
Kaisa Miettinen

Short Reminder of 
Nonlinear Programming

Kaisa Miettinen
Dept. of Math. Inf. Tech.

Email: kaisa.miettinen@jyu.fi
Homepage: 

http://www.mit.jyu.fi/miettine



Kaisa Miettinen

Contents
Background
General overview

briefly theory
some methods (no details)
different methods for different problems: onion-
like structure
further references

Then: multiobjective optimization
General overview
Concepts and some theory
Classification of methods
Applications
Further references



Kaisa Miettinen

Some History
Optimization natural – best possible
Queen Dido – skin of ox – half circle and sea
Long history in systems of equations, development 
of algebra, number theory,numerical mathematics
Little attention to systems of inequalities – few 
exceptions
Optimization flourishes when one has to do better 
than the others: war and economic competition
1940’s, war and industrialization
Danzig/Pentagon, Kantorovich/Soviet Union
Old mathematical results were rediscovered
Simplex 1947, computers 
Background in applications, not theory
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More History
Optimization is an essential part in mathematics, 
engineering and business management
Simplex made possible to solve large problems 
(transportation, scheduling, resource allocation etc.)
Computers essential
Nobel 1975 in economics (Kantorovich, Koopmans)
Danzig included a well defined objective function in 
the model
Nonlinear programming (numerical mathematics)
Combinatorics, integer (discrete mathematics)
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More History II

Simplex ⇒ linear programming in 1947
Karush-Kuhn-Tucker optimality conditions ⇒
nonlinear programming 1951
Commercial applications (petrochemistry 1952)
First commercial LP solver 1954
Large-scale problems 1955
Stochastic programming 1955
Integer programming 1958
Program = planning, ordering in the military 
(computer program was called code)

History of Mathematical Programming ed. by 
Lenstra

 
et al., 1991, North-Holland
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Optimization
Optimal = best 
possible.
What is best?

it depends…
Applications 
everywhere.
Function(s) to 
be minimized/ 
maximized.
Varying 
variable values.
Subject to 
constraints.

Designing bridges, wings 
of aeroplanes
Transporting timber
Blending sausages
Planning production 
systems
Locating dumping places
Scheduling projects
Buying a car/ a house
Finding shortest routes
Etc.
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Different Optimization Problems

Linear
Integer
Mixed integer
Combinatorial
Quadratic
Geometric
Nonlinear

Nondifferentiable 
Global
Dynamic
Stochastic
Fuzzy
Multiobjective
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Background
Trial and error not enough
Mathematical model of the phenomenon
Simulation possible – not enough
Optimization needed
But: what is optimal – best possible?
Material e.g.: Bazaraa, Sherali, Shetty: 
Nonlinear Programming: Theory and 
Algorithms, John Wiley & Sons, 2nd or 
3rd ed., Juha Haataja: 
Optimointitehtävien ratkaiseminen, 
CSC, 2004
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Nonlinear Programming
Problem formulation     minimize f(x)

subject to x ∈
 

S, 
where
f: Rn→R is an objective function,
x ∈

 
Rn is a decision variable vector and

S ⊂
 

Rn is a feasible region defined by 
constraint functions S = {x ∈

 
Rn | gi (x) ≤

 
0, 

i=1,…,m, hj (x) = 0, j=1,…,l and xl ≤x ≤xu} 
Deterministic – stochastic
Continuous – discrete
Nonlinear – linear
Convex - nonconvex
Continuous nonlinear programming

(1)
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Optimality
Definition: A point x* is the globally optimal 
solution of problem (1) if

f(x*) ≤
 

f(x) for all x ∈
 

S.
Definition: A point x* is the locally optimal 
solution of problem (1) if there exists δ > 0 
such that

f(x*) ≤
 

f(x) for all x ∈
 

S such that ||x-x*||≤ δ.
Then, f(x*) is the optimum of (1).
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Optimality, cont.

Weierstrass theorem: Let S be a nonempty 
and compact (i.e. closed and bounded) set 
and let f: S →Rn be continuous in S. Then, 
there exists an optimal solution to (1) in S.
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Concepts
Let all the functions be continuous.
If f is differentiable at x, we have gradient of f at x: ∇f(x)∈
Rn. Partial derivatives ∇f(x)= (∂f(x)/∂x1, ... , ∂f(x)/∂xν)T.
If f is twice differentiable, we have Hessian H(x).
Set S is convex if ∀ x,y ∈ S and λ ∈ [0, 1] is valid λx+(1-
λ)y ∈ S. Line connecting any two points in S belongs to S.
Intersection of convex sets is convex.
Vectors x1, … , xp ≠ 0 are linearly independent if ∑i=1

p λixi = 0 only 
for λ1=…= λp= 0.
Let S⊂Rn be convex. f: S→R is convex if ∀ x,y ∈ S and ∀

λ ∈ [0, 1] is valid f(λx+(1-λ)y) ≤ λf(x) + (1-λ)f(y).
f: [a, b]→R is convex if f' is increasing/ iff f’’ is nonnegative.           
sum of convex functions is convex. Convex function is continuous
but not necessarily differentiable.
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Concepts, cont.

Let ∅ ≠ S ⊂ Rn be a closed, convex set.Vector 0 ≠ d 
∈ Rn is a direction of S if ∀ x ∈ S is valid x + λ d ∈
S ∀ λ ≥ 0. Directions d1, d2 ∈ S are separate if d1 ≠
αd2 for any α > 0. 
d ∈ Rn is a feasible direction at point x ∈ S, if ∃
α*>0 such that x + αd ∈ S ∀ α ∈ [0,α*]. 
Let A be a symmetric n × n matrix. Directions d1, …
, dp are conjugate if they are linearly independent and 
if ( di)T A dj = 0 ∀ i,j = 1, … , p, i≠ j. 
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Solving Optimization Problems

Solution methods are usually iterative processes where a 
series of solutions is generated based on pre-determined 
instructions and guidelines. 
It is important when to stop the solution process.
Algorithms for different problem types under different 
assumptions (differentiability, convexity)
Sometimes it is important to scale the constraints or the 
variables so that the ranges of the values of the variables 
are comparable. This makes numerical calculation easier 
and improves the accuracy of the solution.
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Problem types
Single variable
Unconstrained problems with several variables

gradient-free methods
gradient-based methods

Constrained problems
penalty functions
direct methods

Nondifferentiable problems
Multiobjective optimization problems
Global optimization

deterministic methods
stochastic methods

•

 

metaheuristics
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Single Variable

Minimum: interior point with zero-gradient, 
point with no gradient or end point of interval
Theorem: Let f: R → R be continuously 
differentiable. If x* is the minimal solution, 
then f’(x*)=0 and f’’(x*) > 0.
Methods based on the assumption: f is 
unimodal.
f is unimodal on [a,b] if for some point x* ∈
(a,b) is valid: f is strictly decreasing on [a,x*) 
and strictly increasing on (x*,b].
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Single variable cont.

f unimodal, shorten the interval: Select 
points x1 and x2 such that a ≤ x1 ≤ x2 ≤ b.

if f(x1) < f(x2), study [a,x2).
if f(x1) > f(x2), study (x1, b].
if  f(x1) = f(x2), study (x1,x2).

Methods
elimination methods
•

 
e.g. golden section

interpolation methods
•

 
use polynomials and derivatives
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Unconstrained, several variables

Optimality conditions: Let x ∈ Rn be given. 
Is it is locally or globally minimal?
Conditions satisfied when it is optimal are 
necessary optimality conditions. They often 
necessitate differentiability.
Conditions that guarantee optimality are 
sufficient optimality conditions.
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Necessary Conditions
Definition: Let f: Rn →R. d ∈ Rn is its descent 
direction at x*, if ∃ δ >0 such that f(x*+λd) < f(x*) ∀ λ
∈ (0, δ].
Theorem: Let f be differentiable at x*. If ∃ d such that 
∇f(x*)Td < 0, then d is a descent direction of f at x*. 
Theorem: (1st order necessary opt. cond.) Let f be 
differentiable at x*. If x* is locally minimal, then 
∇f(x*)=0, i.e., x* is  a critical point. 
Theorem: (2nd order necessary opt. cond.) Let f be 
twice differentiable at x*. If x* is locally minimal, then 
∇f(x*)=0 and Hessian H(x*) is positive semidefinite.
Necessary condition does not imply optimality (saddle 
point)
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Sufficient conditions etc.
Let f be twice differentiable at x*. If 
∇f(x*)=0 ja Hessian H(x*)  is positive 
definite, then  x* is strictly locally 
minimal.
Let f be convex and differentiable. Then  
x* is globally minimal iff ∇f(x*) = 0.
Let f be convex. Then any locally 
minimal solution is globally minimal. (No 
differentiability assumed!)
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Basic Ideas in Methods
Direct search methods
Methods using differentiability
Iterative basic algorithm for xh→x* as h→1, 
i.e., lim||xh-x*|| = 0 such that f(xh+1)< f(xh).

1) Select starting point  x0. Set h=0.
2) Generate a (descent) search direction  dh.
3) Calculate step length λh .
4) Set  xh+1 =  xh+λh dh.
5) Stop if stopping criterion ok. Otherwise, set h=h+1 

and go to 2).
Crucial steps 2) and 3)
Different rates of convergence

linear, superlinear, quadratic
local and global
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Direct Search Methods
Arbitrary descent directions
Coordinate-wise, univariate search

easy but slow, may fail
Hooke and Jeeves

univariate search + pattern search (fixed or not)
Powell

most developed pattern search method
can compete with methods using derivatives but no 
linearly dependent search directions allowed
one coordinate directions is replaced by pattern search 
direction
quadratic f, n conjugate search directions, minimum in n 
iterations (near minimum, 2nd order polynomial 
approximates well twice differentiable function)

Simplex or Nelder Mead method
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Gradient based methodsGradient based methods

Use objective function values + derivatives
possible difference approximations

Descent methods: xh+1=xh+λhdh, f(xh+1)<f(xh), 
h=1,2,…
Steepest descent method

dh = -∇f(xh)
sic-sac phenomenon (perpendicular directions)
stopping criteria maxi=1, ... n |∂f/∂xi|<ε, 
||∇f(xh+1)||2<ε, ||f(xh+1)-f(xh)||<ε, ||xh+1-xh||<ε. 
global but linear convergence
sensitive to scaling of variables
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Newton’s method
dh= -H(xh)-1rf(xh), fixed step or not
inverse matrix – solve system of equations
second order information improves convergence
stopping criterion: ||dh|| small enough, 
||∇f(xh+1)||2<ε, 
quadratic but local convergence
dh not necessarily 
descent if Hessian 
not pos. def.
diff. approx. ok
approximate Hessian –
quasi-Newton methods

Property Steep. Newton
descent d yes H pos.def.
global conv yes no
local conv. sic-sac yes
bottleneck λh H(xh)-1

quadr. prob h ? 1 iter.
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Quasi-Newton method

Variable metric method
Inverse of Hessian approximated by a 
symmetric pos. def. matrix
dh = -Dh∇f(xh) - dh is descent when ∇f(xh)≠0 
Davidon-Fletcher-Powell
Broyden-Fletcher-Goldfarb-Shanno
usually local and superlinear convergence
When n increases, hard to handle matrices
Difference approximations may disturb
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Conjugate Gradient Method

Originally, for solving linear systems of 
equations
Less efficient than quasi-Newton
Less requirements for memory – for large 
problems
Improve gradient direction – add positive 
multiple of earlier search directions
E.g. Fletcher and Reeves
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Summary: Unconstrained Methods

Efficiency
Newton 
quasi-Newton
conjugate gradient 
direct search

Direct search simple but slow
Derivative-based method usually converge to 
the closest minimum but direct search methods 
may (with good luck) find a global minimum in 
case of a non-unimodal function 
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Gradients

Analytic formulas
Symbolic differentiation
Automatic differentiation
Difference approximations

Forward
Backward
Central
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Constrained optimization

Let S be the feasible region, D a cone of 
feasible directions and F a cone of decreasing 
directions
If x* is locally minimal and if ∇f(x*)Td < 0, 
then d is not in D. Thus, we have a necessary 
condition for local optimality: none if the 
decreasing directions can be feasible.
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Karush-Kuhn-Tucker
Assume regularity of constraint, i.e., constraint qualification 
(many types), like gradients of active inequality constraints 
and equation constraints are linearly independent 
Necessary condition: Let f, gi and hi be continuously 
differentiable at a regular point x* ∈ S. If x* is locally 
minimal, ∃ μi ≥ 0 (i=1, ..., m) and νi (i=1, ... , l) such that
(1) ∇f(x*) + ∑i=1

m

 
μi

 

∇gi

 

(x*) + ∑i=1
l

 
νi

 

∇hi

 

(x*) = 0 
(2) μi

 

gi

 

(x*) = 0 ∀
 

i=1,... , m.
Sufficient condition: Let f, gi and hi be cont. diff. & convex. 
We study x*∈S. If ∃ μi ≥ 0 (i=1,..., m) and νi (i=1,..., l) s.t.
(1) ∇f(x*) + ∑i=1

m

 
μi

 

∇gi

 

(x*) + ∑i=1
l

 
νi

 

∇hi

 

(x*) = 0 
(2)μi

 

gi

 

(x*) = 0 ∀
 

i=1,..., m, then x*

 
is globally minimal

Hard to use optimality conditions directly -> methods



Kaisa Miettinen

Methods for Constrained Problems
Special structure: constraints linear equations, linear 
inequalities or nonlinear equations, objective function 
quadratic, etc.
Indirect methods

convert the problem into a sequence of unconstrained 
problems by shifting the constraints into objective function or 
variables
penalty and barrier methods
methods utilizing Lagrangian

Direct methods 
take constraints explicitly into account
stay in the feasible region
projected gradient
active set methods
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Indirect Methods
Shift the variables so that constraints are automatically valid
Penalty and barrier functions

series of unconstrained problems
punish infeasible solutions - add a penalty term to the obj.function
penalty: generate a series of infeasible solutions converging to
optimum
f(x) + rh(∑i=1

m (max[0, gi(x)])p + ∑i=1
l |hi(x)|p), with p¸ 2. 

increase rh (approaches infinity)
barrier: add a term to obj.function that hinders points from leaving 
S. Generates a sequence of feasible points converging to optimum
(only inequality constraints)
f(x) + rh(∑i=1

m (-1/gi(x))
decrease rh (approaches zero)
if rh changes too slowly, many problems, if fast, hard minimizations
exact: nondifferentiable, finite rh
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Indirect Methods cont.

Augmented Lagrangian
equation-type constraints
combination of Lagrangian and penalty term
f(x) + ∑i=1

l νihi(x) +1/2ρ∑i=1
l (hi(x))2, ρ > 0 

ν should approach Lagrangian multipliers
ρ increases
problem is differentiable
minimum can be found with finite values of ρ
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Direct Methods
Methods approximating constraints

linearize constraints near some point and 
use LP (e.g. cutting plane method)

Methods of feasible directions
search direction improving and feasible 
method of projected gradient

•
 

project –rf(x) to be feasible (projection matrix)
active set methods
generalized reduced gradient

•
 

decrease number of variables
SQP

•
 

efficient, series of quadratic approximations
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Now we can find local minimum and maximum 
points of a differentiable function defined in an 
open set. How about global optimality? 
If function is concave, maximum is global and if 
function is convex, minimum is global 
Let f be a C2-function defined in a convex set U

If f is concave and x* is a critical point, then x* is a global 
maximum point 
If f convex and x* is a critical point, then x* is a global 
minimum point 

Checking convexity/concavity can be done with the 
Hessian matrix (semidefiniteness in U) (negative 
definite -> max, positive definite -> min)

Local/Global Optimality
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Global Optimization

If problem is nonconvex, above-mentioned 
methods find one of the local minima (closest 
to starting point)
Guaranteeing global optimality – hard
Both reliability and efficiency important; 
conflicting
Find solution close to x* in sets
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Global Optimization, cont.

Deterministic methods
branch and bound
assume special properties (Lipschitz continuity)
form new problems that are even more difficult

Stochastic methods
use random points
multistart (random points & local optimization)
clustering (few iterations of local search)
metaheuristics

•
 

simulated annealing
•

 
genetic algorithms
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Simulated Annealing

Accept as search directions
decreasing ones
also directions of deterioration with some 
probability that decreases (Metropolis criterion) 
physical analogy (anneal material and let it cool 
down slowly to reach its energy minimum)
different implementations

Widely used in combinatorial problems
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One Algorithm for SA

Current iteration point x ∈ Rn. Next candidate 
solution y is generated by varying one component i of
x at a time, i.e., yi = xi + q di,
where q is a uniformly distributed random number 
from [-1,1] and d ∈

 
Rn

 
is a search direction.

y is accepted if  f(y) < f(x) or e(f(x)-f(y))/t > p, where p is 
a uniformly distributed random number from [0,1].
Here, t>0 is a temperature and it is decreased during 
the algorithm. 
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Genetic/Evolutionary Algorithms

Simulate evolution process
Population-based
Coding (binary, gray, real)
Many different variants/implementations 
(differetial evolution, island model, …)
Does not require continuity (or 
differentiability)
Can handle multimodality/nonconvexity
Often time-consuming
May work when other methods do not
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Genetic/Evol. Algorithms cont.
Selection 

tournament 
roulette-wheel

Crossover 
single-point 
uniform
arithmetic
heuristic y = r (x2 - x1) + x2)

Mutation
normally distributed
random
non-uniform
polynomial
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Genetic/Evol. Algorithms, cont.

1.
 

Set population size, tournament size, crossover rate, 
mutation rate and elitism size. Set the parameters of 
the stopping criterion.

2.
 

Initialize the population with random numbers.
3.

 
Compute the fitness function values. Perform 
selection, crossover, mutation and elitism in order to 
create a new population.

4.
 

If the stopping criterion is not satisfied, return to step 
3. Otherwise, choose the best individual found as the 
final solution. 
Stop: max number of generations, difference 
between best results of fixed number of generations. 
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GA + Constraint Handling

As such, genetic algorithms are not 
good at handling constraints efficiently.
Ideas based on classical penalty 
functions and modifications in 
population-based environments.
New modifications and comparisons.
Some emphasis on stopping criteria.
Feasibility may be taken into account 
in selection
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Method of Superiority of Feasible Points
New fitness function
Feasible individuals have better fitness function 
values than the ones outside the feasible region
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SFP Algorithm

1.
 

Set r, the population size N and the other genetic 
parameters as well as the parameters of the stopping 
criterion. Set i=1.

2.
 

Generate a random initial population X1. Set fbest

 

= 1.
3.

 
If the best individual in Xi

 
according to f± is feasible 

and it gives the best fitness function value so far, 
update fbest

 

and save that individual to xbest

 

. If the 
stopping criterion is satisfied, stop.

4.
 

Set Xi+1

 
= ;. Carry out elitism. Repeat selection, 

crossover and mutation until Xi+1

 
has N individuals.

5.
 

Set i=i+1. Goto
 

step 3.
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Method of Parameter Free Penalties
New fitness function
Fitness of infeasible individuals does not depend on 
the objective function
Infeasible solutions are directed towards the feasible 
region
No parameters to be set
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Method of Adaptive Penalties
New fitness function
Tries to avoid infeasible solutions by adjusting the 
penalty coefficient
Parameter h – number of iterations whose best 
individuals are examined
Penalty coefficient ri is checked at each iteration i after 
the first h iterations. Let us denote the best individual 
of the iteration j by yj. The ri is updated according to
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AP Algorithm

1.
 

Set c1

 

, c2

 

> 1 and r1

 

. Set h, the population size N and the 
other genetic parameters as well as the parameters of 
the stopping criterion. Set i=1.

2.
 

Generate a random initial population X1. Set fbest

 

= 1.
3.

 
Save the best individual of Xi

 
according to f± as yi. If 

this individual is feasible and it gives the best fitness 
function value so far, update fbest

 

and save that 
individual to xbest

 

. If the stopping criterion is satisfied, 
stop.

4.
 

Set Xi+1

 
= ;. Carry out elitism. Repeat selection, 

crossover and mutation until Xi+1

 
has N individuals.

5.
 

Calculate ri+1

 

. Set i=i+1 and goto
 

step 3.
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Comparison

33 test problems, 100 runs with each method
Accuracy, efficiency (function evaluations) 
reliability (finding feasible solutions)
Reliability of SFP depends on the penalty 
coefficient, efficiency not so good
AP most efficient but accuracy not so good
PFP – no parameters, always reliable, accuracy 
ok, efficiency not so good
PFP better than SFP in reliability and efficiency, 
accuracy almost the same
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Software

Software libraries (NAG, IMSL) 
Matlab – optimization library
Spreadsheet (Excel, Quattro Pro)
WWW

Netlib
NEOS
Many other pieces of software
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Applications: Flat EMFi-actuators

Flat EMFi-actuators: complex structure 
with vibrating element (foil) inside 
acustically resistive material with special 
cavities
Co-operation with VTT Automation 
(Tampere) and EMFiTech Ltd.
Optimal shape design of actuators
Optimal location of actuators in 3D

Based on ray tracing
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EMFi-based actuator
Design variables:

geometry of the cavities
film tension
driving voltage
film thickness

• Objective
– maximize sound 

pressure level
subject to
- distortion constraint
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Optimal Design of 
Grapple Loader

Structural optimization
Minimize weight
Subject to nonlinear and 
nondifferentiable stress and 
buckling constraints
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Conclusions

No free lunch theorem
Many, many methods exist
Need to know when to use which kind of methods
Trial and error is not enough
Simulation is not enough
Important to formulate the optimization problem 
properly
Optimization can make a difference and improve 
performance, design, profit, safety, etc. etc.
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List available at
http://www.mit.jyu.fi/miettine/lista.html

Further Links
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