
THE DIMENSIONS OF MAINTENANCE

E. Burton Swanson
Graduate School of Management

University of California, Los Angeles
Los Angeles, California 90024

Keywords and Phrases

Software maintenance, performance measurement.

Abstract

assessments of practitioners. (See, e.g., Ogdin (1972);
Lindhorst (1973); and Mooney (1975).) Sometimes these
reports are based on purposeful empirical studies.
(See, e.g., Brantley and Osajima (1975) and Stearns
(1975).) Rarely, some ideas of theoretical import are
ventured, in addition. (See especially Brooks (1975).)

The area of software maintenance has been describ-
ed by one author as an "iceberg." (EDP Analyzer, 1972)
Much goes on here that does not currently meet the eye.
In part, this is the consequence of measurement d i f f i -
culties. Practitioners and researchers can benefit
from an understanding of the "dimensionality" of the
maintenance problem. Some measures are suggested for
coming to grips with this dimensionality, and problems
of ut i l izat ion associated with these measures are
explored.

For the most part, l i t t l e research on software
maintenance has been forthcoming. (For one notable
exception, however, see Belady and Lehman (1975).)

In this paper, the problem of application software
maintenance is directly examined. The intent is to
come to grips with the "dimensionality" of the problem
from both theoretical and practical points of view.
The questions of measurement associated with the problen
receive primary attention. Implications for managers
and researchers are drawn.

Introduction

The area of software maintenance has been describ-
ed by one author as an "iceberg." (EDP Analyzer,
1972) By this term, we may infer that much goes on
here that does not currently meet the eye, and further,
that our ignorance in this regard is, in a sense,
dangerous.

Boehm (1973) reports that according to one survey,
almost 40% of the software effort in Great Britain now
goes into maintenance. The "iceberg" is apparently
big, and s t i l l growing.

Application software, rather than system software,
has been chosen for study because, as is the case with
the subject of maintenance, i t has been relat ively
neglected.

The paper begins with a consideration of the bases
for application software maintenance. An example of an
organization structure for performing maintenance is
then sketched, from which a maintenance data base is
defined, and some measures of maintenance performance
derived. The paper concludes with a consideration of
the problems of ut i l izat ion associated with measures
such as those derived.

The amount of time spent by an organization on
software maintenance places a constraint on the effort
that may be put into new system development. Further,
where programming resources are cut back due to econom-
ic pressures, new development is l ike ly to suffer al l
the more, since f i r s t pr ior i ty must be given to keeping
current systems "up and running."

So software maintenance is clearly a subject of
importance. Yet we really know very l i t t l e about i t .
I t remains, indeed, an "iceberg."

In the context of a general concern about software
" re l i ab i l i t y , " studies do exist which deal with the
sources of errors in programs. (See, e.g., Boehm, et.
al. (1975); Endres (1975); Miyamoto (1975); and Shooman
and Bolsky (1975).) However, while these studies are
often predicated upon a recognition of the problems of
maintenance, their attention is for the most part on
the development process. (See, e.g., Miyamoto (1975),
on the "find-and-fix" cycle of bugs in software, during
development testing.

Much of what has been reported on software main-
tenance consists of the individual experiences and

Bases of Software Maintenance

I t is important to understand the bases of appli-
cation software maintenance act iv i ty , i .e . , the causes
and choices which motivate i t .

The causes for maintenance-type change have been
variously described: e.g. "program won't run," "pro-
gram runs but produces wrong output," "business
environment changes," and "enhancements and optimiza-
t ion." (EDP Analyzer, 1972)

What is needed is a carefully constructed typology.
Without making some important distinctions between
types of maintenance act iv i ty undertaken, i t wi l l be
impossible to discuss the effective allocation of these
act iv i t ies toward organizational ends.

The most basic cause of maintenance work is prob-
ably "failure" of the software. The most obvious type
of failure is the processin 9 fai lure, e.g., the abnor-
mal termination of a program forcing job cancellation,
or the production of "garbage" in an outputed report or
f i l e . Processing failures are those attributed to

492

"bugs" in the software. The failures may be precipita-
ted by errors in input data, but the program i t se l f is
ultimatel%at fault , e.g., in neglecting to validate
the input data. Processing fa i ls to be completed, or,
i f completed, invalid outputs are produced.

Other forms of processing failures also exist,
apart from those attributed to errors in the applica-
tion software. Failure may be associated with the
hardware or system software, for example. However, i t
is only failure ~n the application software which
serves as a basis for application software maintenance.

A second type of application software failure may
be termed the performance failure. Here the failure
is in meeting performance cr i ter ia which have been
specified in the system design. The software does not
perform satisfactori ly in terms of the functional
specifications, and modification is called for to
remedy the situation. Examples: an average inquiry
response time exceeds some l imi t set, or an error rate
in transaction processing is greater than that speci-
fied as permissible. No "bug" is necessarily involved.
I t may rather be a matter of loose coding, or the
absence of "reasonableness checks" on computations
performed. Further, the performance failure is l ikely
to be a consequence, in part, of matters apart from
the application software i t se l f : the hardware and
system software, operating procedures, and patterns of
user behavior. Nevertheless, i t is the application
software which must be modified.

A third type of failure may also be identified.
A program may be processed without error, and i ts per-
formance to functional design specifications may be
perfectly adequate. Nevertheless, there may exist
certain failures in implementation. For example, pro-
gramming standards may have been violated. Or incon-
sistencies or incompleteness in the detailed design,
derived from the functional specifications, may be
present. Often, such failures wi l l lead in turn to
processing and performance failures. But not always.
Sometimes these failures wi l l reflect sacrifices in
software quality made precisely to achieve a perfor-
mance level demanded, or a target date set. The
implementation failure may thus remain hidden, unless
audits are undertaken to insure the adherence of imple-
mentation practices to established organizational
standards.

Maintenance performed in response to failures of
the above types may be termed corrective maintenance.
Especially where processing failures are concerned, a
diagnosis of the causes of failure constitutes a signi-
ficant portion of the task for this type of maintenance
act ivi ty.

Corrective maintenance is an act iv i ty which would
not be performed at a l l , were i t not for the occurence
of failures. Thus, i ts costs must be compared with
the opportunity costs of implementing more "fai lure-
free" software.

Changes in the environment of a program typically
lead to failures requiring corrective maintenance.
However, such changes may also be anticipated, and the
software adapted to their occurrence. Thus, failure
may be avoided.

Two types of environmental change may be identi-
fied: change in data environment and change in pro-
cessin 9 environment.

Examples of change in the data environment would
be a change in the classification code system associ-
ated with a particular data element, or the logical
restructuring of a data base. These changes may moti-
vate changes in data media employed or physical data

493

organization, but the basic change is in the data
i t se l f .

Examples of change in the processing environment
would be the installation of a new generation of system
hardware, necessitating recoding of existing assembler
language programs; or, the installation of a new oper-
ating system version, necessitating modification of job
control language statements employed in processing.

The earl ier days of computer programming were
marked by the extreme vulnerability of programs rela-
t ive to changes in the data and processing environments.
Subsequent developments in higher level languages,
operating systems, and data base management systems
have been directed in part toward insulation of programs
from the effects of these changes.

Maintenance performed in response to changes in
data and processing environments may be termed adaptive
maintenance. The timely anticipation of environmental
change is necessary to insure effective performance of
this type of maintenance.

The amount of adaptive maintenance which must be
performed on software is often a reflection of program
"portabi l i ty," i .e . , the transferabil i ty of the program
to new data and processing environments.

Failure and environmental change constitute
"causes" of maintenance act iv i ty in the sense that a
response is typically unavoidable i f the program is to
be kept operable. Other bases for maintenance exist,
however, which are more a reflection of the in i t iat ives
of user and maintenance personnel.

Given that a program performs within functional
design specifications (and thus no issue of performance
failure exists), i t may nonetheless be possible to
improve the cost-effectiveness of this performance.
Processin 9 inefficiency may exist, e.g., in the use of
an inferior computational algorithm, or inappropriate
language features, or in making poor use of computer
operator time.

Performance enhancement within established speci-
fications may also be possible, e.g., in improving the
readability of a report through reformatting, or in
adding a new data element to those included in a report
generated periudically.

Finally, although a program may be constructed and
documented according to established standards (and thus
no issue of implementation failure exists), i t may
nonetheless be possible to improve i ts general maintain-

" For example, a program may be made more
through insertion of certain comments, or i t

may be made similarly more accessible through a re-
writing of i ts documentation.

An improvement in program maintainability is under-
stood here to mean that the program wil l be more easily
modified (in the course of corrective or adaptive
maintenance) when i t must be modified. I t does not
mean that program failures wi l l occur less frequently,
or that the effects of environmental change wil l be
more easily avoided.

Maintenance performed to eliminate processing
inefficiencies, enhance performance, or improve main-
ta inabi l i ty may be termed perfective maintenance. Its
aim is to make the program a more perfect design imple-
mentation. I t is undertaken when "just i f ied," i .e . ,
when the improvements to be achieved outweigh the costs
of making those improvements.

In contrast to corrective and adaptive maintenance,

which serve merely to keep a program "up and running,"
perfect ivemaintenance is d i rected toward keeping a
program up and running at less expense, or up and run-
ning so as to bet ter serve the needs of i t s users.

s ing le program, implemented as a un i t . Each change is
associated wi th a p a r t i c u l a r maintenance order. The
"change l eve l " of a program is incremented according
to the changes made.

A summary of the bases of software maintenance is
presented in Table I .

TABLE 1

Summary

Bases of Software Maintenance

A change is made by a s ing le programmer. The
amount of the programmer's time spent on the change is
formal ly recorded.

Changes in the documentation associated wi th a
program are treated as changes to the program i t s e l f .

A Maintenance Data Base

A.

B.

C.

Correct ive

I . Processing f a i l u r e

2. Performance f a i l u r e

3. Implementation f a i l u r e

Adaptive

I . Change in data environment

2. Change in processing environment

Perfect ive

I . Processing i n e f f i c i e n c y

2. Performance enhancement

3. M a i n t a i n a b i l i t y

Organization for Maintenance

The measurement of any software maintenance a c t i -
v i t y w i l l be found to be meaningful only w i t h i n the
context of an organizat ional s t ruc ture fo r performing
maintenance. One such hypothet ical s t ruc ture w i l l now
be described. I t is h igh ly s imp l i f i ed and intended to
be i l l u s t r a t i v e only.

Let us assume that maintenance is organized separ-
a te ly from program development (and redevelopment)
a c t i v i t y . A group of programmers ex is ts which is co l -
l e c t i v e l y responsible fo r maintaining a l l production
programs i n s t a l l e d . The i n s t a l l a t i o n of a program
fo l lows a formal procedure, as does the i n s t a l l a t i o n
of revised versions of a program based on redevelopment
work.

A program is defined to be a separately compiled
or assembled procedure. An app l i ca t ion system t y p i c a l -
l y consists of a fami ly of programs.

Redevelopment work is based on rev is ions to the
funct ional design spec i f i ca t ions to which the program
has been produced. Maintenance work is based on the
funct iona l design spec i f i ca t ions associated wi th the
i ns ta l l ed version of the program.

A l l maintenance work is covered by "maintenance
orders," which cons t i t u te an au thor iza t ion to perform
maintenance of various types on the programs i ns ta l l ed .
Each maintenance order is associated wi th a s ing le
"basis fo r maintenance" according to the c l a s s i f i c a ~ o n
scheme described e a r l i e r . An order covers maintenance
on a s ing le program, or on a group of programs.

"Open" maintenance orders ex i s t on a cont inuing
basis to cover a l l cor rec t ive maintenance required.
Orders to cover adaptive and per fec t ive maintenance are
i n i t i a t e d as needed.

I t is now possible to imagine a maintenance data
base which ex is ts w i t h i n an organizat ional s t ruc ture
such as that j u s t described.

To f a c i l i t a t e the discussion of maintenance
measurement to f o l l ow , one such data base is defined
here, in t h i r d normal form. (Date, 1975) Again, the
purpose is merely one of i l l u s t r a t i o n .

The fundamental e n t i t i e s about which data is re-
corded are the program, the maintenance order, and the
program change.

The domain fo r the re la t ionsh ips to be defined in
the descr ip t ion of the three e n t i t i e s c o n s i s t s of the
fo l l ow ing :

PROG program i d e n t i f i c a t i o n number

SOURCE

INSTR

LANG

PIDATE

RUNS

FAILS

LEVEL

CHANGE

ADD

DEL

PCHRS

PCDATE

PGMMR

ORDER

BASIS

OIDATE

OCDATE

CMHRS

NBEN

number of source statements in
program

number of machine language ins t ruc -
t ions in program

program language code

program i n s t a l l a t i o n date

number of program runs undertaken
since i n s t a l l a t i o n

number of processing f a i l u res
associated wi th program runs under-
taken

program change level

program change i d e n t i f i c a t i o n num-
ber

number o f source statements added
by program change

number of source statements deleted
by program change

number of person-hours spent in pro-
gram change

program change date

programmer i d e n t i f i c a t i o n number

maintenance order i d e n t i f i c a t i o n
number

maintenance basis code

maintenance order i n i t i a t i o n date

maintenance order close date

cumulative number of person-hours
spent in maintenance

net benef i ts associated wi th main-
tenance performed.

A l l changes to programs are formal ly made. A
"change" consists of a program mod i f i ca t ion , i nvo lv ing
the add i t ion and de le t ion of source statements in a

The re la t ions defined on th i s domain are:

P: (PROG, SOURCE, INSTR, LANG, PIDATE, RUNS,

494

FAILS, LEVEL) with key: PROG

C: (CHANGE, PROG, ORDER, ADD, DEL, PCHRS, PCDATE,
PGMMR) with key: CHANGE

O: (ORDER, BASIS, OIDATE, OCDATE, CMHRS, NBEN)
with key: ORDER

This is a minimal data base only, and serves sim-
ply to indicate the nature of the foundation which must
underlie the measures presented in the section to
follow.

Note that the maintenance data base described
corresponds directly to the organizational structure
sketched in the previous section. Indeed, the data
base is nece-sarily a reflection of this structure.
Thus, for example, data gathered on program changes
necessarily reflect the organizational procedure
whereby changes are formally established and document-
ed.

No argument is being made that the organizational
structure and maintenance data base used here in i l lus-
tration are uniquely appropriate for general real world
application. Rather, i t is that whatever choice is
made, i t is a single one, in the sense that the main-
tenance data which may be collected are more or less
implied by the organizational structure established.

Measures of Maintenance Performance

In the context of a maintenance organizational
structure and a particular set of data gathered in the
performance of maintenance within this structure, i t
is possible to derive some performance measures which
should be appropriately "suggestive" to management.

I "Suggestive measurements," as defined by Churchman
]968}, make only very weak assumptions about what a

user wants. They make no pretense toward prediction,
decision, or systemic evaluation for the user.)

Suppose that maintenance data of the type des-
cribed in the previous section are gathered over some
working interval, e.g., a month. A variety of summary
data may now be generated (no order of importance is
implied in the order of l ist ing):

SI: Number of programs maintained, as of end-
of-period. (This is simply a count of the
number of programs installed and covered by
open orders for corrective maintenance.)

$2: Total number of source statements maintained,
as of end-of-period.

$3: Total number of machine instructions main-
tained, as of end-of-period.

$4: Average number of source statements per pro-
gram maintained, in each programming langu-
age.

$5: Average number of machine instructions per
program maintained, in each programming
language.

$6: Percent of number of programs in each
programming language.

$7: Total number of program runs undertaken.
(The sum of the run counts associated with
the programs maintained, over the interval
of measurement.)

$8: Total number of processing failures occur-
ring during program runs undertaken. (The
sum of the failure counts associated with
the programs maintained, over the interval
of measurement.)

495

S9: Average number of processin 9 failures occur-
ring per run undertaken. (This is computed
as $8/S 7, and may be termed the !'processing

failure rate." An increase may be due either
to external causes (e.g., the installation of
new programs not suff iciently debugged) or
internal effects (e.g., hasty modifications
in maintenance, introducing new bugs).)

S]O: Average age of programs maintained.

Sll: Number of maintenance orders init iated, in
each basis category.

Number of maintenance orders closed, in each
Sl2: basis category.

Number of maintenance orders open, in each
Sl3: basis category, as of end-of-period.

Total net benefits associated with perfective
Sl4: maintenance completed. (Maintenance is said

to be completed when the associated mainten-
ance order is closed.)

SI5: Total person-hours spent in perfective main~
tenance completed.

Sl6: Average net benefits associated per person-
hour of perfective maintenance completed.
(This is computed as Sl4/Sl5, and is one

rough indicator of the "productivity of a
person-hour of perfective maintenance."

S]7: Number of program changes made. (A simple
count of the number of program changes made
over the measurement interval.)

Sl8: Number of program changes made, in each main-
tenance basis category.

Average number of program changes made per
Sl9: program maintained. (SI7/S l)

$20: Total number of source statements added by
program changes made.

S21: Total number of source statements deleted by
program changes made.

$22: Net addition to total number of source state-
ments maintained, due to program changes
made. ($20-$21)

$23: Total number of person-hours spent in program
change.

$24: Total number of person-hours spent in program
change, in each maintenance basis category.

$25: Average number of person-hours spent per pro-
cessing failure correction. (This is comput-
ed from those components of SI8 and $25 which

correspond to changes made due to processing
failures. I t is one indicator of the main-
tainabi l i ty of the software, in the given
maintenance environment.

$26: Average number of person-hours spent per
source statement added by program changes
made. (This is computed as $20/$23, and is
an alternative indicator of software main-
tainabi l i ty, in the given maintenance
environment.)

This l i s t merely scratches the surface, of course.
It represents only a crude attempt to derive some
measures for coming to grips with the dimensionality
of software maintenance. No special importance should
be attached to the particular summary data listed.
Only certain of these (perhaps S 9, Sl6, $25, and $26)

approach the suggestive import one would look for in a
good performance measure. Further, a good many other
measures, some of them yet more interesting, may no
doubt also be developed from the modest data base here
defined. And, of course, the data base i t se l f is
easily extended, expanding further the opportunities
for management-oriented measurement. However, the
potential for performance measurement seems to me
clearly established through this rather simple i l lus-
tration.

But i t should also be clear that a maintenance
"iceberg" can never be def ini t ively exposed through
the generation of summary data such as those listed.
Only a trace of a contour is suggested, through any
one measurement. And i t is not a contour bounded by
the dimensions of space and time. The dimensions of
maintenance are elusive indeed!

Further, i t is not possible, a pr ior i , to identify
the performance measurements which w i l l , in any situa-
tion, be the most useful for management purposes. Only
in practice, within the context of ongoing organiza-
tional structures "in place," should i t be possible to
make such inferences with any degree of confidence.

Problems of Utilization

Several conclusions may be drawn from the discus-
sion of the previous sections:

(i) The measurement of maintenance performance
presumes the establishment of a mainten-
ance data base from which to derive the
desired measures.

(i i) A maintenance data base presumes the
establishment of an organizational struc-
ture for performing maintenance, in terms
of which the data of the data base are
defined and collected.

(i i i) Measures of maintenance performance are
not meaningful except within the context
of the organizational structure(s) upon
which they are based.

Consider for example, the summary measure Sl9

(average number of program changes made per program
maintained) defined in the previous section. By defin-
i t ion, use of this measure presumes the existence of
data on programs maintained and program changes made.
However, the existence of such data is not sufficient
to render the derived measures meaningful in a decision
making context.

The interpretation to be attached to "programs
maintained" and "program changes made" is ambiguous in
the absence of famil iar i ty with the organizational
structure involved. For the definition of "program"
constitutes an organizational choice, as d~es that of
"program change." Both concepts are imbedded in the
organizational procedures which require these funda-
mental entities to be recognized, identified, classi-
fied and described in data collection. Differing
organizational procedures thus require differing inter-
pretations of nominally-identical data.

The implications for the management of software
maintenance are several. First, insofar as maintenance
is performed informally, i.e. in the absence of an
established set of organizational conventions and prac-
tices, the measurement of maintenance performance wi l l
not be feasible. The establishment of a maintenance
data base, a precondition to performance measurement,
is not possible in the absense of organizational struc-
ture. In informal situations, performance must be

assessed informally.

Secondly, in any given organization in which main-
tenance performance is formally assessed, in terms of
specific measures, management must be thoroughly fami-
l i a r with the organizational conventions and practices
involved, in order to make intel l igent decisions. No
single measure or set of measures wi l l i t se l f reveal
that maintenance is going "better" or "worse" than
management has a right to expect or desire. Such a
judgment must follow as a systemic inference from an
analysis of the performance measurements, made in the
context of fami l iar i ty with the organizational struc-
ture which made these measurements possible.

Finally, in the absence of famil iar i ty with other,
alternative organizational structures for performing
maintenance, management wi l l be essentially unable to
assess i ts own established structure. Nothing in the
performance measurements made within the context of the
established structure wi l l indicate the opportunity
costs associated with this structure. Management must
look outside, to the performance measurements and
structures of other organizations, to assess what might
reasonably be achieved through organizational change.

For researchers, the problems are similar. First,
where maintenance is performed informally in organiza-
tions, and no maintenance data base thus exists, the
gathering of data to support hypothesis testing wi l l be
greatly handicapped. The absence of "hard data" wi l l
necessitate rough estimates at best, and the conclusion~
drawn wi l l have to be accordingly tentative.

One might l imi t research to those organizations
possessing maintenance data bases, but the scope of
inference would thereby be drastically narrowed.
Nothing could be inferred about maintenance performed
informally, and conclusions relative to cost-benefit
trade-offs in formal and informal approaches to main-
tenance would not be possible.

Where maintenance data bases exist in organiza-
tions, researchers must be aware that these wi l l not be
directly comparable, for the most part. A standard
organizational structure for performing maintenance
does not exist. In each organization, a unique struc-
ture is l ikely to prevail. To employ maintenance data
gathered from differing organizations, i t wi l l there-
fore be necessary to "translate" each into a common
conceptual framework. (For example, what is understood
to be the "number of programs maintained" in each organ
ization must be translated into a well-conceived
research definit ion.)

No "translation" of the type indicated wi l l be
possible without a study of the respective organiza-
tional structures actually in use. For the researcher,
the gathering of maintenance data thus requires the
additional gathering of data on organizational forms fo
performing maintenance.

Finally, only when the maintenance data of various
organizations has been thus "standardized" according to
the researcher's conceptual framework, wi l l i t be possi
ble to truly assess the dimensions of maintenance. Onl
then wi l l the shape and extent of the "iceberg" in each
data processing organization be revealed. And only the
may performance measures be established and employed to
draw well-founded, research-based conclusions for
general maintenance management.

496

References*

I. Belady, L.A. and Lehman, M.M.
"The Evaluation Dynamics of Large Programs."
IBM Thomas J. Watson Research Center.
Yorktown Heights, New York. September 9, 1975.

2. Boehm, B.W.
"The High Cost of Software."
Proceedings. Symposium on High Cost of Software.
Stanford Research Institute. September 1973.

3. Boehm, B.W., R.K. McClean and D.B. Urfrig.
"Some Experience with Automated Aids to the Design
of Large-scale Reliable Software."
Proceedings. International Conference on Reliable
Software.
2]-23 April, 1975. Los Angeles, California.

4. Brantley, C.L. and Osajima, Y.R.
"Continuing Development of Centrally Developed
and Maintained Software Systems."
Proceedings. IEEE Computer Soc. Conf., Spring 1975.

5. Brooks, Frederick P., Jr.
The Mythical Man-month.
Addison-Wesley. 1975.

6. Churchman, C. West.
"Suggestive, Predictive, Decisive, and Systemic
Measurements."
Paper presented at the 2nd Symposium on Industrial
Safety Performance Measurement, National Safety
Council, Chicago. December, 1968.

7. Date, C.J.
An Introduction to Database Systems.
Addison-Wesley. 1975.

8. EDP Analyzer.
"That Maintenance 'Iceberg'."
Canning Publications. October, 1972.

g. Endres, Albert.
"An Analysis of Errors and Their Causes in System
Programs."
Proceedings. International Conference on Reliable
Software.
21-23 April, 1975. Los Angeles, California.

IO. Lindhorst, W. Mike.
"Scheduled Maintenance of Applications Software."
Datamation. May, 1973.

I I . Miyamoto, Isao.
"Software Reliabil i ty in Online Real Time Environ-
ment."
Proceedings. International Conference on Reliable
Software.
21-23 April, 1975. Los Angeles, California.

12. Mooney, John W.
"Organized Program Maintenance."
Datamation. February, 1975.

13. Ogdin, Jerry L.
"Designing Reliable Software."
Datamation. July, 1972.

14. Shooman, M.L. and M.I. Bolsky.
"Types, Distribution, and Test and Correction
Times."
Proceedings. International Conference on Reliable
Software.
21-23 April 1975. Los Angeles, California.

15. Slaughter, Dr. John B.
"Understanding the Software Problem." Report of
Workshop I.
Proceedings. Symposium on the High Cost of Soft-
ware.

16. Stearns, Steven.
"Experience with Centralized Maintenance of a
Large Application System."
Proceedings. IEEE Computer Soc. Conf., Spring 1975.

*The author wishes to acknowledge the research assis-
tance of Mr. Gerry Tompkins in the identification of
items included among the references.

497

