek [1996] also describes a Unix-based grading system used for introductory
courses at the Rochester Institute of Technology. It uses a file-system-based organiza-
tional strategy for managing assignments and student uploads. Like Isong’s checker,
Reek’s grading tool focuses on compiling and executing student programs against in-
structor-provided test data. Instructors can assign categories to different test cases in
order to control whether or not students can see the output compared to what was ex-
pected, and whether failures halt or abort the grading process.

Luck and Joy [1999] describe the use of BOSS at the University of Warwick. BOSS
consists of a collection of Unix-based programs that also use a file-system-based organ-
izational strategy for managing student submissions and automatically testing them using
instructor-provided test scenarios. In their description of BOSS, Luck and Joy pay par-
ticular attention to security and privacy issues, user interface issues, how rogue programs
are sandboxed, and how plagiarism detection can be included.

Jones’ Program Submission and Grading Environment (PSGE) is another Unix-based
assignment checker [Jones, 2001c]. It supports both semi-automatic and fully automated
grading, depending on the instructor’s choice and the nature of the assignment. Unlike
some other systems, PSGE defers grading until after the due date, so students only re-
ceive feedback once, after the assignment is complete. While Jones advocates including
software testing in the undergraduate curriculum, with regard to automated grading, he
primarily advocates testing strategies to the instructor. By taking a testing-oriented ap-
proach, an instructor can produce better assignments and more repeatable, accountable

4 • S. H. Edwards

ACM Journal of Educational Resources in Computing, Vol. 3, No. 3, September 2003.

correctness assessments [Jones, 2001c]. PSGE does not handle assessment of or produce
feedback on student-written test cases, however.

Mengel and Yerramilli [1999] have proposed the use of static analysis for automatic
grading. They have attempted to correlate code metrics to scores assigned in a more tra-
ditional fashion by graduate teaching assistants. The hope is that by validating such a
correlation, commercial static analysis tools will allow predictive use of metrics for auto-
mated grading purposes. Mengel and Yerramilli only consider assessing student pro-
grams, however, rather than the effectiveness of student testing.

ASSYST is perhaps the most widely scoped automated grading system discussed in
the literature [Jackson & Usher, 1997]. It provides the basic compile/test/compare-
output features of other systems, but also includes static checks for style and code com-
plexity metrics. Most importantly, ASSYST is the only other grading system that can
assess student-provided test cases. It assesses student tests by instrumenting the student
program and measuring the statement coverage achieved by the student tests. Interest-
ingly, this is done only to assign deductions (if any) to student-written tests, and the cor-
rectness of student code is assessed in the traditional way.

Finally, Virginia Tech uses its own automated grading system for student programs
and has seen powerful results. Virginia Tech's system, which is similar in principle to
most systems that have been described, is called the Curator [McQuain, 2003]. A student
can login to the Curator and submit a solution for a programming assignment. When the
solution is received, the Curator compiles the student program. It then runs a test data
generator provided by the instructor to create input for grading the submission. Typi-
cally, it also uses a reference implementation provided by the instructor to create the ex-
pected output. The Curator then runs the student's submission on the generated input, and
grades the results by comparing against the reference implementation's output. The stu-
dent then receives feedback in the form of a report that summarizes the score, and that
includes the input used, the student's output, and the instructor's expected output for ref-
erence.

In practice, such automated grading tools have been extremely successful in class-
room use. Automated grading is a vital tool in providing quality assessment of student
programs as enrollments increase. Further, by automating the process of assessing pro-
gram behavior, TAs and instructors can spend their grading effort on assessing design,
style, and documentation issues. In addition, instructors usually allow multiple submis-
sions for a given program. This allows a student to receive immediate feedback on the
performance of his or her program, and then have an opportunity to make corrections and
resubmit before the due deadline. In this way, the Curator is effective at providing more
timely feedback—and more “review and correct” cycles—than an instructor or TA could
provide manually. In addition, this practice encourages students to begin assignments
earlier. Using such a tool has powerfully affected the programming practices of Virginia
Tech CS students.

2. WHY TEST-DRIVEN DEVELOPMENT?
If one wishes for students to practice testing, a testing method must be taught. Although
there are many possibilities to choose from, this work is based on the use of test-driven
development (TDD), also known as test-first coding. The core idea is to expose students

Improving Students Performance • 5

ACM Journal of Educational Resources in Computing, Vol. 3, No. 3, September 2003.

to basic TDD concepts, and then set up programming assignments so that students are
always expected to practice TDD on their programming assignments from the beginning.

TDD is a code development strategy that has been popularized by extreme program-
ming [Beck, 2001; Beck, 2003]. In TDD, one always writes a test case (or more) before
adding new code. In fact, new code is only written in response to existing test cases that
fail. By constantly running all existing tests against a unit after each change, and always
phrasing operational definitions of desired behavior in terms of new test cases, TDD pro-
motes a style of incremental development where it is always clear what behavior has
been correctly implemented and what remains undone.

While TDD is not, strictly speaking, a testing strategy—it is a code development
strategy [Beck, 2001]—it is a practical, concrete technique that students can practice on
their own assignments. Most importantly, TDD provides visceral benefits that students
experience for themselves. It is applicable on small projects with minimal training. It
gives the programmer a great degree of confidence in the correctness of their code. It
encourages students to always have a running version of what they have completed so
far. Finally, it encourages students to test features and code as they are implemented.
This preempts the “big bang” integration problems that students often run into when they
work feverishly to write all the code for a large assignment, and only then try to run, test,
and debug it.

The idea of using TDD in the classroom is not revolutionary. Like other extreme pro-
gramming practices that suit development in-the-small [Williams & Upchurch, 2001;
Nagappan et al., 2003], it is beginning to see use in educational settings. Aleen, Cart-
wright, and Reise describe its use in a software engineering course, for example [Allen,
Cartwright, & Reis, 2003]. What is novel is focusing on assessing student performance
at testing, rather than aiming at evaluating program correctness. The real issue is how to
overcome the challenges involved in carrying out such assessment activities, which are
important considerations.

3. CHALLENGES TO AUTOMATED ASSESSMENT
While automatic grading has proven its classroom utility at many institutions, traditional
approaches like the one embodied in the Curator also have a number of shortcomings:

• Students focus on output correctness first and foremost; all other considerations
are a distant second at best (design, commenting, appropriate use of abstraction,
testing one's own code, etc.). This is due to the fact that the most immediate feed-
back students receive is on output correctness, and also that the Curator will assign
a score of zero for submissions that do not compile, do not produce output, or do
not terminate. This is analogous to a well-known problem in benchmarking [Ar &
Cai, 1994]: when the subject self-optimizes for a particular measurement ap-
proach, the measure may no longer capture what was intended and construct valid-
ity is at risk.

• Students are not encouraged or rewarded for performing testing on their own.
• In practice, students do less testing on their own.

This last point is disturbing; in fact, many students rarely or never perform serious
testing of their own programs when the Curator is used. This is understandable, since the
Curator already has a test data generator for the problem and will automatically send the

6 • S. H. Edwards

ACM Journal of Educational Resources in Computing, Vol. 3, No. 3, September 2003.

student the results of running tests on his or her program. Indeed, one of the biggest com-
plaints from students has to do with the form of the feedback, which currently requires
the student to do some work to figure out the source of the error(s) revealed.

In addition, there are three further issues that must be addressed in order for an ap-
proach to have a significant effect on student actions in later courses:

• Student practices that are not integrated consistently and continually as part of the
activity of programming may be seen as separate from programming itself, and
therefore not useful to the student’s core desire to “learn how to program.”

• Students need clear, direct, and useful feedback about both how they are perform-
ing and how they can improve on testing and programming tasks. More frequent
feedback—and more frequent practice—is more effective.

• Students must value any practices we require alongside programming activities. A
student must see any extra work as helpful in completing working programs,
rather than a hindrance imposed at the instructor’s desire, if we wish for students
to continue using a technique faithfully.

The goal of this paper is to describe experiences with an assessment strategy built
around student use of TDD on programming assignments—a strategy that successfully
meets all of these challenges.

4. ASSESSING TEST-FIRST ASSIGNMENTS
If students are to be assessed on the TDD performance, then assignments must require
that test suites be submitted along with code. Ideally, students should be able to “try out”
their code-in-progress together with their tests early and often, getting timely feedback at
every step. A “test-first assignment” is one that includes such requirements, along with a
clearly explained grading rubric so that the student can understand how work will be
scored.

In order to provide appropriate assessment of testing performance and appropriate in-
centive to improve, such a scoring strategy should do more than just give some sort of
“correctness” score for the student’s code. In addition, it should assess the validity and
the completeness of the student’s tests. The Web-CAT Grader grades assignments by
coming up with three scores:

1. A test validity score measures how many of the student’s tests are accurate—
consistent with the problem assignment.

2. A test completeness score measures how thoroughly the student’s tests cover the
problem. One method is to use the reference implementation as a surrogate for the
problem, and measure code coverage over this reference. Other measures are also
possible.

3. A code correctness score measures how “correct” the student’s code is. To em-
power students in their own testing capabilities, this score is based solely on how
many of the student’s own tests the submitted code can pass.

These three measures, taken as percentages, are then multiplied together to come up
with a composite score. This formula ensures that no aspect of the approach can be ig-
nored, or the student’s score will suffer.

Improving Students Performance • 7

ACM Journal of Educational Resources in Computing, Vol. 3, No. 3, September 2003.

Figure 1. The file upload screen for student submissions.

5. WEB-CAT: A NEW AUTOMATED GRADING TOOL
Instead of automating an assessment approach that focuses on the output of a student’s
program, we must focus on what is most valuable: the student’s testing performance. To
this end, we have developed a prototype tool called the Web-CAT Grader, a service pro-
vided by the Web-based Center for Automated Testing. The Web-CAT Grader is de-
signed to:

• Require a student test suite as part of every submission.
• Encourage students to write thorough tests.
• Encourage students to write tests as they code (in the spirit of TDD), rather than

postponing testing until after the code is complete.
• Support the rapid cycling of “write a little test, write a little code” that is the hall-

mark of TDD.
• Provide timely, useful feedback on the quality of the tests in addition to the quality

of the solution.
• Employ a grading/reward system that fosters the behavior we want students to

have.

Web-CAT is a web application built on top of Apple’s WebObjects framework. Its
Grader subsystem is designed in a language-neutral way, and presumes little about the
actual process required for grading an assignment. It divides the grading process into a

8 • S. H. Edwards

ACM Journal of Educational Resources in Computing, Vol. 3, No. 3, September 2003.

series of steps, with the number and nature of steps being fully tailorable by the instruc-
tor. The action(s) undertaken in each of the steps can be controlled through scripts or
programs uploaded by the instructor. This approach allows the Grader to support every-
thing from dumb file archiving with no automated assessment, to traditional output-based
assessment of compiled or interpreted code, to any other approach desired.

The Web-CAT Grader’s user interface employs a series of wizard-style pages to walk
users through tasks. Figure 1 shows a typical user screen, in this case where a student is
uploading a program assignment solution for evaluation. The system supports single-file
submissions, as well as bundles of files archived together in common formats, such as zip
and jar files. Once a student confirms a submission, it is processed in real time and the
student is presented with the results in the web browser.

Figure 2. Assignment submission.

Improving Students Performance • 9

ACM Journal of Educational Resources in Computing, Vol. 3, No. 3, September 2003.

Processing the student’s submission is the core of the assessment task. A set of in-
structor-controlled customization scripts have been developed to support TDD-based
assignments. The evaluation process requires the instructor to provide a reference im-
plementation that has been instrumented to collect coverage information. At present,
branch coverage is being used as the desirable metric, although any other metric could be
used instead.

The assessment process begins with compilation of the student’s submission, if nec-
essary. Next, the submission is executed against the student-supplied tests, which include
both input values and expected output. In effect, the “test runner” capabilities embodied
in the TDD support scripts takes the place of the test harness code necessary to set up and
run tests, as well as compare results to detect failures. As a result, students do not have
to write, provide, or even look at such a test harness infrastructure. For convenience to
students, a corresponding downloadable script has been provided that will assume all the
test harness responsibilities on the student end. This allows students to run their own
tests on their own code without making a submission, if desired. While this does not
give any feedback on test completeness or validity, it can be used almost anywhere, in-
cluding computers that have no internet access.

To produce a grade, the Web-CAT Grader must assign values to the three scores de-
scribed in Section 4. The code correctness score is computed from the number of stu-
dent-written tests that are passed. The same set of tests is then run against the reference
implementation. The test validity score is computed from the number of student-written
tests that are “passed” by the reference implementation; a failed test on the reference im-
plementation means, by definition, that the corresponding test case contains incorrect
expected output for the given input. Finally, the test completeness score is computed
from the coverage measure obtained from the reference implementation while it was exe-
cuting the student tests.

In effect, this approach uses the instructor-provided reference implementation as an
executable model of the problem. It serves as the oracle determining which tests are
valid and which are not. In addition, it serves as the measurement device for determining
how completely the full behavior of the problem has been covered. This view of the ref-
erence implementation may be problematic in some situations, and removing it as the
model of required program behavior is an item for future work.

After this process completes, the student receives a summary screen providing feed-
back on the submission, as shown in Figure 2. The overall score is captured in two
color-coded bars. The first bar indicates program correctness, and shows the percentage
of student tests passed by the given program. This percentage also is reflected graphi-
cally in the proportion of the bar that is green. The second bar indicates the assessment
of the student’s test cases. The size of the bar indicates the completeness of testing
achieved. The color of the bar indicates test validity: green means all tests were valid,
while red means some tests were invalid. The three scores are multiplied together to give
the final score for the student. Figure 4 illustrates an assignment worth 50 points.

The feedback received by the student also includes a log of the test cases that were
run. Both the testing of the student program and the reference implementation run to
assess test validity are shown. Successful tests are represented as a series of dots, and
failed tests are explicitly identified so that the student can reproduce the problem and find

10 • S. H. Edwards

ACM Journal of Educational Resources in Computing, Vol. 3, No. 3, September 2003.

the source of the error. The output format is based on the textual output produced by
JUnit [JUnit, 2003].

6. EVALUATING THE EFFECT ON STUDENT PERFORMANCE
To assess the impact of this approach, the author has applied it in an undergraduate class.
The course, CS 3304: “Comparative Languages,” is a typical undergraduate program-
ming languages course that serves as a junior-level elective for computer science students
at Virginia Tech. Prior to the Spring 2003 semester, the Curator was used to collect and
automatically grade student program submissions. In Spring 2003, the Web-CAT proto-
type was used. Students in the course receive part of their grade from four small pro-
gramming assignments in three different programming languages exemplifying three
separate programming paradigms.

The Spring 2001 offering of Comparative Languages included programming assign-
ments in Pascal, Scheme, and Prolog. The same basic task was given in all three lan-
guages: given an EBNF grammar for a highly simplified version of English sentences, a
student program was to read in candidate strings one per line, and print out the corre-
sponding “diagram” of the sentence’s grammatical structure as a parenthesized list. The
mini language in the grammar consisted of only 15 words, including nouns, verbs, ad-
verbs, adjectives, and prepositions, that could be combined into simple subject-verb-
object constructions. Student programs were also required to produce specific error mes-
sages for input sequences that were grammatically incorrect or that contained inappropri-
ate tokens. This example gives students practice in understanding EBNF, implementing
simple recognition strategies, and producing basic parse tree representations. The first
assignment in Pascal allowed students to grapple with the problem using an imperative
programming approach with which they were familiar. By repeating the task in Scheme
and Prolog, students could then concentrate more easily on mastering new paradigms.

6.1 Method
In Spring 2001, students submitted their solutions to the Curator. The Curator used an
instructor-provided test data generator for grading. The test data generator produced a
random input data set of 40 candidate lines for each submission for each student, together
with the corresponding correct output. Generated test lines included 22.5% error cases
covering the basic error modes covered in the assignment. Each student submission was
compiled and run against such a randomly generated input data set. The resulting output
was compared line for line against the correct output, and a score was computed by
weighting the lines equally. Students were informed that their highest score would be the
submission used for grading; in the case of ties, the earliest high score would be used.
This strategy was an attempt to encourage students to document and format their code
appropriately as it was developed, rather than saving these tasks until the code worked
correctly.

Students in 2001 were also limited to a maximum of five submissions to the Curator
on an assignment. This policy was typical of instructors using the Curator at our institu-
tion, because without it, students would never have to do any testing work on their own
and instead could use the grading system as a testing service. In the feedback on each
submission, the student received a complete copy of the randomly generated test data
used, a copy of the correct expected output, a copy of the output produced by the stu-

Improving Students Performance • 11

ACM Journal of Educational Resources in Computing, Vol. 3, No. 3, September 2003.

dent’s submission, and a score summary. Thus, after one submission, the student could
continually re-run the given test inputs on his or her own until satisfactory results were
achieved before needing to resubmit to the Curator for further assessment.

The Curator score counted for one half of the student’s program grade, with the other
half coming from the teaching assistant’s assessment of design, style, and documentation.
In addition, students received a late penalty for submissions received after the assign-
ment’s deadline. The Curator deducted twenty points (out of 100) for late submissions
received within 24 hours of the deadline, and forty points for submissions received 24-48
hours late. All student submissions, including the student’s own code, the generated test
data set, the student program’s actual output, the expected output, and the time of the
submission were all available for analysis, as was the student’s final grade on each as-
signment.

In Spring 2003, the same set of assignments was used, but students used the new
Web-CAT Grader for submissions. Students were allowed an unlimited number of sub-
missions, but were required to submit test cases along with their programs. This change
in policy on the number of submissions was founded on two ideas: supporting TDD, and
“you get out what you put in.” First, TDD encourages students to write tests and code
together, and to constantly assess their evolving code base using the tests they have so
far. The Curator uses the model of a student submitting a complete, finished program for
grading. With the Web-CAT Grader, students were encouraged to submit partial results
and to submit often to gauge their progress as their solution was developed, rather than
waiting until a complete solution was finished. A small limit on the number of submis-
sions would directly conflict with the goal of supporting TDD. Second, unlike the Cura-
tor—which generated new test data for each submission—the Web-CAT Grader did not
perform any “testing” on its own. Instead, it simply ran the tests supplied by the student,
and compared the results to the expected output described in each of the student’s test
cases. Thus, unlike the earlier approach, a student could only “get out what she put in”
in the sense that the only way to learn more about the correctness of the solution was for
the student to write more test cases.

Although “true” unit testing support such as that provided by the various XUnit
frameworks would have been ideal, no such support was available for the languages
used. As a result, test cases took the form of input/output pairs arranged in a text file for
simplicity. Since sample programs for similar tasks from the course text book used a
recursive descent approach, for most students the structure of the grammar in the assign-
ment specification mirrored the structure of their solution. This made it easier for stu-
dents to construct end-to-end input/output test cases that exercised individual “units”
within their programs. Students were informed that they would not be allowed any more
submissions once they received a perfect score. As in 2001, this encouraged students to
document and format their code as it was developed, rather than saving these tasks until
the code worked correctly. The Web-CAT score counted for one half of the student’s
program grade, with the other half coming from the teaching assistant’s assessment of
design, style, and documentation. Web-CAT applied the same late penalty deductions
used in 2001 for submissions received after the assignment deadline. All student submis-
sions, including the student’s own code, the student’s tests, the assessment information

12 • S. H. Edwards

ACM Journal of Educational Resources in Computing, Vol. 3, No. 3, September 2003.

produced, and the time of the submission were all collected for analysis, as was the stu-
dent’s final grade on each assignment.

For the purposes of this paper, only student submissions for the first programming as-
signment in Pascal were compared. Since all students had been taught the imperative
programming paradigm prior to this course as part of Virginia Tech’s core curriculum,
the main challenges in the first program were using a new language on a new problem.
The challenges on later assignments differed, and hinged greatly on how well students
were able to adapt to the functional or logic paradigms, making those assignments less
generalizable to work in other classes. Examination of the first assignment also elimi-
nates concerns about carryover effects in this case.

Both offerings of Comparative Languages were taught by the author. The same text
book, course notes, and instructional style were used. Both classes consisted of ap-
proximately 60 students, primarily computer science majors in their junior year. Other
than the students enrolled in the course, the central difference between the two semesters
were in the submission, grading, and feedback approach used for programming assign-
ments. 6.2 Experimental Results
The first step in assessing the relative performance of students in the two offerings of
Comparative Languages is comparing assignment scores. Table 1 summarizes the score
comparisons between the two groups. Because different scoring methods were used on
the two groups of assignments, there are a number of alternative possibilities for compar-
ing scores.

First, it is easy to compare the final scores recorded in class grade sheets, which in-
clude the automated assessment (half the score) and the teaching assistant’s assessment
(the remaining half), plus any late penalty deductions. These averages for the two course
offerings are shown as “recorded grades” in Table 1. All statistical comparisons shown
in Table 1 were performed using a two-tailed student’s t-test assuming unequal vari-
ances between the two groups. Students using test-driven development in 2003 scored
approximately half a letter grade higher than their predecessors.

Next, it is possible to separate out the TA assessment component of each student’s
grade from the “automated” component, ignoring all late penalties. There were no

Table I. Score Comparisons Between Both Groups (Bold Differences Are Significant)

Comparison Spring 2001
Without TDD

Spring 2003
With TDD

t-score Assuming
Unequal Variances

Critical t-value
p = 0.05

Recorded grades 90.2% 96.1% t(df = 62) = 2.67 2.00
TA assessment 98.1% 98.2% t(df = 65) = 0.06 2.00
Automated assessment 93.9% 94.0% t(df = 71) = 0.07 1.99
Curator assessment 92.9% 96.4% t(df = 71) = 1.36 1.99
Web-CAT assessment 76.8% 94.0% t(df = 61) = 4.98 2.00
Test data coverage 90.0% 93.6% t(df = 69) = 5.14 1.99
Web-CAT assessment
without test coverage 85.8% 100.0% t(df = 58) = 3.91 2.00

Time from first sub-
mission until assign-
ment due

2.2 days 4.2 days t(df = 112) = 3.15 1.98

Improving Students Performance • 13

ACM Journal of Educational Resources in Computing, Vol. 3, No. 3, September 2003.

significant differences between the two groups when comparing these components of the
overall score individually. This indicates that relative to the level of scrutiny TAs pro-
vide, it is unlikely that there were any differences clearly discernable by reading the
source code. This result is consistent with the observations of others that grading pro-
gram correctness by reading the source code is difficult and error-prone [Luck & Joy
1999]. The averages for “automated assessment,” however, indicate only that the evalua-
tion scores produced by the Curator in 2001 were similar to the scores produced by Web-
CAT in 2003. Since the two evaluation approaches were measuring different facets of
student work, however, these scores are not directly comparable. Further, because there
were no significant differences in either TA assessment scores or automated assessment
scores, the primary factor in the differences between the recorded grades came from late
penalties, which are discussed later in this section.

Since the two course offerings used different scoring formulas, all assignments were
re-scored using both approaches to provide a better basis for comparison. First, all sub-
missions from 2003 were run through the original Curator grading setup used in 2001.
Student programs from this offering were thus tested against the random test data genera-
tor used in the prior offering. The “curator assessment” comparison in Table 1 shows the
average scores received using the 2001 grading scheme across all programs from both
groups. While the average for 2003 students is slightly higher than that for 2001 stu-
dents,
the difference is not statistically significant. One possible interpretation for this situation
is that, if any difference exists between the code produced by the two groups, the assess-
ment approach used in 2001 was not sensitive enough to detect it.

Second, all submissions from 2001 were run through the Web-CAT Grader. Web-
CAT requires each submission to be accompanied by test cases, however, and students in
2001 did not write their own test cases. Instead, when each student program was origi-
nally graded in 2001, a randomly generated test data set was produced by the Curator.
The generator was designed to provide complete problem coverage, and essentially used
the grammar describing valid input as a probabilistic generator. Thus, each student’s
automatically generated test set was fed along with the corresponding submission into the
Web-CAT Grader. Table 1 shows the result for the “Web-CAT assessment,” indicating
that students in 2003 outperformed students in 2001 under the 2003 grading scheme.

Since students in 2003 were given explicit feedback about how thoroughly they were
testing all aspects of the problem specification, they had an opportunity to maximize the
completeness of their tests to the best of their ability. This difference in feedback on the
completeness of testing raises the question of possible differences between the student-
generated test cases in 2003 and the test cases produced by the instructor-provided gen-
erator in 2001. In particular, how well do students measure up against a tool designed by
a professional? The “test data coverage” comparison in Table 1 shows how the ran-
domly generated test sets from 2001 compare to the student-written tests from 2003, in
terms of measured condition/decision coverage on the instructor’s reference solution.
Students outperformed the generator at producing test cases and achieved higher test
coverage scores.

Since test coverage scores were used in Web-CAT’s grading formula, it is possible
that the lower coverage of the randomly generated test sets might artificially lower the

14 • S. H. Edwards

ACM Journal of Educational Resources in Computing, Vol. 3, No. 3, September 2003.

scores of 2001 submissions on the Web-CAT Grader. To explore this issue, Web-CAT
scores for all submissions were recalculated without including test coverage, so that only
test pass rates and test validity were used to compute each score. However, the “Web-
CAT assessment without test coverage” comparison still reveals a striking difference
between the two groups. Such a result was expected, since students in 2003 received
explicit feedback on which of their tests were passed and which were invalid. Thus, any
student putting in effort easily could maximize both of these aspects of their score, leav-
ing test coverage as the primary factor in determining their program grade. This behav-
ior was clearly evident in the data, where all but two students from 2003 received perfect
scores when test coverage was removed from consideration.

While analyzing score data explores some aspects of the experiment, other facets are
also of interest. In particular, did the use of test-driven development encourage students
to start programming or making submissions earlier? Figure 3 shows the distribution of
times for the first submission of each student, in terms of hours ahead of the due date and
time. Students in both course offerings faced a stiff score penalty for submitting an as-
signment after the deadline. Because students in 2001 were limited to only five submis-
sions, many waited until they had their program “complete” before submitting. This ap-
peared to be a result of expectations rather than policy, since the Curator did not prevent
submissions of partially operating code. In fact, a creative student could submit a simple
“hello world” program before starting a solution and then receive a complete set of ran-
domly generated test data and the corresponding expected output in reply. The student
then could use this data repeatedly during development of a solution, providing as many
cycles of self-assessment as desired until the student judged another Curator submission
was prudent. While this approach is possible, few if any students took this path.

In 2003 on the other hand, students were encouraged to submit code early and often,
even when it was only partially implemented. While some students always start early,
Figure 3 shows that in 2001 more students waited until the last two days to submit as-
signments. Table 1 shows the average “time from first submission until assignment due”
for the two groups. In 2001, a student’s first submission was 2.2 days (53 hours) before
the deadline on average. In contrast, students in 2003 had an average initial submission
time of 4.2 days (101 hours) before the deadline.

More information can be gleaned by comparing the number of programs that were
submitted late, after the deadline had passed. Students were assessed a 20% deduction
per day late for such programs, which were accepted up to two days late. Table 2 shows
the number of late submissions received in each group. Note that there were no late
submissions in 2003, compared with 15% turned in late in 2001. This is the source of

Table II. Comparison of On-Time and Late Submissions Between the
Groups

Status Spring 2001
Without TDD

Spring 2003
With TDD

On time submissions 50 57
Late one day 5 0
Late two days 4 0

Improving Students Performance • 15

ACM Journal of Educational Resources in Computing, Vol. 3, No. 3, September 2003.

0

5

10

15

20

25

12 36 60 84 108 132 156 180 204 228 More

2003 2001

Figure 3. Distribution of initial submission times for the two groups.

the statistically significant difference in recorded grades shown in Table I. The chi-
squared value for the categorical data shown in Table II is 9.46 (df = 2), well above the-
critical value of 5.99 for p = 0.05. As a result, the proportion of students submitting as-
signments late between the groups is statistically significant. In other words, rather than
simply starting earlier, students in 2003 were more likely to finish their programs earlier.

While the use or encouragement of TDD may be a factor in the reduction in late sub-
missions, the change in policy to allow unlimited submissions may be more critical.
However, it is important to note that allowing unlimited submissions was only considered
pedagogically appropriate because of the change in the assessment strategy. Using the
Web-CAT Grader, students could no longer sit back and let the grading system do all the
testing work. To learn more about how completely or correctly a solution matches the
problem, the student must write more tests: “you only get out what you put in.”

6.3 WHAT ABOUT CODE QUALITY?
While the experimental analysis of program scores and submission times is encouraging,
it is also important to examine the code produced by students for objective differences in
quality. The goal of teaching software testing to undergraduates is to enable them to test
software better, and thus hopefully produce code with fewer bugs. The normal industry
measure for software “bugginess” is defect density: the number of defects (bugs) per
thousand non-commented source lines of code (often abbreviated KNCSLOC, or just
KSLOC). An exploration of bug densities in final programs submitted by students in this
experiment was undertaken.

Unfortunately, quantifying bugs is hard. In industry, defect tracking systems are rou-
tinely used to record identified defects, assign responsibility for addressing them, and
track them to resolution. Data from such systems can be invaluable in computing meas-

Time of First Submission (Hours before Due)

N
um

be
r o

f S
tu

de
nt

s

16 • S. H. Edwards

ACM Journal of Educational Resources in Computing, Vol. 3, No. 3, September 2003.

ures such as defect density. In a student programming assignment, however, no such
information is available. The naïve approach of attempting to debug every program un-
der consideration and count up the number of bugs found is intractable. Such an ap-
proach is extremely manpower intensive. Further, when a student fails to implement a
significant chunk of behavior in their solution (perhaps because they ran out of time),
how can one quantify the “number of defects” represented by such an omission?

To address this concern, a two phase approach was used. First, a comprehensive
master test suite was developed. The goals for this test suite were to produce a collection
of tests that covered all aspects required by the assignment, and to include no redundant
tests—that is, test cases that duplicated the same features. This suite was produced by
hand-generating a core set of 54 test cases that provided 100% condition/decision cover-
age of the instructor’s reference implementation. To this, all of the unique tests used in
grading all 118 student submissions were added: 2,891 Curator-generated test cases from
2001 submissions and 47,127 student-written test cases from 2003 submissions. The
result was a massive test suite with 50,072 test cases. While this set seemed to cover the
entire problem well, it clearly included many redundant test cases.
To eliminate redundant test cases, the entire suite was run against every program in the
experiment. Two tests were considered redundant if no program in the experiment pro-
duced different pass/fail results for the two cases. By tabulating case-by-case results for
each program, duplicates were eliminated. This reduced the master suite to 1064 test
cases. For any pair of test cases in the reduced set, there was at least one “witness”
among the programs that passed one but failed the other. Note that this does not guaran-
tee that the suite is “orthogonal,” that is, without any significant overlap between test
cases. For a given program, several of the test cases might vary in a way that is only
detectable at exactly the same point in that program. Those test cases would then be con-
sidered overlapping for that program. Here, a weaker notion of orthogonality, relative to
the entire collection of programs as a whole, was used. Ironically, none of the original
cases hand-written by the course staff were included, since all were redundant with stu-
dent-written test cases.

All programs were then run against the reduced master test suite. By removing as
much redundancy as possible from the master suite, there is greater confidence that each
failed test case corresponds to some actual defect or discernable difference in the pro-
gram. For each program from both groups, the total number of test cases failed (out of
1064) was calculated. Table 3 summarizes the results for the two groups, showing the
mean number of test case failures per program under each of the two conditions. On
average, programs developed in Spring 2003 failed about 125 fewer test cases each when
compared with those from 2001, a reduction of 32%. Figure 4 provides a graphical sum-
mary of the comparison, showing the relationship between percentile ranks of individual
programs and the corresponding number of test case failures for that program. For ex-
ample, at the 50th percentile, half the programs submitted in 2001 failed 388 or fewer test
cases, while half the programs submitted in 2003 failed 271 or fewer test cases. At every
point along the spectrum, students in 2003 produced less-buggy work. Notably, while
the best-performing submission from 2001 still failed 213 test cases, two submissions
from 2003 passed every test case, and a full 20% of the 2003 submissions failed two or
fewer test cases out of 1064. Failing two or fewer test cases in this scenario translates

Improving Students Performance • 17

ACM Journal of Educational Resources in Computing, Vol. 3, No. 3, September 2003.

into a defect rate of approximately 4 defects per KSLOC, which is comparable to most
commercial-quality software written in the United States.

Table III. Defect Comparisons Between Groups (Bold Differences Are Significant)

Comparison Spring 2001
Without TDD

Spring 2003
With TDD

t-score Assuming
Unequal Variances

Critical t-value
p = 0.05

Average test case
failures from master
suite (out of 1064)

390 (36.7%) 265 (24.9%) t(df = 84) = 3.48 1.99

Estimated
Defects/KSLOC

54.0 38.9

0
100
200
300
400
500
600
700
800
900

1000

0 10 20 30 40 50 60 70 80 90 100

2001
2003

Figure 4. Distribution of test case failures by program percentiles.

Using such a master test suite makes it possible to directly quantify the proportion of

behavior that is correctly implemented by a student solution. This reduces the problem
of estimating bugs/KSLOC to determining the relationship between test case failures in
the master suite and latent bugs hidden in student programs. To identify this relationship,
a group of nine programs were randomly selected from each course offering. All 18 pro-
grams were then debugged by hand until they passed all test cases in the master suite.
The programs were then stripped of comments and blank lines. Differences between the
debugged version and the original were measured by counting the number of source code
lines modified, new source lines added, and old source lines deleted. This line-oriented
count was then used as the “defect count” for the corresponding program.

Next, a linear regression analysis was performed between the number of test cases in
the master suite failed and the defect count obtained through by-hand debugging for the
18 programs in the random sample. A statistically significant linear relationship was
found with a correlation coefficient of 0.755, and with F(1, 17) = 21.2, compared to the

Program Submission Percentile

N
um

be
 o

f
Te

st
 C

as
e

Fa
ilu

re
s p

er
 P

ro
gr

am

18 • S. H. Edwards

ACM Journal of Educational Resources in Computing, Vol. 3, No. 3, September 2003.

0

5

10

15

20

0 100 200 300 400 500 600

Figure 5. Relationship between test case failures and number of latent defects.

critical value of 8.40 at the p = 0.01 level. Figure 5 shows the corresponding scatter
plot and regression line. Alternative models were explored, including multiple regres-
sion including program size and treatment codition, as well as polynomial regression, but
a simple linear regression produced the best fit.

The resulting linear equation was used to estimate the defect densities—that is, num-
ber of defects normalized by program size—in the remainder of the population. Table III
shows the average defect densities for the two groups generated by this process. It is
worth noting that industrial data, especially from larger defense sector companies, sug-
gest typical defect densities of four to seven defects per thousand lines of code are com-
mon in a production environment. While the average numbers achieved by students are
poor in comparison, remember that these are small assignments produced by individuals
without any commercial experience and without any independent testing or review.
More importantly, the data indicate that students in 2003 produced code with approxi-
mately 28% fewer defects per thousand lines.

6.4 Student Perceptions
In addition to collecting student programs, information on student perceptions and opin-
ions were also gathered. Before any programming assignments were given in the 2003
offering, students were asked about their current testing practices on a written homework
assignment. Students were asked to describe how they currently test their programs;
some sample responses give an indication of typical student testing practices:

• “I run them through some simple tests to ensure that it is operating as expected.
But for the most part I have always relied on supplied test data.”

• “I don’t think about test cases until I am confident my program is 100% working.
Of course, it almost never is …”

N
um

be
r o

f
D

ef
ec

ts

Number of Test Cases Failed

Improving Students Performance • 19

ACM Journal of Educational Resources in Computing, Vol. 3, No. 3, September 2003.

• “I usually write the whole thing up and then start doing rapid-fire tests of every-
thing I can think of.”

Students were also asked their feelings on using test-driven development once it had
been described in class:

• “I am very excited about using TDD.”
• “I agree that TDD can be beneficial and I’m glad we are being required to ex-

periment with it in this course.”
• “If it increases the effectiveness of my programming and decreases the time I

spend debugging, then I am all for it.”
• “[Previously,] I had to quit my detailed testing and stick to making the program

appear to work with the sample data given every time a deadline drew near.
With [TDD], the tests are such an integral part of the project that no time-
conserving measure will save me.”

Toward the end of the course, students also completed a survey of their opinions and
attitudes about the approach. Table 4 summarizes the responses received from students.
A five point Likert scale was used to elicit opinions. Students agreed that the Web-CAT
Grader was easier to use than the Curator and that it provided excellent support for TDD.
More importantly, however, students clearly perceived the benefits of TDD on assign-
ments, agreeing that it increased confidence when making changes to programs and in-
creased confidence in correctness of the result. Students also felt that TDD made them
more systematic in devising tests and made them more thoroughly test their solutions.
Most importantly, a majority of students expressed a preference for using the approach
and tool in future classes, even if it were not required.

Table IV. Student Survey Responses

Question Strongly
Disagree Disagree Neutral Agree Strongly

Agree Average

1. Web-CAT is easier to
use than the Curator system 0 5 17 21 5 3.5
2. Results produced by
Web-CAT are more helpful
in detecting errors in my
program than those pro-
duced by the Curator 0 1 4 25 19 4.3
3. Web-CAT provides
better help features than the
Curator 0 0 22 16 9 3.6

4. Using TDD increases
my confidence in the cor-
rectness of my programs 1 5 11 14 18 3.9

5. Using TDD helps me
complete my programming
assignments earlier 6 11 20 10 2 2.8

6. Using TDD increases
my confidence when making
changes to my programs 0 4 12 24 9 3.8

20 • S. H. Edwards

ACM Journal of Educational Resources in Computing, Vol. 3, No. 3, September 2003.

Question Strongly
Disagree Disagree Neutral Agree Strongly

Agree Average

7. TDD increases the
amount of time I need to
complete programming
assignments 1 18 14 11 5 3.0

8. Using TDD makes me
test my own solution more
thoroughly 0 5 7 28 9 3.8

9. Using TDD makes me
take a more systematic
approach to devising tests 0 5 8 30 6 3.8

10. With TDD, I spend
more time writing code. 0 18 28 3 0 2.7

11. With TDD, I spend
more time writing tests 0 2 9 27 11 4.0

12. With TDD, I spend
more time debugging code 1 17 21 8 1 2.8

13. In the future I am more
likely to use TDD even if it
is not required by the as-
signment 2 8 19 16 4 3.2

14. As a result of using
TDD in this class, I am now
able to write better test cases 1 5 10 24 9 3.7

15. Using TDD adversely
affected my grade 6 20 14 7 2 2.6

16. Without using TDD, I
would have scored higher on
this assignment 8 21 10 6 4 2.5

17. The tddpas.pl script
distributed for student use
was hard to use 14 20 8 4 2 2.1

18. I preferred using Web-
CAT instead of the provided
tddpas.pl script I could run
myself 10 16 7 14 2 2.6
19. Even if it were not
required, I would like to use
Web-CAT to test my pro-
grams for class before turn-
ing them in 0 3 10 28 8 3.8
20. The Web-CAT envi-
ronment provides excellent
support for programming
using TDD 0 1 7 29 12 4.1

Students were also given open-ended questions on the survey regarding what they

found most and least useful about the approach and the tool. Thirty-three percent of stu-

Improving Students Performance • 21

ACM Journal of Educational Resources in Computing, Vol. 3, No. 3, September 2003.

dents requested more direct feedback about how they could improve their testing scores
(i.e., test coverage). Sixteen percent requested improving the stability of the prototype.
Twelve percent requested faster submission screens with fewer mouse clicks required for
navigation. Ten percent praised the amount of assurance they received from the process
about the correctness of their work while developing. Finally, eight percent said that
feedback on which specific test cases failed was the most useful aspect of the system.

7. FUTURE WORK
The success of this preliminary experience with the Web-CAT Grader has energized in-
terest in using it across other courses in our curriculum. We intend to introduce the tech-
nique in Fall 2003 in Virginia Tech’s CS1 course, and then spread it to others. With this
expansion in mind, several possible extensions and enhancements to the approach are
underway.

First, Virginia Tech’s CS1 course will be taught in Java starting in Fall 2003. As a
result, Web-CAT will be modified to support JUnit-style test cases [JUnit, 2003]. In
addition, rather than measuring test thoroughness by instrumenting a reference imple-
mentation, student code will be directly instrumented to collect coverage data. In Java, a
tool such as Clover can be used [Cortex, Inc., 2003]. Further, we plan to explore alterna-
tives to using a reference implementation as a proxy representation of the problem to be
solved. Instead, it should be possible to use an instructor-provided reference test suite.
Students need not be exposed to the test suite at all. Instead, failure to pass one or more
tests in the reference suite indicates that the student has not fully tested his or her own
code, or that the student’s solution fails to completely implement all required behavior.
The proportion of reference test cases failed can be used to estimate the completeness of
the student implementation.

Another problem that must be addressed has to do with validating student tests. In
particular, how will students find out if their test cases are incorrect? In the Web-CAT
prototype, the instructor’s reference implementation served this purpose, and it was pos-
sible to validate all student tests because all tests necessarily were executable on the ref-
erence implementation. When students begin to use JUnit or other approaches to test the
internal structure of their own solutions, many tests will be structurally specific, and may
not apply to a reference implementation. On the other hand, it is desirable to assess the
validity of test cases where ever possible so that students can spot their own errors ear-
lier. A solution to this issue is needed.

Further, as student comments indicate, it is important to be able to give students con-
crete feedback on how to improve their testing. Fortunately, some test coverage tools
provide detailed feedback reports that indicate which parts of the code under considera-
tion were executed. Clover, for example, can generate a color-coded HTML rendering of
the source code that highlights the source lines or control structure decision points that
have not been executed. This form of feedback will be added to the Web-CAT Grader so
that students can receive concrete feedback about which portions of their code require
further testing [Edwards, 2003].

It is also possible to add static analysis tools to the assessment approach. Checkstyle,
for example, is an open source Java tool that provides a large suite of style-oriented
checks on source code [Checkstyle, 2003]. PMD is a similar program that focuses on
potential coding errors [PMD, 2003]. We plan to experiment with integrating this form

22 • S. H. Edwards

ACM Journal of Educational Resources in Computing, Vol. 3, No. 3, September 2003.

of feedback into the assessment performed by Web-CAT. This will allow automatic
grading of simple stylistic issues, presence and proper use of JavaDoc comments, and
identification of potential coding errors. Students will be able to receive this feedback
quickly, as often as desired, and make modifications in response.

8. CONCLUSIONS
The goal of the work described here is to teach software testing in a way that will en-
courage students to practice testing skills in many classes and give them concrete feed-
back on their testing performance, without requiring a new course, any new faculty re-
sources, or a significant number of lecture hours in each course where testing will be
practiced. The strategy is to give students basic exposure to test-driven development,
and then provide an automated tool that will assess student submissions on-demand and
provide the feedback necessary. This approach has been demonstrated in an undergradu-
ate programming languages course using a prototype tool. The results have been ex-
tremely positive, with students expressing clear appreciation for the practical benefits of
TDD on programming assignments, and with their code showing a 28% reduction in de-
fects per thousand lines of code.

This strategy succeeds by addressing all of the challenges in Section 4. Unlike exist-
ing automated grading systems, this approach does not focus on output correctness. In-
stead, it places the responsibility to demonstrate correctness on the students, and empow-
ers them by using their tests to determine the assessed correctness of their program solu-
tion. It directly rewards students for desired testing behavior by explicitly including a
measure of test validity and of test completeness in the scoring model. The result is that
students do more testing, and appreciate its value more.

At the same time, it is clear that this approach presents testing as a valuable, inte-
grated activity in the student programming process, not yet another bureaucratic burden
added to student duties. Students also receive clear, immediate feedback on the success
and quality of their testing efforts. With future enhancements, they can also receive con-
crete suggestions for where to improve their testing, as well as detection of common cod-
ing mistakes. In addition to this feedback, it is clear that students can see real value to
using the approach. This value comes in the form of increased confidence in solution
correctness, increased confidence when making changes or modifications to code, and
the assurance of always having a “running version” ready to go as the solution is being
developed incrementally. These benefits, together with scoring incentives, encourage and
reinforce the behavioral changes that are desired.

It is also important to note that this approach imposes additional responsibilities for
the course staff who are writing programming assignments. Assignments must be clearly
defined, especially with regard to the details of input and output [Luck & Joy, 1999]. As
a practical matter, it is also necessary to construct a reference solution that has been thor-
oughly tested. Although this may involve more preparation time than some instructors
currently invest, one can argue that this work is necessary to fully smoke test a new pro-
gramming assignment even when automated grading is not employed. Compared to
other automated grading approaches, however, preparing assignments for TDD-based
grading imposes only a small amount of additional effort, if any. At Virginia Tech, set-

Improving Students Performance • 23

ACM Journal of Educational Resources in Computing, Vol. 3, No. 3, September 2003.

ting up Web-CAT assignments takes approximately the same amount of preparatory
work as setting up a more traditional Curator assignment where TDD is not used.

While these results are preliminary, they indicate significant potential value in this
strategy. As a result, Virginia Tech plans to expand its use of TDD in the classroom,
including an exploration of its use beginning as early as the first programming course. A
long-term vision of TDD in the classroom across the computer science curriculum has
already been articulated, combining it with other educational techniques, such as lab-
based teaching, pair programming, and active learning approaches that support reflection
in action [Edwards 2003]. As the Web-CAT Grader matures, it will also be made avail-
able to faculty at other institutions. Further studies of effectiveness in mainstream com-
puter science courses will help refine the approach and build toward a different under-
standing of how to assess student programming activities.

ACKNOWLEDGMENTS
This work is supported in part by the National Science Foundation under grant DUE-
0127225, and by a research fellowship from Virginia Tech’s Institute for Distance and
Distributed Education. Any opinions, conclusions or recommendations expressed in this
paper are those of the authors and do not necessarily reflect the views of NSF or IDDL. I
also wish to acknowledge Anuj Shah, Amit Kulkarni, and Gaurav Bhandari,, who im-
plemented many of the features of the automated grading and feedback system described
here.

REFERENCES
ALLEN, E., CARTWRIGHT, R., AND REIS, C. 2003. Production programming in the classroom. In Proc. 34th

SIGCSE Technical Symp. Computer Science Education, ACM Press, 89-93.
AR, S., AND CAI, J.-Y. 1994. Reliable benchmarks using numerical instability. In Proc. 5th Annual ACM-SIAM

Symp. Discrete Algorithms, Society for Industrial and Applied Mathematics, 34-43.
BAGERT, D., HILBURN, T., HISLOP, G., LUTZ, M., MCCRACKEN, M., AND MENGEL, S. 1999. Guidelines for

Software Engineering Education Version 1.0, Technical Report CMU/SEI-99-TR-032, Software Engineer-
ing Institute, Pittsburg, PA.

BECK, K. 2001. Aim, fire (test-first coding). IEEE Software, 18, 5, 87-89.
BECK, K. 2003. Test-Driven Development: By Example. Addison-Wesley, Boston, MA.
BEIZER, B. 1990. Software Testing Techniques. Van Nostrand Reinhold, New York, NY.
BOEHM, B. 1976. Software engineering. IEEE Transactions on Computers, C-25, 12, 1226–1241.
BOURQUE, P., DUPUIS, R., ABRAN, A., AND MOORE, J.W., eds. 2001. Guide to the Software Engineering Body

of Knowledge—Stone Man Trial Version 1.00, IEEE Computer Society, Washington, available at:
<http:/www.swebok.org>.

BUCK, D., AND STUCKI, D.J. 2000. Design early considered harmful: graduated exposure to complexity and
structure based on levels of cognitive development. In Proc. 31st SIGCSE Technical Symp. Computer Sci-
ence Education, ACM press, 75-79.

CHECKSTYLE. 2003. Checkstyle home page. Web page last accessed Mar. 21, 2003.
<http://checkstyle.sourceforge.net/>.

CORTEX, INC. 2003. Clover: a code coverage tool for Java. Web page accessed Mar. 21, 2003.
<http://www.thecortex.net/clover/>.

EDWARDS, S.H. 2003. Rethinking computer science education from a test-first perspective. In Addendum to
the 2003 Proc. Conf. Object-oriented Programming, Systems, Languages, and Applications (Educator’s
Symposium), to appear.

GOLDWASSER, M.H. 2002. A gimmick to integrate software testing throughout the curriculum. In Proc. 33rd
SIGCSE Technical Symp. Computer Science Education, ACM Press, 271-275.

HARROLD, M.J. 2000. Testing: A road map. In The Future of Software Engineering, A. Finkelstein, ed., ACM
Press, New York, NY, 61–72.

24 • S. H. Edwards

ACM Journal of Educational Resources in Computing, Vol. 3, No. 3, September 2003.

HILBURN, T.B., AND TOWHIDNEJAD, M. 2000. Software quality: A curriculum postscript? In Proc. 31st SIG-
CSE Technical Symp. Computer Science Education, ACM Press, 167-171.

ISONG, J. 2001. Developing an automated program checker. J. Computing in Small Colleges, 16, 3, 218-224.
JACKSON, D., AND USHER, M. 1997. Grading student programs using ASSYST. In Proc. 28th SIGCSE Techni-

cal Symp. Computer Science Education, ACM Press, 335-339.
JONES, E.L. 2000a. Software testing in the computer science curriculum—a holistic approach. In Proc. Aus-

tralasian Computing Education Conf., ACM Press, 153-157.
JONES, E.L 2000b. SPRAE: A framework for teaching software testing in the undergraduate curriculum. In

Proc. ADMI 2000, Hampton, VA, 1-4 June 2000.
JONES, E.L. 2001a. Integrating testing into the curriculum—arsenic in small doses. In Proc. 32nd SIGCSE

Technical Symp. Computer Science Education, ACM Press, 337-341.
JONES, E.L. 2001b. An experiential approach to incorporating software testing into the computer science cur-

riculum. In Proc. 2001 Frontiers in Education Conf. (FiE 2001), F3D7-F3D11.
JONES, E.L. 2001c. Grading student programs—a software testing approach. J. Computing in Small Colleges,

16, 2, 185-192.
JUNIT. 2003. JUnit home page. Web page last accessed Mar. 21, 2003. <http://www.junit.org/>.
LUCK, M. AND JOY, M. 1999. A secure on-line submission system. Software—Practice and Experience, 29, 8,

721-740.
NAGAPPAN, N., WILLIAMS, L., FERZLI, M., WIEBE, E., YANG, K., MILLER, C., AND BALIK, S. 2003. Improving

the CS1 experience with pair programming. In Proc. 34th SIGCSE Technical Symp. Computer Science
Education, ACM Press, 359-362.

MCCAULEY, R., ARCHER, C., DALE, N., MILI, R., ROBERGÉ, J., AND TAYLOR, H. 1995. The effective integra-
tion of the software engineering principles throughout the undergraduate computer science curriculum. In
Proc. 26th SIGCSE Technical Symp. Computer Science Education, ACM Press, 364-365.

MCCAULEY, R., DALE, N., HILBURN, T., MENGEL, S., AND MURRILL, B.W. 2000. The assimilation of software
engineering into the undergraduate computer science curriculum. In Proc. 31st SIGCSE Technical Symp.
Computer Science Education, ACM Press, 423-424.

McQuain, W. 2003. Curator: An electronic submission management environment. Web page last accessed July
24, 2003. <http://www.cs.vt.edu/curator/>.

MENGEL, S.A., YERRAMILLI, V. 1999. A case study of the static analysis of the quality of novice student pro-
grams. In Proc. 30th SIGCSE Technical Symp. Computer Science Education, ACM, 78-82.

PMD. 2003. PMD home page. Web page last accessed Mar. 21, 2003. <http://pmd.sourceforge.net/>.
REEK, K.A. 1996. A software infrastructure to support introductory computer science courses. In Proc. 27th

SIGCSE Technical Symp. Computer Science Education, ACM Press, 125-129.
RICADELA, A. 2001. The state of software: Quality. InformationWeek, 838, 43, May 21, 2001.
SHEPARD, T., LAMB, M., AND KELLY, D. 2001. More testing should be taught. Communications of the ACM,

44, 6, 103–108.
WILLIAMS, L., UPCHURCH, R.L. 2001. In support of student pair-programming. In Proc. 32nd SIGCSE Techni-

cal Symp. Computer Science Education, ACM Press, 327-331.
WILSON, R.C. 1995. UNIX Test Tools and Benchmarks. Prentice Hall, Upper Saddle River, NJ.

Received April 2004; accepted August 2004.

