
UCOT: Semiautomatic Generation
of Conceptual Models from
Use Case Descriptions

Tommi Kärkkäinen, Miika Nurminen
Panu Suominen, Tuomo Pieniluoma, Ilari Liukko

University of Jyväskylä
Department of Mathematical Information Technology (MIT)

Research Group on Computational Sciences, Software
Engineering and Education (COSSE)

Faculty of Information Technology

The IASTED International Conference on Software Engineering (SE 2008)
February 13, 2008, Innsbruck, Austria

Starting points

• In requirements analysis domain understanding and
shared ontology between stakeholders is needed
– A domain/analysis model understood and accepted to abstract the

shared view is required

– Use cases provide a process-like view of the requirements with
both contextual and structural information for problem solving

• Object orientation in analysis may require unnecessary
qualifications from relevant stakeholders (deciders)
– (Extensive use of) UML might bring focus on layout instead of

actual content (validation)

• NLP (and other CS ”stuff”, e.g. text mining) can and
should be utilized in tools to support automatic analysis
– UCOT: Prototype/proof-of-concept for semiautomatic discovery of

domain concept model from use cases

NLP for Model Generation

• There exists many approaches for natural language processing
– Currently statistical parsers are widely used (and also utilized in this work)

• The classical approach for identifying classes from natural language phrases
is the noun analysis, introduced by Abbott. Objects correspond to nouns
and methods to verbs.

• Abbot’s heuristic can be utilized as a simple form
of automated conceptual modeling

• Creating a conceptual model can help locating
recurring patterns of domain entities, helping to
find common attributes among different systems
or within a single system. Such knowledge can be
augmented to create a domain ontology.

Related work

• (Abbott, 1983) Abbot’s heuristic

• (Cockburn, 2000) use case writing conventions & patterns

• (Klein & Manning, 2002) Stanford parser (PCFG+dependency model)

• (Anda & Sjøberg, 2005), domain class derivation technique

• (Li, 2000), use case normalization

• (Song et al, 2004) taxonomic class modeling methodology

• (Svetinovic, 2006) OOA critique for conceptual modeling

• (Liu et al, 2004) UCDA, class model generation from use cases

• (Pérez-González et al, 2005) GOOAL, OOA laboratory

• ProcMiner (Nurminen et al, 2007) use case management

UCOT

• UCOT (from Use Cases to Original enTities) is a reseach prototype which is
designed to automatically analyze use cases and create a conceptual model
based on the analysis.

• Use cases are represented as structured text or XML (ProcML) -based
descriptions, containing a title and sequences of steps. Additionally use case
steps can refer to other use cases.

• Grammatical parser (extracting both parts of speech and sentence elements)
and Abbott's heuristic are used to process the use cases.

• User can modify the conceptual model by combining entities, refining entities
and relations, as well as adding roles for the entities.

• The system is able to produce different kinds of output formats.

– The (“pseudo-UML”) model view is generated using visualization tool Graphviz

– GXL (Graph eXchange Language) output

• Realized in real-customer fixed-time capstone project using agile practices

• Implemented with Java

UCOT architecture

• UCOT system is structured according to the pipes and filters

• The system was designed to make it possible to add or replace
components later.

• Key component of the system is Core, whose responsibility is to control
other modules, loading them on startup, and direct the data flow.

• UCOT components in processing flow

1. Load use case (InputAdapter)

2. Parse in an internal data structure (ParserAdapter)

3. Apply heuristic rules (HeuristicModule)

4. Modify conceptual model (UI)

5. Save or export (OutputAdapter)

• Parser and heuristic (as well as other components) are independent of each
other – heuristic uses only parts of speech and sentence element data

– Increases modularity, but introduces some limitations to heuristic processing
(especially potential metadata in original input format is not preserved “through”
parser)

UCOT architecture and processing flow

UCOT Data model

• The phrase model contains words and their relations in the sentence,
independently from the input language and implementation of the parser
(currently Stanford)

• Elements of the conceptual metamodel

•The inheritance relation can be interpreted either as oo-like inheritance or instance-of
relationship. The influence relation is used for other types of relationships.

•Attribute relation is used for aggregation/composition

•An entity may also have a role (i.e. a stereotype) which can be written under the name
of the entity.

• Only the simple rules related to Abbot’s heuristic (nouns to entities, and
verbs to relations between entities) were implemented to preserve the
input language independence

“Bootstrap” example

• Analyzing the use cases that were used to specify the system itself
[name] Main flow [id] 1
[steps]

User selects the use case. (2)
Program processes the use case. (3)
Program shows the conceptual model.
User edits the conceptual model.
Program stores the conceptual model.

[end]

[name] Select use case [id] 2
[steps]

User selects the source of the use cases.
Program presents the list of the use cases contained in the source.
User selects use case from the list of use cases.

[end]

[name] Process use case [id] 3
[steps]

Program passes the use case to the parser.
Parser returns the parsed use case.
Program passes the parsed use case to the heuristic.
Heuristic returns the conceptual model.

[end]

Create conceptual model

UCOT User Interface

Results (automatically generated)

Main Flow

Select Use case

Process Use case

Results (fixed)

Select Use case (fixed with UCOT) Process Use case (idealized)

Combined model

Combined model (initial)

Combined model (fixed)

Evaluation

• Example

– Generated structure represents the architecture actually implemented (good
software architecture?)

• Metamodel & use case processing

– There should be a way of representing n-ary relations (i.e. relations made of
three or more participants)

– Additional meaning extraction (e.g. relation type classification, additional
sentence element processing) should be utilized in heuristic module, but would
destroy its language independence

– Additional semantic annotations should be obtained in the parsing phase to
extract more specific entity roles.

• General

– The quality of output depends essentially on the work done in earlier phases
necessary to produce it (writing conventions, terminology, etc)

– Increasing the number of use cases also increases the need for creating more
abstract views of them, although the amount of information in the model can
exceed the limits of human cognitive capacity

In reality
(work in progress):
Modeling Decision
Support System
based on Statistical
Decision Theory

Conclusion & further research

• UCOT system provides appropriate support to speed up domain
understanding by focusing the domain analysis efforts on the most
essential domain entities, their relations, and roles as part of the problem
to be solved

• Allows role-based separation of relevant concepts
• Advanced heuristics require additional information of the language

semantics or input format metadata

• The model should be alternatively be presented in a more behavioral
oriented way (cf. sequence diagram)

• Use cases, requirements lists, concept models, and concept definitions
(“glossary”) should be linked together in a unified structure

• Gathering experience when utilized in larger-scale software production
• More thorough evaluation needed

Thank you!

minurmin@mit.jyu.fi
http://www.mit.jyu.fi/minurmin/

