
(Clojure (for the masses))

(author �Tero Kadenius� �Tarmo Aidantausta�)

(date �30.03.2011�)

1

Contents

1 Introduction 4
1.1 Dialect of Lisp . 4
1.2 Dynamic typing . 4
1.3 Functional programming . 4

2 Introduction to Clojure syntax 4
2.1 Lispy syntax . 5

2.1.1 Parentheses, parentheses, parentheses 5
2.1.2 Lists . 6
2.1.3 Pre�x vs. in�x notation 6
2.1.4 De�ning functions . 6

3 Functional vs. imperative programming 7
3.1 Imperative programming . 7
3.2 Object oriented programming . 7
3.3 Functional programming . 8

3.3.1 Functions as �rst class objects 8
3.3.2 Pure functions . 8
3.3.3 Higher-order functions . 9

3.4 Di�erences . 10
3.5 Critique . 10

4 Closer look at Clojure 11
4.1 Syntax . 11

4.1.1 Reader . 11
4.1.2 Symbols . 11
4.1.3 Literals . 11
4.1.4 Lists . 11
4.1.5 Vectors . 12
4.1.6 Maps . 12
4.1.7 Sets . 12

4.2 Macros . 12
4.3 Evaluation . 13
4.4 Read-Eval-Print-Loop . 13
4.5 Data structures . 13

4.5.1 Sequences . 14
4.6 Control structures . 14

4.6.1 if . 14
4.6.2 do . 14
4.6.3 loop/recur . 14

2

5 Concurrency in Clojure 15
5.1 From serial to parallel computing 15
5.2 Problems caused by imperative programming paradigm 15
5.3 Simple things should be simple 16
5.4 Reference types . 16

5.4.1 Vars . 16
5.4.2 Atoms . 17
5.4.3 Agents . 18
5.4.4 Refs . 19

5.5 Software transactional memory (STM) 19

References 21

3

1 Introduction

This seminar paper introduces Clojure, a dialect of Lisp, which is a dynamically
typed functional programming language hosted on virtual machines like JVM
and CLR.

The key point that makes Clojure stand out in the pool of new and fancy
programming languages is the fact it has been developed from the ground up
with multithreaded programming in mind. Immutable data structures, support
for software transactional memory (STM) with the combination of functional
programming paradigm give Clojure good tools working with concurrency. [53]

Even though concurrency had an emphasis in designing Clojure it is still a
general purpose language with interoperability features to leverage the function-
ality and the ecosystem of the host platform, so it's possible to reuse already
existing code and libraries done for the host platform. [46, 44]

The paper gives �rst a short tour to very basics of Clojure and dives into
further details of the language and its features.

1.1 Dialect of Lisp

(= 2 (+ 1 1))

�Lisp is a family of computer programming languages based on
formal functional calculus. Lisp (for "List Processing Language")
stores and manipulates programs in the same manner as any other
data, making it well suited for "meta-programming" applications.�
[1]

�Lisp has jokingly been called "the most intelligent way to misuse
a computer". I think that description is a great compliment because
it transmits the full �avor of liberation: it has assisted a number
of our most gifted fellow humans in thinking previously impossible
thoughts.� [27]

1.2 Dynamic typing

�In a dynamically typed language, values have �xed types, but
variables and expressions have no �xed types.� [59]

1.3 Functional programming

�In functional programming, the model of computation is the
application of functions to arguments.� [59]

2 Introduction to Clojure syntax

To make it easier to read this paper, parts of the syntax of Clojure are introduced
here with simple shortly explained examples. There are a lot of concepts that

4

are not explained but will be explained later in the article.

2.1 Lispy syntax

�At once, just like they said, I felt a great enlightement. I saw
the naked structure of Lisp code unfold before me.� [55]

Lisps, like Clojure, don't have a lot of syntax in the traditional sense of syntax,
compared to languages like Java, C or C++. The syntax is minimized to mainly
into de�ning lists with parenthesis and the di�erent rules of evaluations of those
lists.

2.1.1 Parentheses, parentheses, parentheses

�These are your father's parentheses. Elegant weapons, for a
more... civilized age.� [56]

As Lisps are about lists - the name LISP derives from "LISt Processing" [54],
and lists in Lisps are about parentheses. This means that, in Clojure, reading
and writing parentheses is inevitable. A lot has been said about the amount of
parentheses in Lisps, both good and bad.

�Lisp has all the visual appeal of oatmeal with �ngernail clippings
mixed in.� [58]

�...and here I thought it was LotsofInfernalStupidParentheses.
My mistake; I must have just been in a worse mood. ;->� [57]

5

2.1.2 Lists

In Clojure, as in all the Lisps, the lists have special syntax to them which is due
to the homoiconicity - code is data and data is code. This might seem confusing
at �rst but the rules are quite simple although they overload the de�nition of
lists a bit.

Below we can see a list which evaluates to a function call to + with 1, 2,
and 3 as parameters to that function.

(+ 1 2 3)

Below is a de�nition of list with numbers. Quote in the beginning of the line
tells the reader that it should treat the following list just as data.

'(+ 1 2 3)

Below we can see how a list can be also constructed with a function call to
a list.

(l i s t + 1 2 3)

2.1.3 Pre�x vs. in�x notation

�Polish notation, also known as pre�x notation, is a form of no-
tation for logic, arithmetic, and algebra. Its distinguishing feature
is that it places operators to the left of their operands.�[21]

+ 1 2

�In�x notation is the common arithmetic and logical formula no-
tation, in which operators are written in�x-style between the operands
they act on (e.g. 2 + 2).� [15]

1 + 2

Clojure, as all Lisps, uses pre�x notation in contrast to in�x notation is
which used in languages like C, C++ and Java. [21, 15]

2.1.4 De�ning functions

Functions are �rst-class objects in Clojure and there is more than one way of
de�ning them.[43]

(de f ha i (fn [] "Ou hai ! "))

Above we de�ne a function that returns string �Ou hai!� by using macros
called fn and def. fn that creates the function takes names and the default values
for parameters inside [] as the �rst parameter and the body of the function as
the second parameter.[36]A macro called def binds a the name with a value.[36]

You can also de�ne functions with a macro called defn. [43]

6

(defn hai−u [u]
(s t r "Hai , " u))

That macro takes the name, optionally a document string and attribute
map, parameters and the function body as parameters.[36]

You can also use a Clojures dispatch macro to create a function. [47]

(de f hai−u2 #(s t r "Hai , " %1 " and " %2))

3 Functional vs. imperative programming

3.1 Imperative programming

�Imperative programming is a programming paradigm that de-
scribes computation in terms of statements that change a program
state.�[14]

Nearly all machine code implementations are written in imperative style. The
contents of the memory holds the state and machine language instructions mod-
ify it. Higher-level imperative languages have more advanced features like vari-
ables and complex statements, but the basic idea remains the same. [14]

Here is a small snippet of imperative code. It has a notion of state (a), which
is mutated. In addition, an IO operation is performed.

i n t a = 3 ;
i n t b = 4 ;
i f (a < b) {

a++;
}
p r in t (a) ;

3.2 Object oriented programming

"The set of values of the attributes of a particular object is called
its state. The object consists of state and the behavior that's de�ned
in the object's classes." [19]

Object oriented programming provides a feature called encapsulation. Encap-
sulation prevents users of the object from direcly modifying the data that forms
the state by providing operations (methods) for doing it. This is done in order
to ensure the validity of the internal state of the object. [8]

In other words, at its heart, object oriented programming tends to be im-
perative. The paradigm itself doesn't enforce it, but that is usually the case.
[50]

An example that demonstrates the imperative nature of OO code:

7

c l a s s Foo {
i n t a = 3 ;

i n t b = 4 ;

increment () {
i f (a < b) {

a++;
}

}

p r in t () {
p r i n t (a) ;

}
. . . .

}

What happens here is identical to the imperative code example except that
in this case the data (a and b) and the operations mutating the state (a++) or
causing other side e�ects (print(a)) are encapsulated inside the object.

increment() is an instruction for modifying the state of the object. The result
of increment() may vary in di�erent points of time depending on the state of
the object.

3.3 Functional programming

�Functional programming has its roots in mathematics. Instead
of providing instructions for modifying the state of the program,
functional programming emphasizes the application of functions and
avoid state and mutable data in general. �[11]

3.3.1 Functions as �rst class objects

The notion of a function is not unique to functional programming languages.
However, functional languages have what is called �rst class functions. This
means that functions have a central role in the code, much like objects do in
OO languages. Functions can be stored to data structures and the use of higher-
order functions is common. [9] The objective of having no side e�ects manifests
itself in pure functions.

3.3.2 Pure functions

Function is considered pure if:

1. �The function always evaluates the same result value given the same ar-
gument value(s). The function result value cannot depend on any hidden
information or state that may change as program execution proceeds or
between di�erent executions of the program, nor can it depend on any
external input from I/O devices. [4]

8

2. �Evaluation of the result does not cause any semantically observable side
e�ect or output, such as mutation of mutable objects or output to I/O
devices.� [4]

Using pure functions has several bene�ts:

1. Pure expression can be removed without a�ecting other expressions if the
result of the pure expression is not used. [11]

2. Referential transparency. An expression can be replaced with its value
without causing changes to the program. The output is always the same
with the same input. [23]

3. If a pure function does not depend on the result of another pure function,
they can be performed in any order. Ie. they are thread-safe and can be
run in parallel without typical concurrency issues. [11]

4. Lack of side e�ects guaranteed by the language, provides opportunities for
compiler optimizations. [11]

3.3.3 Higher-order functions

Higher-order function is a function that either takes one or more functions as
parameters or returns one as a value. [13] Well-known examples of higher-order
functions are map and fold [10]. �Map is the name of a higher-order function
that applies a given function element-wise to a list of elements and returns a
list of results.� [16]. Fold is a �function that iterate an arbitrary function over
a data structure in some order and build up a return value�. [10]

• Doubling the value of every element in a list using map:

(map (fn [x] (∗ 2 x)) ' (1 2 3))

=> ((* 2 1) (* 2 2) (* 2 3)) => (2 4 6)
in�x notation equivalent: (2 * 1) (2 * 2)(2 * 3)

• In Clojure fold is called reduce. A trivial example for calculating the sum
of the elements in a list:

(reduce + ' (1 2 3))

=> (+ (+1 2) 3) => 6
in�x notation equivalent: (1+2) + 3

Partial function application and currying

Higher-order functions enable an interesting feature where a new function can be
generated based on another function. Partial function application is a technique
which produces a function in which one or more of the arguments of the original
function are �xed. Currying resembles partial function application. The di�er-
ence is that in currying each (curried) function takes only a single argument and

9

produces a function which takes one argument less than its predecessor. Ie. cur-
rying produces a chain of functions, whereas with partial function application
arbitrary number of functions can be �xed at once. [7]

Out of the box, Clojure supports partial function application but not curry-
ing.

A simple example where a function that adds 2 to its argument is applied
to a list of elements:

• (map(p a r t i a l + 2) ' (1 2 3))

=> ((+ 2 1)(+ 2 2)(+ 3 3))=> (3 5 7)
in�x notation equivalent: ((2 + 1)(2 + 2)(2 + 3))

3.4 Di�erences

Characteristic Imperative approach Functional approach

Programmer
focus

How to perform tasks
(algorithms) and how to
track changes in state.

What information is desired
and what transformations

are required.
State changes Important. Non-existent.

Order of
execution

Important. Low importance.

Primary �ow
control

Loops, conditionals, and
function (method) calls.

Function calls, including
recursion.

Primary
manipulation

unit

Instances of structures or
classes.

Functions as �rst-class
objects and data collections.

[12]

3.5 Critique

The proponents of functional programming claim that imperative programming
is fundamentally broken - especially in a multi-threaded environment. First of
all, there is an argument that the world doesn't function in a way imperative
programming models it. When dealing with mutable state, the "world" has to
stop in order it be examined or changed. This becomes a major problem when
bringing concurrent programming to the picture. [50]

OO programming su�ers from the same problems as imperative program-
ming. To quote Rich Hickey, the creator of Clojure: "Encapsulation just means:
I'm in charge of this spaghetti code." Ie. encapsulation doesn't change the fact
that OO is usually based on mutable state. It just tries to prevent the user of
object's interface from seeing it (the (imperative) spaghetti code).

10

4 Closer look at Clojure

Now that the paradigm of functional programming has been introduced, some
of the details of Clojures features and terminology is explained.

4.1 Syntax

�Clojure is a homoiconic language, which is a fancy term describ-
ing the fact that Clojure programs are represented by Clojure data
structures.� [47]

Clojure syntax is built on symbolic expressions, S-expressions, that are list based
data structures. [24, 47, 5] In addition to lists also symbols, literals, vectors,
maps and sets make up the syntax and are parsed by the Clojure reader. [47]

4.1.1 Reader

The reader parses the textual presentation of the Clojure code to data struc-
tures.

(doc read)

Documentation for any given function can be acquired by calling the function
doc.

Then it creates the form of that same data structure that the compiler
will see. Clojure compiler compiles the code, data structures, to host platform
bytecode. This bytecode is then executed by the host platform virtual machine.
[52]

4.1.2 Symbols

�Symbols begin with a non-numeric character and can contain
alphanumeric characters and *, +, !, -, _, and ?.� [47]

(de f i n e s "a symbol c a l l e d i n e s ")

def is a macro that takes a symbol as a parameter and then gives that
symbol a value if one is given. Here it de�nes a symbol called ines in the
current namespace with the value �a symbol called ines�. [36]

4.1.3 Literals

' ((s t r i n g s are l i t e r a l s as are numbers and cha ra c t e r s (1 2 3) (\ a \b \c))
(and o f course boo leans and and keywords t rue : keyword))

4.1.4 Lists

(l i s t "can conta in anything you want" 1 2 3 \a \b \c : keyword ' ())

11

If you don't use ' or quote Clojure will try to use the �rst cell o� a list as a
function call. So if you want to just express data, use ' or quote.

' (any o f the se won ' t be eva luated)

4.1.5 Vectors

(vec to r ' [can conta in anything too 1 2 3 \a \b \c : keyword])

4.1.6 Maps

(hash−map : key value key : va lue :map { : can conta in : maps too })

4.1.7 Sets

(hash−s e t
"can conta in s e t s " #{:a : b} #{:b : c}
"and anything unique " 1 2 3 \a \b \c ' (: a : b))

4.2 Macros

�The de�nition of a macro is essentially a function that generates
Lisp code�a program that writes programs.�

�Macros work di�erently from normal functions, and knowing
how and why macros are di�erent is the key to using them cor-
rectly. A function produces results, but a macro produces expres-
sions�which, when evaluated, produce results.� [29]

In Clojure macros are implemented in a way that the compiler can be extended
by user code - you can really grow the language. [45]

(defmacro pr int−eva luate
[code]
` (p r i n t l n '~ code " eva lua t e s to " ~code))

�defmacro de�nes a new macro with similar structure to defn.
The ` is used to create a template expression, where we can evalu-
ate certain items within the expression by using macro characters
(#,~,',list-frag?). � [28]

• defmacro macro takes the name (symbol), parameter (vector) and the
body (expression) as parameters [34]

� print-evaluate

� [code]

� `(println '~code " evaluates to " ~code)

• ` , which is called either tick or backquote, stops evaluation [47]

• '~code is equivalent to (quote ~code) [47]

12

• quote stops evaluation [47]

• ~code unquotes the ` [47]

This very simple example only scratches the surface what you can do with
macros, but it demonstrates at least one way of creating them.

4.3 Evaluation

�Every form not handled specially by a special form or macro is
considered by the compiler to be an expression, which is evaluated
to yield a value. There are no declarations or statements, although
sometimes expressions may be evaluated for their side-e�ects and
their values ignored.�

(p r i n t l n i s a symbol that i s bound to a func t i on value)

Clojure code can be evaluated interactively with REPL, forms read from a
stream via load or load-�le or programatically with eval. [42]

�In all cases, evaluation is the same - a single object is considered
by the compiler, evaluated, and its result returned. If an expression
needs to be compiled, it will be.� [42]

4.4 Read-Eval-Print-Loop

�A read-eval-print loop (REPL), also known as an interactive
toplevel, is a simple, interactive computer programming environ-
ment.� [22]

Clojure has a REPL which you can use to interact with your code - you can
grow your program, with data loaded, adding features, �xing bugs, testing, in
an unbroken stream. [41]

4.5 Data structures

The data structures (collections) in Clojure are persistent [50, 3, 39]. The
implementation of Clojure collections allows e�cient (semantic) copying. The
e�ciency is achieved by utilizing structural sharing. [39] This is possible due to
the immutability. Ie. structural sharing between mutable data structures would
be problematic.

Collections are not bound to concrete data structures. This is a big di�er-
ence between Clojure and some older Lisps. [40]Instead, in Clojure, collections
are represented by abstractions. Each abstraction may have one or more imple-
mentations. �Clojure's reader supports literal syntax for maps, sets and vectors
in addition to lists.� [5] The The literal syntax for the aforementioned data
structures was introduced in chapter 4.1.

13

4.5.1 Sequences

Another key thing related to data structure abstraction in Clojure is sequences
(seqs). Many algorithms in Clojure use sequences as their data structure ab-
straction. �A seq is a logical list, and unlike most Lisps where the list is repre-
sented by a concrete, 2-slot structure� [48]Seq interface (ISeq) allows many data
structures to expose their elements as sequences. �The seq function yields an
implementation of ISeq appropriate to the collection. Seqs di�er from iterators
in that they are persistent and immutable, not stateful cursors into a collection.
As such, they are useful for much more than foreach - functions can consume
and produce seqs, they are thread safe, they can share structure etc.�[48] Clo-
jure provides an extensive library of functions for processing sequences. [48] All
sequence functions can be used with any collection. [39]

4.6 Control structures

if, do, and loop/recur are three most common control structures in Clojure. [30]

4.6.1 if

(p r i n t l n (i f (= 42 (∗ 6 7)) " t rue " " f a l s e))

4.6.2 do

(defn grade−good?
[grade]
(i f (> grade 3)

"Good i t i s ! :) "
(do

(p r i n t l n "Low grade ! " grade)
"No , i t ' s bad . : (")))

Do is idiomatic to use when you're introducing side-e�ects. Do ignores the
return values all the other forms besides the last. [30]
4.6.3 loop/recur

�The loop special form works like let, establishing bindings and
then evaluating exprs. The di�erence is that loop sets a recursion
point, which can then be targeted by the recur special form.�

�recur binds new values for loop's bindings and returns control
to the top of the loop.� [30]

�If the recursion point was a fn method, then it rebinds the
params. If the recursion point was a loop, then it rebinds the loop
bindings.�[49]

(loop
[x ' (1 2 3 4) sumx 0]

14

(i f (empty? x)
sumx
(recur (r e s t x) (+ (f i r s t x) sumx))))

The code example above iterates through the list of numbers by reducing a
number every recursion from the list x and adds it up to the sumx.

• x is set to (1 2 3 4) and sumx to 0.

• �rst returns the �rst item in the collection. [48]

• + returns the addition of two numbers. [34]

• rest returns a sequence of the items after the �rst. [48]

Loop/recur is a couple that main exists in Clojure due to de�ciencies of tail-
call-recursion on host platforms.

5 Concurrency in Clojure

5.1 From serial to parallel computing

For many years the speed of majority of computer programs could be improved
by upgrading the hardware on which the program was run. Ie. �Frequency
scaling was the dominant reason for improvements in computer performance
from the mid-1980s until 2004.� [20]Therefore, the standard practice has been
to write software for serial computation meaning that: [26]

• Software is run on a single computer on a single processor (core)

• Only one instruction may execute at any moment in time.

• Instructions are executed one after another.

Moore's law states that the number of transistors that can be placed in an
integrated circuit doubles approximately every two years. The trend started in
1958 and is expected to continue until 2015 or 2020 or later. [17] The extra
transistors cannot be used for increasing the frequency of the microprocessor,
but they can be used for adding new processor cores for parallel computing [20].

5.2 Problems caused by imperative programming paradigm

As stated earlier, by avoiding mutable state there is no need for locking and
threads cannot interfere with each other. Let's take a look at two common
concurrency issues.

• �A deadlock occurs when two threads each lock a di�erent variable at the
same time and then try to lock the variable that the other thread already
locked.� [2]

15

• �Race condition occurs when two threads access a shared variable at the
same time.� [2]

As we can see these issues are not necessarily related to the underlying problem
we are trying to solve. They are mere implementation details.

5.3 Simple things should be simple

Immutable data structures and pure functions enable trivially easy parallel pro-
cessing of functions as long as there is no data dependency between them.

A simple example of easy parallel execution of functions using pmap, a par-
allel map implementation:

(pmap (fn [x] (+ x 2)) ' (1 2 3))

There is no need for explicitly spawning new threads nor is there fear for
race conditions or deadlocks since the function does not rely on external state
or mutate anything.

5.4 Reference types

�Clojure, being a practical language, allows state to change but provides mech-
anism to ensure that, when it does so, it remains consistent, while alleviating
developers from having to avoid con�icts manually using locks etc.�[38] In prac-
tice, this means that Clojure has extensive concurrency features built-in.

Clojure provides 4 di�erent mechanisms for maintaining a persistent refer-
ence to a changing value. They are: [51]

1. Vars

2. Atoms

3. Agents

4. Refs

The reference types can be divided into 2 categories based on how they are
modi�ed. Vars, Atoms, and Refs are modi�ed synchronously meaning that when
a function is applied to a syncronous reference type, the call blocks untill the
function has been applied. Agent is the only asynchronous reference type. [6, 51]
Atom, Agent and Ref are created by calling a speci�c function, unsurprisingly
atom, agent and ref respectively and the value each reference type is holding,
can be accessed with the function deref or the reader macro @.

5.4.1 Vars

Vars resemble global variables in other programming languages. [wikib] Vars
can have a binding to an initial value called a root binding. A root binding is
shared by all threads unless the var has a per-thread binding. Therefore, the

16

value of a var is its per-thread binding or if it doesn't have any, its root binding.
If neither binding exist, then the var is unbound. [51]

Vars are created using the special form def [51, 49]. Var is bound a given
value, otherwise it is unbound. If a value was not supplied and the var did exist
and had a value, the old value remains bound. [51] Rebinding the same var
with def is not encouraged since �Subsequently calling (def something 6) is not
a thread-safe operation.� [6]

Repl examples:

user=> (de f foo)
#'user / foo

user=> foo
java . lang . I l l e g a l S t a t eEx c ep t i o n : Var user / foo i s unbound . (NO_SOURCE_FILE: 0)

user=> (de f foo 3)
#'user / foo

user=> foo
3

user=> (de f foo)
#'user / foo

user=> foo
3

user=> (de f foo 4)
#'user / foo

user=> foo
4

5.4.2 Atoms

�Atoms provide a way to manage shared, synchronous, independent state.� [33]
�Shared� means that they can be modi�ed from di�erent threads.
�Synchronous� means that the call function modifying an atom blocks until

the operation is performed.
�Independent� means that there is no coordinated mechanism for ensuring

that only one thread at a time can modify the value of an atom. Atom uses a
di�erent technique for achieving the same goal. The value of an atom is changed
by applying the function swap! to its old value. �swap! reads the current value,
applies the function to it, and attempts to compare-and-set it in. Since another
thread may have changed the value in the intervening time, it may have to retry,
and does so in a spin loop. The net e�ect is that the value will always be the

17

result of the application of the supplied function to a current value, atomically.
However, because the function might be called multiple times, it must be free
of side e�ects.� Atoms are created by calling the function atom. [33, 35, 37].

Repl examples:

user=> (de f foo (atom 1))
#'user / foo

user=> (swap ! foo inc)
2

user=>(l e t [bar (atom [: a])]
(p r i n t l n @bar)
(swap ! bar conj : b))

[: a]
[: a : b]

5.4.3 Agents

Agents are the asynchronous counter-part of atoms. They are uncoordinated
like atoms are, meaning that �atoms and agents queue up change functions to
ensure that the changes occur atomically.� [6] Agents are modi�ed by applying
the function send on them. Send applies (sends) a function to the agent, which
is used for modifying the value of the agent. However, unlike the case of atom,
the function sent is not applied to the current value immediately. Instead the
call to send returns immediately. [6]

The state of the agent can be requested by adding a watcher to the agent.
[32] Alternatively, a blocking function await can be called. await �blocks the
current thread (inde�nitely!) until all actions dispatched thus far, from this
thread or agent, to the agent(s) have occurred.�[34]

Repl examples:

user=> (de f foo (agent 1))
#'user / foo

user=> @foo
1

user=> (do (send foo inc) (await foo))
n i l

user=> @foo
2

18

5.4.4 Refs

Refs are mutable references bound to a single storage location. The key thing
about Refs is that they are transactional. Ref modi�cation has to happen within
a coordinated transaction. [31] Enforcing the use of a transaction eliminates the
possibility of a con�ict when two threads update a Ref. [6]

Refs are created by calling the function ref. The value of a Ref is modi�ed
by using functions ref-set, alter or commute. A transaction is enabled by using
the macro dosync.

Repl examples:

user=> (de f foo (r e f "bar "))
#'user / foo

user=> @foo
bar

user=> (re f−s e t foo " impos s ib l e ")
java . lang . I l l e g a l S t a t eEx c ep t i o n : No t r an sa c t i on running (NO_SOURCE_FILE: 0)

user=> (dosync (r e f−s e t foo " suc c e s s "))
" su c c e s s "

user=> @foo
" suc c e s s "

5.5 Software transactional memory (STM)

What exactly does a transaction, as referred in the last section, mean? Clojure
has a clever mechanism for automatic handling of transactions called software
transactional memory (STM) [38].�(STM) is a concurrency control mechanism
analogous to database transactions for controlling access to shared memory in
concurrent computing. It is an alternative to lock-based synchronization. A
transaction in this context is a piece of code that executes a series of reads and
writes to shared memory. � [25] STM implementations have been written for
a number of languages as some kind of an API or binding but in Clojure, STM
is built directly into the language core. [25]

Clojure transactions are similar to those found in database management
systems. The STM implemention in Clojure ensures that all actions on Refs are
atomic, consistent and isolated. [31]

• �Atomic means that every change to Refs made within a transaction occurs
or none do.� [31]

• �Consistent means that each new value can be checked with a validator
function before allowing the transaction to commit.� [31]

19

• �Isolated means that no transaction sees the e�ects of any other transac-
tion while it is running.�[31]

If a transaction encounters a con�ict while running, it is automatically retried.
On a more defailed level the implementation guarantees that: [31]

1. �All reads of Refs will see a consistent snapshot of the 'Ref world' as of
the starting point of the transaction (its 'read point'). The transaction
will see any changes it has made. This is called the in-transaction-value.�

2. �All changes made to Refs during a transaction (via ref-set, alter or com-
mute) will appear to occur at a single point in the 'Ref world' timeline
(its 'write point').�

3. �No changes will have been made by any other transactions to any Refs
that have been ref-set/altered/ensured by this transaction.�

4. �Changes may have been made by other transactions to any Refs that
have been commuted by this transaction. That should be okay since the
function applied by commute should be commutative.�

5. �Readers and commuters will never block writers, commuters, or other
readers.�

6. �Writers will never block commuters, or readers.�

7. �I/O and other activities with side-e�ects should be avoided in transac-
tions, since transactions will be retried. The io! macro can be used to
prevent the use of an impure function in a transaction.�

8. �If a constraint on the validity of a value of a Ref that is being changed
depends upon the simultaneous value of a Ref that is not being changed,
that second Ref can be protected from modi�cation by calling ensure. Refs
'ensured' this way will be protected (item #3), but don't change the world
(item #2).�

9. �The Clojure MVCC [18]STM is designed to work with the persistent col-
lections, and it is strongly recommended that you use the Clojure collec-
tions as the values of your Refs. Since all work done in an STM transaction
is speculative, it is imperative that there be a low cost to making copies and
modi�cations. Persistent collections have free copies (just use the original,
it can't be changed), and 'modi�cations' share structure e�ciently.�

10. �The values placed in Refs must be, or be considered, immutable!�

20

References

[1] Lisp programming language. Available from: http://en.wikiquote.org/
wiki/Lisp_programming_language.

[2] Description of race conditions and deadlocks. December 2006. Available
from: http://support.microsoft.com/kb/317723.

[3] Persistent data structure. Wikipedia, 2010. Available from: http://en.

wikipedia.org/wiki/Persistent_data_structure.

[4] Pure function. Wikipedia, 2010. Available from: http://en.wikipedia.

org/wiki/Pure_function.

[5] Clojure. Wikipedia, 2011. Available from: http://en.wikipedia.org/

wiki/Clojure.

[6] Clojure programming/by example. Wikibooks, March 2011. Available from:
http://en.wikibooks.org/wiki/Clojure_Programming/By_Example.

[7] Currying. Wikipedia, March 2011. Available from: http://en.wikipedia.
org/wiki/Currying.

[8] Encapsulation (object-oriented programming). Wikipedia, 2011.
Available from: http://en.wikipedia.org/wiki/Encapsulation_

%28object-oriented_programming%29.

[9] First-class function. Wikipedia, March 2011. Available from: http://en.
wikipedia.org/wiki/First-class_function.

[10] Fold (higher-order function).Wikipedia, March 2011. Available from: http:
//en.wikipedia.org/wiki/Fold_%28higher-order_function%29.

[11] Functional programming. Wikipedia, 2011. Available from: http://en.

wikipedia.org/wiki/Functional_programming.

[12] Functional programming vs. imperative programming. web, 2011.

[13] Higher-order function. Wikipedia, March 2011. Available from: http:

//en.wikipedia.org/wiki/Higher-order_function.

[14] Imperative programming. Wikipedia, March 2011. Available from: http:

//en.wikipedia.org/wiki/Imperative_programming.

[15] In�x notation. Wikipedia, 2011. Available from: http://en.wikipedia.

org/wiki/Infix_notation.

[16] Map (higher-order function). Wikipedia, March 2011. Available from:
http://en.wikipedia.org/wiki/Map_%28higher-order_function%29.

[17] Moore's law. Wikipedia, March 2011. Available from: http://en.

wikipedia.org/wiki/Moore%27s_Law.

21

http://en.wikiquote.org/wiki/Lisp_programming_language
http://en.wikiquote.org/wiki/Lisp_programming_language
http://support.microsoft.com/kb/317723
http://en.wikipedia.org/wiki/Persistent_data_structure
http://en.wikipedia.org/wiki/Persistent_data_structure
http://en.wikipedia.org/wiki/Pure_function
http://en.wikipedia.org/wiki/Pure_function
http://en.wikipedia.org/wiki/Clojure
http://en.wikipedia.org/wiki/Clojure
http://en.wikibooks.org/wiki/Clojure_Programming/By_Example
http://en.wikipedia.org/wiki/Currying
http://en.wikipedia.org/wiki/Currying
http://en.wikipedia.org/wiki/Encapsulation_%28object-oriented_programming%29
http://en.wikipedia.org/wiki/Encapsulation_%28object-oriented_programming%29
http://en.wikipedia.org/wiki/First-class_function
http://en.wikipedia.org/wiki/First-class_function
http://en.wikipedia.org/wiki/Fold_%28higher-order_function%29
http://en.wikipedia.org/wiki/Fold_%28higher-order_function%29
http://en.wikipedia.org/wiki/Functional_programming
http://en.wikipedia.org/wiki/Functional_programming
http://en.wikipedia.org/wiki/Higher-order_function
http://en.wikipedia.org/wiki/Higher-order_function
http://en.wikipedia.org/wiki/Imperative_programming
http://en.wikipedia.org/wiki/Imperative_programming
http://en.wikipedia.org/wiki/Infix_notation
http://en.wikipedia.org/wiki/Infix_notation
http://en.wikipedia.org/wiki/Map_%28higher-order_function%29
http://en.wikipedia.org/wiki/Moore%27s_Law
http://en.wikipedia.org/wiki/Moore%27s_Law

[18] Multiversion concurrency control. Wikipedia, 2011. Available from: http:
//en.wikipedia.org/wiki/Multiversion_concurrency_control.

[19] Object-oriented programming. Wikipedia, March 2011. Available from:
http://en.wikipedia.org/wiki/Object-oriented_programming.

[20] Parallel computing. Wikipedia, March 2011. Available from: http://en.

wikipedia.org/wiki/Parallel_computing.

[21] Polish notation. Wikipedia, 2011. Available from: http://simple.

wikipedia.org/wiki/Prefix_notation.

[22] Read-eval-print loop. Wikipedia, 2011. Available from: http://en.

wikipedia.org/wiki/Read-eval-print_loop.

[23] Referential transparency (computer science). Wikipedia, 2011. Available
from: http://en.wikipedia.org/wiki/Referential_transparency_

%28computer_science%29.

[24] S-expression. Wikipedia, 2011. Available from: http://en.wikipedia.

org/wiki/S-expression.

[25] Software transactional memory. Wikipedia, 2011. Available from: http:

//en.wikipedia.org/wiki/Software_transactional_memory.

[26] B. Barney. Introduction to parallel computing. Lawrence Livermore
National Laboratory. Available from: https://computing.llnl.gov/

tutorials/parallel_comp.

[27] E. W. Dijkstra. The humble programmer. Commun. ACM, 15:859�866,
October 1972. Available from: http://doi.acm.org/10.1145/355604.

361591, doi:http://doi.acm.org/10.1145/355604.361591.

[28] J. Foster. Clojure macros. fatvat.co.uk, 2009. Available from: http://www.
fatvat.co.uk/2009/02/clojure-macros.html.

[29] P. Graham. On Lisp. Prentice Hall, 1994.

[30] S. Halloway. Programming Clojure. Pragmatic Bookshelf, 2009.

[31] R. Hickey. Refs and transactions. clojure.org. Available from: http:

//clojure.org/refs.

[32] R. Hickey. Agents and asynchronous actions. clojure.org, 2010. Available
from: http://clojure.org/agents.

[33] R. Hickey. Atoms. clojure.org, 2010. Available from: http://clojure.

org/atoms.

[34] R. Hickey. Clojure v1.2 api documentation. clojure.org, 2010. Available
from: http://clojure.github.com/clojure/.

22

http://en.wikipedia.org/wiki/Multiversion_concurrency_control
http://en.wikipedia.org/wiki/Multiversion_concurrency_control
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Parallel_computing
http://en.wikipedia.org/wiki/Parallel_computing
http://simple.wikipedia.org/wiki/Prefix_notation
http://simple.wikipedia.org/wiki/Prefix_notation
http://en.wikipedia.org/wiki/Read-eval-print_loop
http://en.wikipedia.org/wiki/Read-eval-print_loop
http://en.wikipedia.org/wiki/Referential_transparency_%28computer_science%29
http://en.wikipedia.org/wiki/Referential_transparency_%28computer_science%29
http://en.wikipedia.org/wiki/S-expression
http://en.wikipedia.org/wiki/S-expression
http://en.wikipedia.org/wiki/Software_transactional_memory
http://en.wikipedia.org/wiki/Software_transactional_memory
https://computing.llnl.gov/tutorials/parallel_comp
https://computing.llnl.gov/tutorials/parallel_comp
http://doi.acm.org/10.1145/355604.361591
http://doi.acm.org/10.1145/355604.361591
http://dx.doi.org/http://doi.acm.org/10.1145/355604.361591
http://www.fatvat.co.uk/2009/02/clojure-macros.html
http://www.fatvat.co.uk/2009/02/clojure-macros.html
http://clojure.org/refs
http://clojure.org/refs
http://clojure.org/agents
http://clojure.org/atoms
http://clojure.org/atoms
http://clojure.github.com/clojure/

[35] R. Hickey. clojure.core - atom. clojure.org, 2010. Available
from: http://clojure.github.com/clojure/clojure.core-api.html#

clojure.core/atom.

[36] R. Hickey. clojure.core - clojure v1.2 api documentation. clojure.org,
2010. Available from: http://clojure.github.com/clojure/clojure.

core-api.html.

[37] R. Hickey. clojure.core - deref. clojure.org, 2010. Available
from: http://clojure.github.com/clojure/clojure.core-api.html#

clojure.core/deref.

[38] R. Hickey. Concurrent programming. clojure.org, 2010. Available from:
http://clojure.org/concurrent_programming.

[39] R. Hickey. Data structures. clojure.org, 2010. Available from: http:

//clojure.org/data_structures.

[40] R. Hickey. Di�erences with other lisps. clojure.org, 2010. Available from:
http://clojure.org/lisps.

[41] R. Hickey. Dynamic development. clojure.org, 2010. Available from: http:
//clojure.org/dynamic.

[42] R. Hickey. Evalution. clojure.org, 2010. Available from: http://clojure.
org/evaluation.

[43] R. Hickey. Functional programming. clojure.org, 2010. Available from:
http://clojure.org/functional_programming.

[44] R. Hickey. Java interop. clojure.org, 2010. Available from: http:

//clojure.org/java_interop.

[45] R. Hickey. Macros. clojure.org, 2010. Available from: http://clojure.

org/macros.

[46] R. Hickey. Rationale. clojure.org, 2010. Available from: http://clojure.
org/rationale.

[47] R. Hickey. The reader. clojure.org, 2010. Available from: http://clojure.
org/reader.

[48] R. Hickey. Sequences. clojure.org, 2010. Available from: http://clojure.
org/sequences.

[49] R. Hickey. Special forms. clojure.org, 2010. Available from: http://

clojure.org/special_forms.

[50] R. Hickey. Values and change - clojure's approach to identity and state.
clojure.org, 2010. Available from: http://clojure.org/state.

23

http://clojure.github.com/clojure/clojure.core-api.html#clojure.core/atom
http://clojure.github.com/clojure/clojure.core-api.html#clojure.core/atom
http://clojure.github.com/clojure/clojure.core-api.html
http://clojure.github.com/clojure/clojure.core-api.html
http://clojure.github.com/clojure/clojure.core-api.html#clojure.core/deref
http://clojure.github.com/clojure/clojure.core-api.html#clojure.core/deref
http://clojure.org/concurrent_programming
http://clojure.org/data_structures
http://clojure.org/data_structures
http://clojure.org/lisps
http://clojure.org/dynamic
http://clojure.org/dynamic
http://clojure.org/evaluation
http://clojure.org/evaluation
http://clojure.org/functional_programming
http://clojure.org/java_interop
http://clojure.org/java_interop
http://clojure.org/macros
http://clojure.org/macros
http://clojure.org/rationale
http://clojure.org/rationale
http://clojure.org/reader
http://clojure.org/reader
http://clojure.org/sequences
http://clojure.org/sequences
http://clojure.org/special_forms
http://clojure.org/special_forms
http://clojure.org/state

[51] R. Hickey. Vars and the global environment. clojure.org, 2010. Available
from: http://clojure.org/vars.

[52] R. Hickey. Ahead-of-time compilation and class generation. clojure.org,
2011. Available from: http://clojure.org/compilation.

[53] J. M. Kraus and H. A. Kestler. Multi-core parallelization in clojure: a
case study. In Proceedings of the 6th European Lisp Workshop, ELW '09,
pages 8�17, New York, NY, USA, 2009. ACM. Available from: http:

//doi.acm.org/10.1145/1562868.1562870, doi:http://doi.acm.org/

10.1145/1562868.1562870.

[54] J. McCarthy. Recursive functions of symbolic expressions and their compu-
tation by machine, part i. Commun. ACM, 3:184�195, April 1960. Available
from: http://doi.acm.org/10.1145/367177.367199, doi:http://doi.
acm.org/10.1145/367177.367199.

[55] R. Munroe. Lisp. web comic. Available from: http://xkcd.com/224/.

[56] R. Munroe. Lisp cycles. web comic. Available from: http://xkcd.com/

297/.

[57] Unknown. Lost ina seaof parentheses. c2.com wiki, 2008. Available from:
http://c2.com/cgi/wiki?LostInaSeaofParentheses.

[58] L. Wall. Wherefore art, thou? The Perl Journal, 1, 1996. Available from:
http://www.linuxjournal.com/article/2070.

[59] W. Watt, David A. & Findlay. Programming language design concepts.
John Wiley & Sons, Ltd., 2004. Available from: http://books.google.

com/books?id=vogP3P2L4tgC.

24

http://clojure.org/vars
http://clojure.org/compilation
http://doi.acm.org/10.1145/1562868.1562870
http://doi.acm.org/10.1145/1562868.1562870
http://dx.doi.org/http://doi.acm.org/10.1145/1562868.1562870
http://dx.doi.org/http://doi.acm.org/10.1145/1562868.1562870
http://doi.acm.org/10.1145/367177.367199
http://dx.doi.org/http://doi.acm.org/10.1145/367177.367199
http://dx.doi.org/http://doi.acm.org/10.1145/367177.367199
http://xkcd.com/224/
http://xkcd.com/297/
http://xkcd.com/297/
http://c2.com/cgi/wiki?LostInaSeaofParentheses
http://www.linuxjournal.com/article/2070
http://books.google.com/books?id=vogP3P2L4tgC
http://books.google.com/books?id=vogP3P2L4tgC

	Introduction
	Dialect of Lisp
	Dynamic typing
	Functional programming

	Introduction to Clojure syntax
	Lispy syntax
	Parentheses, parentheses, parentheses
	Lists
	Prefix vs. infix notation
	Defining functions

	Functional vs. imperative programming
	Imperative programming
	Object oriented programming
	Functional programming
	Functions as first class objects
	Pure functions
	Higher-order functions

	Differences
	Critique

	Closer look at Clojure
	Syntax
	Reader
	Symbols
	Literals
	Lists
	Vectors
	Maps
	Sets

	Macros
	Evaluation
	Read-Eval-Print-Loop
	Data structures
	Sequences

	Control structures
	if
	do
	loop/recur

	Concurrency in Clojure
	From serial to parallel computing
	Problems caused by imperative programming paradigm
	Simple things should be simple
	Reference types
	Vars
	Atoms
	Agents
	Refs

	Software transactional memory (STM)

	References

