Reports of the Department of Mathematical Information Technology
Series C. Software and Computational Engineering

No. C. 2/2006

Java-COM integration with JACOB
using XML wrappers

Miika Nurminen

University of Jyvdskyla
Department of Mathematical Information Technology
P.O. Box 35 (Agora)
FI-40014 University of Jyvaskyla
FINLAND
fax +358 14 260 2731
http:/ /www.mit.jyu.fi/

Copyright (© 2006
Miika Nurminen
and University of Jyvéskyld

ISBN 951-39-2633-8
ISSN 1456-4378

Java-COM integration with JACOB
using XML wrappers

Miika Nurminen*

Abstract

Many Windows-based legacy applications can be programmatically accessed
using COM interfaces. However, calling COM components from Java is not
straightforward. This report compares four open source Java-COM integration
packages. A technique for typesafe Java-COM integration is presented. The
technique is based on typesafe COM interface wrappers using jcom, java2com
and JACOB libraries. Examples with Microsoft Office applications are pre-
sented. XML wrapper and code generator can be bundled with future JACOB
releases as an alternative to Jacobgen wrapper generator.

1 Introduction

There is an increasing need to integrate enterprise systems with legacy applications.
Java is probably the most popular contemporary general-purpose programming
language, having platform independency as one essential advantage. However,
this implies trouble when platform-independent software should interoperate with
platform-specific code.

COM (Component Object Model) interfaces provide a standard way to interact
with many native Windows applications, most notably the applications in Microsoft
Oftfice suite. COM is supposed to be language-independent, to the extent that even
non-object-oriented languages like C or old versions of Visual Basic can interact with
COM components.

Unfortunately, it is not straightforward to call COM objects from Java, because
it requires interacting with native code running outside the JVM (Java Virtual Ma-
chine) using JNI (Java Native Interface). It is possible to call COM objects directly
using Microsoft’s own JVM in Windows [2]. Because of the lawsuit initiated by
Sun Microsystems in 1997, Microsoft has effectively dropped its Java support. Mi-
crosoft’s JVM is based on Java 1.1, lacking significant features and libraries intro-
duced in later Java versions. Therefore alternative techniques for Java-COM inte-
gration are needed.

“Department of Mathematical Information Technology, University of Jyvaskyld, PO Box 35
(Agora), FI-40014 University of Jyvaskyld, Finland, minurmin@jyu.fi

1

Web services [10] are a contemporary technique for loose integration of hetero-
geneous systems. However, direct in-process integration is in many ways superior
—and in some cases the only viable alternative to Java-COM integration. Some ben-
efits of direct integration are:

e Performance. Web services are slow compared to dynamic linking. For some
legacy applications web services might not even be feasible at all — or a sep-
arate “ws-facade” should be implemented as a native Windows application,
adding another layer of overhead to the system.

e Scripting. Automation (also known as Dispatch) interfaces allow scripting
Windows-based applications at runtime. For example, Microsoft Office suite
is used in in many business systems via automation, especially with Visual
Basic. Java-COM integration exposes these interfaces to Java applications as
well (scripting Office is not a necessarily a good architectural decision but there
is nevertheless a need to interoperate with existing systems).

e Legacy applications. Some highly specialized Windows-based legacy applica-
tions that have not been actively maintained provide only COM interfaces to
work with (this may apply even to more recent applications, as demonstrated
by Crosby with iTunes [4]). Since contemporary Microsoft Office versions have
provided increasing support for purely file-based XML data exchange, the in-
tegration problem with Office is not critical compared to other applications.
Even with XML enabled, it may be easier to create new or modify existing Of-
tice documents with COM vs. generating Office XML from scratch.

e ActiveX controls. In the user interface side, Java-COM bridge makes it possi-
ble to interface with ActiveX (formerly known as OLE) controls and listening
to COM events triggered by user actions. This can be indirectly applied also
to other kinds of UI components, such as VCL-based (Visual Component Li-
brary) controls used in Borland Delphi, since they can be published as ActiveX
controls [3].

e .NET integration. With the advent of .NET, Java-COM integration provides a
compact (at least compared to web services) way to call NET assemblies, since
NET components can as exposed as COM components [1] [9].

This report focuses on calling Dispatch-based COM components from Java code,
but not vice versa (with the exception of events, since some Java-COM bridges al-
low COM event handlers to be callbacks in Java code). In addition to Dispatch-based
COM components there are also Vtable-based components (ie. non-scriptable com-
ponents that do not implement IDispatch interface [9]). It is assumed that the COM
components reside on the same machine as the Java code. The more elaborate prob-
lem of embedding ActiveX controls physically into Java applications [13] is outside
of the scope of this report.

The practical need for integration described in this report arose from a Java-based
process development project. One of the project’s goals was to read and manipulate
a group of existing business process models modelled with Microsoft Excel and Vi-
sio and potentially with other process modelling software. One-way transformation
based on parsing Office 2003 XML was already implemented, but in order to modify
the models it seemed more feasible to manipulate the Office object model directly
using COM interfaces.

There are several commercial Java-COM integration tools available, but the re-
port is focused on open source approaches. Four integration packages were com-
pared based on three simple test programs that integrate with Microsoft Office and
Visio. The review carried out suggests that contemporary open source Java-COM
integration components do not support both wrappers (ie. pregenerated typesafe
stubs based on a COM type library) and work with all the test cases without the
need to modify the wrappers manually or to write complex code to call the compo-
nents. An adoption of JACOB [2] library based on the code written by Steven Lewis
[7] is presented that alleviates these deficiencies.

This report is organized as follows: section 2 introduces and reviews four inte-
gration packages for Java-COM integration. Section 3 describes the technique and
required source code modifications to JACOB in detail. The test cases are presented
in section 4. Section 5 concludes the report.

2 Alternatives to Java-COM integration

The goal of wrapper-based Java-COM integration is to call Dispatch COM compo-
nents with the same ease and convenience as from Visual Basic. As an example,
JACOB allows calling components using IDispatch interface, but this requires a lot
of browsing through documentation and extensive typecasts whenever a value set-
ter or getter is used. If one manages to get the datatypes and method names right,
it works — but is inherently unsafe and tedious for any but the simplest projects. A
few lines from JACOB’s sample files that fetch some data from Excel illustrate the
problem:

ActiveXComponent xI = new ActiveXComponent("Excel.Application™);
Dispatch.put(xl,"Visible", new Variant(true));
Dispatch workbooks = xl.getProperty("Workbooks").toDispatch();
Dispatch workbook = Dispatch.get(workbooks,"Add").toDispatch();
Dispatch sheet = Dispatch.get(workbook,"ActiveSheet").toDispatch();
Dispatch al = Dispatch.invoke(sheet,"Range", Dispatch.Get,
new Object[] {"Al"},
new int[1]).toDispatch();
Dispatch a2 = Dispatch.invoke(sheet,"Range", Dispatch.Get,
new Obiject]] {"A2'},
new int[1]).toDispatch();
Dispatch.put(al, "Value","123");
Dispatch.put(a2, "Value","=A1*2");
System.out.printin("a2 from excel:"+Dispatch.get(a2,"Value"));

A more elegant approach is to use wrapper classes generated from a COM type li-
brary. Type libraries (such as excel.exe) describe all methods, datatypes, and events
related to a COM server. Type libraries can be browsed by many Windows-based
development tools such as Microsoft Visual Studio [14] or Borland Delphi [3]. Even
some Java-COM tools described in this report provide a type library browser. Using
the technique described in in section 3 it is possible to script Excel (and basically any
Dispatch-based COM-component) with more simplified notation:

Application xI = new Application(); // Inherited from Excel wrapper
System.out.printin(xl.getVersion());

xl.setVisible(true);

Workbooks workbooks = xl.getWorkbooks();

Workbook workbook = workbooks.Add();

Worksheet sheet = new Worksheet(workbook.getActiveSheet());
Range al = sheet.getRange("A1");

Range a2 = sheet.getRange("A2");

al.setValue("123");

a2.setFormula("'=A1*2");

System.out.printin("a2 from excel:"+a2.getValue());

Even with generated wrappers all datatypes cannot be inferred. Getter
workbook.getActiveSheet() returns a Dispatch pointer that is subsequently handed
to a Worksheet constructor — effectively a typecast.

Four open source Java-COM integration tools — JACOB, Jawin, jSegue and com4;
are compared in this section. There seems to be a clear need to integrate Java code
with legacy COM code, since there are a number of projects under development
and hundreds of posts in the projects” discussion forums. Unfortunately, none of
the integration tools worked ”out of the box” without problems related to wrapper
generation, datatype handling or simply the ease of use. The documentation was
also somewhat scarce. Wrapper classes generated by different projects were similar
in general, but had some variations in detail. Thus, after choosing one integration
platform it is not straightforward to move to another. It is crucial to choose the
integration tool with respect to requirements relatively early in the implementation.

JACOB 1.10.1, Jawin 2.0 alpha, jSegue 2.0.0.394 and com4j 2006-03-22 were eval-
uated based on three test cases that integrate with Microsoft Visio (document ma-
nipulation), Excel (chart generation) and Word (event handling). The test cases are
described in more detail in section 4. Sun’s JDK 1.5.0_04-b05 running on Windows
XP was used as test environment. NetBeans 5 [11] was used as development envi-
ronment. The results are summarized in table 1.

Actual support for different datatypes (especially arrays and dates) embedded in
COM Variants varies between the projects, but they were not tested systematically.

2.1 JACOB -Java-COm Bridge

JACOB [2] is a Java-COM bridge that allows calling COM automation components
from Java. It uses JNI to make native calls into the COM and Win32 libraries. JACOB
was originally created by Dan Adler and is based on Microsoft’s Java SDK. JACOB

4

JACOB Jawin jSegue comdj
Dispatch interfaces | Yes Yes Verbose Yes
Vtable interfaces No Yes Yes In progress
COM events Partial No Yes In progress
Wrapper generator | Yes Partial Needs C++ | In progress
COM browser No Yes No Yes

Table 1: Comparison of Java-COM integration tools.

supports Dispatch-based COM interfaces as well as COM events. Vtable-based in-
terfaces are not supported. JACOB project has been in active development since
1999, latest version 1.10.1 was released in April 2006. Because of its age, JACOB can
be considered a stable and mature package.

JACOB is accompanied by a wrapper generator called Jacobgen. It is still on
relatively early development stage and did not work adequately with the test cases
— for example, Jacobgen did not parse a type library from Excel. Fortunately, there
is another wrapper generator component java2com created in 1998 by Steven Lewis
[7] that produces XML wrappers and Java stubs. Some minor modifications (see
section 3) are required to both contemporary JACOB distribution and old java2com
package to get the tests run correctly.

2.2 jSegue

jSegue is a toolset for making Java bindings to native code [5]. The toolset includes
a wrapper generator tlb2java that generates Java and JNI code to call COM Au-
tomation servers. Of the integration packages tested, jSegue is the only tool that
works also as COM-Java bridge, allowing Java classes to be used as in-process COM
servers. The project has been in active development at least since 2004 and earlier
as a commercial package from Moebius Solutions. Latest version 2.0.0.394 was re-
leased in March 2006.

jSegue is a mature and robust package, supporting both Dispatch and Vtable-
based COM interfaces as well as COM events. All the test cases run with jSegue,
so it seems to be a feasible integration solution. The only disadvantage with jSegue
is that it is somewhat awkward to use. Its wrapper generator produces both Java
wrappers and C++ stubs that must be separately compiled to make full use of the
library. This works if one has Visual Studio or equivalent installed, but is regardless
an extra step from purely Java point of view. A more serious inconvenience with
jSegue is its convention of calling Dispatch interfaces (even with wrapper-generated
code). For example, consider the Excel example presented in section 2 and focus on
the line that creates a new Worksheet:

Worksheet sheet = new Worksheet(workbook.getActiveSheet());

In jSegue, the equivalent code must be represented as follows:

IDispatch sh = workbook.getActiveSheet();
_Worksheet[] out sheet = { null };
_Worksheet sheet;
sh.QuerylInterface(out_sheet);
sheet=out_sheet[0];

It works, but the required plumbing code makes the approach laborious (in this
case, it seems almost simpler to use a purely Dispatch-based approach with type-
casts without wrappers). Regarding the goal of making COM as easy to use from
Java as from Visual Basic it is a bit too verbose and C++-like. However, when im-
plementing or enhancing a system in immediate production use, jSegue would be
recommended because of its maturity.

2.3 Jawin

Java/Win32 integration project (Jawin) is a free, open source architecture for inter-
operation between Java and components exposed through COM or through Win32
Dynamic Link Libraries (DLLs) [9]. The project was initiated by Stuart Halloway
and Justin Gehtland in 2003. Currently, the development seems to have slowed
down: the latest version 2.0 alphal was released in March 2005.

Jawin has many promising features: it supports both Dispatch- and Vtable-based
COM components and includes an easy to use COM type library browser as well
as XML-based wrapper generator (although incompatible with wrappers generated
with java2com). However, COM events are not supported. Jawin works in princi-
ple, but in practice the test cases required numerous minor wrapper code changes
both in initial XML files and Java code to make it even compile, not to mention
making it actually work. Someone with extra time and energy (and deeper knowl-
edge of COM) could most likely fix the bugs associated in wrapper generation with
moderate effort. Eventually the wrapper files were generated, but the Variant type
handling turned out to be obscure to say the least —at least compared to conventions
used in JACOB or even jSegue. Only the Word and Visio-related test cases run with
Jawin.

Jawin has potential, especially in the user interface side. It would be ideal tool
for a beginner developer, especially because of the COM browser. Unfortunately,
at its current state it cannot be recommended, because the generated code must be
modified manually and because of the issues with datatype handling.

24 com4j

Com4j is a new project to develop a Java library that allows Java applications to
seamlessly interoperate with COM and to produce a Java tool that imports a COM
type library and generates the Java definitions from it [6]. Com4j takes advantages
of Java 1.5 features to improve usability (ie. producing significantly cleaner wrap-
per code compared to all other packages discussed here). Com4j is developed by

6

Kohsuke Kawaguchi. The project was started in 2004, latest version was signed
22.03.2006.

Com4j is ambitious and promising project. The idea of using Java 1.5 metadata
to describe wrappers is elegant and when matured, the package would provide
all the essential tools for COM interoperability: interfaces for both Dispatch- and
Vtable-based components, support for events as well as a wrapper generator. Un-
fortunately, the project was in alpha stage while it was tested. The generation of
wrappers was not successful, so it is definitely too early to put it in production use.
Because of the frequent updates, some of the problems mentioned here may have
been fixed already. Com4j might be an optimal solution in the future.

3 Enhancing JACOB with java2com

The initial tests indicated that JACOB itself is stable and mature enough to be
used for Java-COM integration, but the wrapper generator component should be
replaced with a more robust one. An alternative component can be found from
Steven Lewis’ java2com package [7] that uses wrapper generator based on Yoshinori
Watanabe’s jcom [12] and a modified JACOB DLL library. Java2com was released in
1998.

When the tests were run on old java2com package, wrapper generation worked
fine (although the enum keyword was used in generated class names — the package
was deployed years before the release of Java 1.5), but there was some problems
with some of the test cases (for example, changing font style in Microsoft Visio did
not work — perhaps something related to COM enum handling?). However, since
the equivalent, purely Dispatch-based code worked in current JACOB 1.10.1 distri-
bution is was concluded that the invoke error was caused by the old JACOB DLL,
not the java2com component itself.

The logical next step was to integrate the old java2com code with current JACOB
distribution. Unfortunately, the current version of JACOB DLL is not directly com-
patible with Lewis” modifications: there are changes both in C++ and Java code,
along with some renamed methods and enhanced functionality. In order to take
advantage of the bug fixes of the last 8 years, JACOB package had to be manually
modified to make it again compatible with java2com (and Java 1.5). These modifi-
cations are described in detail in the following subsections.

3.1 Wrapper generation

Java2com includes subprojects Xmlgen and Codegen, for generating XML descrip-
tors from COM type libraries and subsequently generating Java stubs from XML de-
scriptors. In order to generate the descriptors, the type library files must be located.
There are numerous tools for this, including Visual Studio or Borland Delphi. Type
libraries can be referred with absolute file name (eg. C:\Program Files \Microsoft

Office \OFFICE11\EXCEL.EXE), a class identifier (128-bit number also known as

GUID) or a human readable program identifier (eg. Excel.Application). Type li-
braries can include other type libraries (for example, Excel is dependent on Office
object library, Standard OLE and Visual Basic library), but Xmlgen locates and consoli-
dates all required data without the need to request it explicitly.

Xmlgen was incorporated into the new integration package unaltered. Codegen
package was slightly modified to make the generated code compatible with Java
1.5. enumliterals were renamed and some additional exception handling was added.
Overall, the following classes were modified.

com.lordjoe.utilities. COMEnumBuilder
com.lordjoe.utilities. COMSurrogateBuilder
com.lordjoe.utilities.IStackTraceable
com.lordjoe.utilities.LException
com.lordjoe.utilities.Reflectivelterator
com.lordjoe.utilities.StackTrace
com.lordjoe.utilities. TypelibDispatchBuilder
com.lordjoe.utilities. TypelibEnumBuilder
com.lordjoe.utilities. Util
com.lordjoe.utilities.WrapperException

Xmlgen and Codegen were combined to the same binary distribution (see
javacom \bin package), along with XML parser Xerces [15] that is required by Code-
gen.

3.2 Modifications to JACOB

This is the most complicated part of the integration. On the test cases carried out the
contemporary JACOB package with java2com-generated wrappers did not work (or
even compile). The modifications made by Lewis in 1998 had to be examined and
matched with current JACOB source code (both Java and C++), preferably without
introducing any new bugs or breaking anything (see also Modifications to JACOB code
for Generated Code [7] by Steven Lewis that explains his original modifications).

The following classes can be directly replaced by the classes in java2com package.
They are either new or there has not been any significant progress in the recent years:

com.jacob.activex.COMconstants
com.jacob.activex.JDispatch
com.jacob.activex.Jvariant
com.jacob.activex.ThreadingModelEnum
com.jacob.com.ComThreadingTypes
com.jacob.com.COMUtils
com.jacob.com.DispatchConstants
com.jacob.com.lUnknown
com.jacob.com.StructuredException
com.jacob.com.VTTypeEnum
com.jacob.com.WDispatch

The following classes should be kept in JACOB package as is. They are either the
same as in java2com or contain fixes compared to code in java2com.

8

com.jacob.com.ComException
com.jacob.com.WrongThreadException
com.jacob.com.ComFailException
com.jacob.com.SafeArray

Dispatch and Variant classes require more extensive changes. A Dis-
patch constructor with threading model must be copied to JACOB, but the
native call createlnstance should be renamed to createlnstanceNative (a
new stub createlnstanceNative with threading model argument, as well as
doSetDefaultThreadingModel stub must also be added). Java2com has a more elab-
orate constructor Dispatch(int) (which requires also adding a setDispatch native
stub and getDispatch method) compared to one in JACOB may be used. The
method obj2variant differs slightly, but the code in JACOB is newer, so it is kept as
is.

Method name Notes

Dispatch(String, Copy from java2com, rename call
ThreadingModelEnum) createlnstance — createlnstanceNative
Dispatch(int) Copy and replace from java2com
getDispatch() Copy from java2com
createlnstanceNative(String, Add native stub

ThreadingModelEnum)

doSetDefaultThreadingModel(int) Add native stub

setDispatch() Add native stub

Table 2: Modifications to Dispatch class in JACOB.

Variant in java2com has a few methods that have either been renamed or re-
moved and can be ignored. These include save, load , and getObjectRef . How-
ever, Variant(String) and Variant(SafeArray, boolean) constructors, getllD ,
getObject , buildSafeArray and buildVariantArray ,as well as EMPTY_ARRAYonstant
should be added from java2com. ForceObjectval should be copied, but modified
only to call toJavaObject ~method in JACOB. Finally, constructor Variant(Object,
boolean) should be augmented with Wbispatch and Array handling. The changes
required to Dispatch and Variant classes are summarized in tables 2 and 3.

The last step needed is altering the Dispatch C++ class in JACOB DLL directly.
The following methods have been renamed in newer JACOB:

putobject — putDispatchObject
todispatch ~ — toDispatchObject
createlnstance — createlnstanceNative

An implementation of createlnstance ~ with threadingModel ~ parameter should
be copied and renamed from java2com. Another createlnstanceNative method
must be augmented with Colnitialize call in the beginning and handling for

Method name Notes

Variant(String) Copy from java2com

Variant(SafeArray, boolean) Copy from java2com

Variant(Object, boolean) Add wbispatch and Array handling

getlID() Copy from java2com

getObject() Copy from java2com

buildSafeArray(Object) Copy from java2com

buildVariantArray(Object[]) Copy from java2com

EMPTY_ARRAY Copy from java2com

forceObjectVal() Copy from java2com, modify method to
call toJavaObject

Table 3: Modifications to Variant class in JACOB.

progids starting with {” in the end of the method. Also, implementations for
setDispatch and doSetDefaultThreadingModel should be added.

The convention of automatically initializing COM threads and specifying thread-
ing model explicitly has some effect on existing JACOB sample code. Java2com
uses multithreaded model as default, but current JACOB samples assume single-
threaded apartments (eg. a single-threaded apartment thread is created in the be-
ginning of the Excel example). The threading model should be explicitly specified
in component constructor and matched with the running thread — alternative ap-
proach would be to change the default threading model in JACOB. For example, an
Excel component using single-threaded apartment would be created as follows:

ActiveXComponent xI = new ActiveXComponent("Excel.Application”,
com.jacob.activeX.ThreadingModelEnum.ApartmentThreaded_ ENUM);

However, if wrapper classes descended from Wbispatch are to be used,
JACOB creates automatically a multithreaded apartment and therefore one
cannot make a call like ComThread.InitSTA() when wrappers are used
(see example ExcelWrapperTest and compare it to ExcelDispatchTest in
com.jacob.samples.office package). In both cases the thread should be explicitly
released with ComThread.Release() to prevent potential memory leaks.

3.3 Limitations

Apart the wrapper code, the java2com-enhanced JACOB package has the same
general limitations as JACOB. There is no support for Vtable-based COM compo-
nents. Also, there is no inherent support for graphical ActiveX controls embedded in
Java Uls, although the Visio example provided in com.jacob.samples.visio demon-
strates some basic functionality. JACOB supports both single- and multithreaded
apartments, but the thread-related code adapted from java2com is not thoroughly

10

tested. Liong [8] reviews some intricacies related to COM apartments. It should be
also noted that the JACOB default threading model was altered since version 1.7 [2].

Another essential limitation is event handling. JACOB allows events using
DispatchEvents class, but the type information related to them is lost: all event han-
dlers must have a Vvariant]] type signature. Event handlers are described in type
libraries, so Codegen generates wrapper classes for them, but they cannot be directly
used. There was no event handling mechanism in java2com and the wrappers are
not compatible with JACOB’s DispatchEvents. Indirectly, the wrapper classes (eg.
com.microsoft.excel.gen._WorkbookEvents) could be used to look up the correct
method names and excepted types for event handlers, but a custom handler class
handled to DispatchEvents ~ with Variant]] ~ arguments must still be used. A poten-
tial workaround would be to change InvocationProxy ~ class to call event handlers
with correct signatures using reflection, but the initial tests were not successful. As
with Jawin, this could probably fixed with moderate effort, since the basic event
handling mechanism is already implemented.

4 Using modified JACOB distribution and test cases

This section describes the test cases in detail and provides guidelines for
building and deploying the modified JACOB distribution. Test cases work
also as examples. All the source code is publicly available in WWW at
http://www.mit.jyu.fi/minurmin/javacom/ . The test cases were constructed to
evaluate the basic functionality of Java-COM integration tools with following re-
quirements:

e Compilation of the generated wrapper code (this may sound trivial but was
actually an issue with almost all integration tools tested).

¢ Instantiation of COM objects from Java code (eg. starting Excel).
e Calling COM methods from Java (eg. creating a chart with Excel).

e Conversion between Java datatypes and COM variants (these were not tested
exhaustively, but include basic datatypes, Dispatch pointers, and COM enu-
merations).

JACOB 1.10.1 and java2com packages were repackaged to new source and bi-
nary distributions. Source distribution is divided to wrapper generators Xmlgen
and Codegen, modified JACOB code jacob_1.10.1_mod, sample code com_samples
containing standard JACOB samples, the test cases and wrapper classes for Microsoft
Word 2003, Excel 2003 and Visio 2003. The projects are organized using NetBeans 5
-generated Ant build scripts. Binary distribution contains both JACOB and jcom
DLLs, as well as jar packages of all the projects, along with examples. The binary
distribution can be used to generate both XML descriptors and wrapper classes and
for running the examples.

11

For rebuilding JACOB or the examples with NetBeans 5, Codegen should be
opened first, then JACOB and finally com_samples projects, because of the depen-
dencies. Codegen requires XML parser Xerces contained in the lib ~ directory. Xml-
gen is separated from other projects and should not need to be recompiled. Heap
size may have to be increased, because the wrappers constitute over 1000 classes,
requiring extensive memory. If this is the case, NetBeans should be started with the
following-like command line parameters that instruct JVM to increase heap size to

400MB, for example:
nb.exe -J-Xmx400M

Class jp.jcomgenerator.XMLGenerator in XMLGenerator.jar ~ generates XML de-
scriptors (jcom.dll must be in path). com.lordjoe.lib.xml.TypeLib in codegen.jar
generates Java wrappers (xercesjar must be in classpath as well). Using modified
JACOB package requires jacob.jar ~ and codegen.jar in classpath and jacob.dll in

path.

4.1 Visio integration

Visio example starts Visio, creates boxes, changes text style, waits for 5 seconds and
exits the application. Along the example, there is some commented code used in the
tests with jSegue and Jawin (the Jawin code does not actually work. This was one
reason Jawin was abandoned). Java2com-generated COM enums are also demon-
strated by changing font size. Changing font style did not work with the original
java2com package.

Original JACOB distribution in com.jacob.samples.visio package contains a
more elaborate example using Visio. This example demonstrates embedding Vi-
sio chart in Java JFrame as well as event handling, but uses only Dispatch interface
without wrappers. Converting it to wrappers would be an interesting and useful
exercise.

4.2 Creating a chart with Excel

Excel example is based on the original Talking to COM example [7]. The application
starts Excel, creates a workbook with some cells, creates a chart and exits. The meth-
ods to be called have slightly more complex parameters compared to Visio example
and it does not run with Jawin either.

There is another, slightly simpler Excel example in com.jacob.samples.office
package that demonstrates similar functionality with both Dispatch inter-
face + typecasts (ExcelDispatchTest) and wrappers (ExcelWrapperTest). The
ExcelDispatchTest is slightly altered to make it work with explicit threading model.

4.3 Events with Word

Word example demonstrates event handling. An event handler class is cre-
ated and registered with Word application object. Then two documents are

12

created. Java application gets notifications when documents are opened, be-
fore closing and on application exit. As discussed in section 3.3, event han-
dlers are restricted to coarse Variant[] arguments. However, method names can
be checked from com.microsoft.word._ApplicationEvents2 (simply subclassing
_ApplicationEvents2 with the event handler does not work with JACOB'’s current
event handling, even if one manages to call the handler with correct parameter list.
The method calls generated in _ApplicationEvents2 result in runtime error).

Class com.jacob.samples.office. WordDocumentProperties is another example
adapted from standard JACOB distribution. It fetches document author metadata
from a Word document and exits.

5 Conclusion

This report presented a technique and working examples for Java-COM integration
using typesafe COM Dispatch interface wrappers. Four open source integration
packages were also compared. The approach that was evaluated further was origi-
nally presented by Steven Lewis in 1998 and is now adapted to work with current
release of JACOB library with detailed explanation of what must be modified in fu-
ture releases. The source code is publicly available in WWW. XML wrapper and
code generator may be bundled with future JACOB releases as an alternative to Ja-
cobgen wrapper generator. XML descriptors could also be used to integrate differ-
ent Java-COM integration packages, thus making it easier to shift between packages.
The type library browser from Jawin could be generalized to be used as a frontend
for Xmlgen and Codegen.

The repackaged JACOB worked with examples presented in this report, but fur-
ther testing is needed, especially with threading. The event handling mechanism in
JACOB should be enhanced to be compatible with event classes generated by Code-
gen. This provides better typesafety and reduces the need to create event handler
classes manually. This package hopefully provides a feasible alternative to Java-
COM integration using open source software an may provide a robust base for fur-
ther development.

References

[1] R. Adhikari, Java & .NET can live together. Application Development Trends,
December 2001. http://www.adtmag.com/article.aspx?id=5750

[2] D. Adler, The JACOB project: A Java-COM bridge. Techn. rep., 2004. nhttp:
/[danadler.com/jacob/

[3] Borland Delphi 7 for Windows - developer’s guide. Techn. rep., Borland, 2002.
http://info.borland.com/techpubs/delphi/Delphi7/DevelopersGuide.pdf .

13

http://www.adtmag.com/article.aspx?id=5750
http://danadler.com/jacob/
http://danadler.com/jacob/
http://info.borland.com/techpubs/delphi/Delphi7/DevelopersGuide.pdf

[4] N. Crosby, Using the iTunes COM interface with Java and Swing.
workingwith.me.uk, 2004. http://www.workingwith.me.uk/articles/java/
itunes-com-with-java-and-swing

[5] R. Hastings, jSegue project documentation. Techn. rep., Moebius Solutions,
2004. http://jsegue.sourceforge.net/

[6] K. Kawaguchi, com4j project documentation. Techn. rep., Sun Microsystems,
2005. https://Icom4j.dev.java.net/

[7] S. Lewis, Talking to COM. SeaJUG, 1998. http://web.archive.org/web/
20050214235807/http://www.lordjoe.com/Java2Com/

[8] L.B. Liong, Understanding the COM single-threaded apartment - part 1. The
Code Project, 2005. http://www.codeproject.com/com/CCOMThread.asp

[9] R.I. Martin and S. Halloway, Jawin project documentation. Techn. rep., 2000.
http://jawinproject.sourceforge.net/ .

[10] N. Mitra, SOAP version 1.2 part 0: Primer. Tech. Rep. W3C Recommendation
24 June 2003, W3C, 2003. http://www.w3.0rg/TR/soap12-part0/

[11] NetBeans web site. Sun Microsystems, 2006. http:/Awww.netbeans.org/

[12] P. Ombredanne, jcom project web site, nexB, 2003. http://sourceforge.net/
projects/jcom/

[13] D. Srinivas, Embed ActiveX controls inside Java GUIL The Code Project, 2000.
http://www.codeproject.com/javal/javacom.asp

[14] Visual Studio developer center. Microsoft, 2005. http://msdn.microsoft.com/
vstudio/

[15] Xerces web site. Apache software foundation, 2005. http://xerces.apache.
org/ .

14

http://www.workingwith.me.uk/articles/java/itunes-com-with-java-and-swing
http://www.workingwith.me.uk/articles/java/itunes-com-with-java-and-swing
http://jsegue.sourceforge.net/
https://com4j.dev.java.net/
http://web.archive.org/web/20050214235807/http://www.lordjoe.com/Java2Com/
http://web.archive.org/web/20050214235807/http://www.lordjoe.com/Java2Com/
http://www.codeproject.com/com/CCOMThread.asp
http://jawinproject.sourceforge.net/
http://www.w3.org/TR/soap12-part0/
http://www.netbeans.org/
http://sourceforge.net/projects/jcom/
http://sourceforge.net/projects/jcom/
http://www.codeproject.com/java/javacom.asp
http://msdn.microsoft.com/vstudio/
http://msdn.microsoft.com/vstudio/
http://xerces.apache.org/
http://xerces.apache.org/

	Introduction
	Alternatives to Java-COM integration
	JACOB -- Java-COm Bridge
	jSegue
	Jawin
	com4j

	Enhancing JACOB with java2com
	Wrapper generation
	Modifications to JACOB
	Limitations

	Using modified JACOB distribution and test cases
	Visio integration
	Creating a chart with Excel
	Events with Word

	Conclusion

