
Overview of JavaScript Application

Development

Juho Vepsäläinen
Mathematical Information Technology

University of Jyväskylä
Tietotekniikan teemaseminaari (TIEA255)

April 5, 2011

1

Abstract

This article will provide an overview of JavaScript application de-

velopment. CanvasDraw, an actual web based drawing application,

will be used to highlight various technologies available. These tech-

nologies include HTML5 Canvas and two JavaScript libraries: RightJS

and RequireJS. In addition the feasibility of JavaScript based applica-

tion development is discussed in some detail.

1 Introduction

Software development has gone through radical changes during the last few
decades. As minituarization and competition has driven the progress of hard-
ware it has become commoditized, particularly in the Western world.

Before computing resources were scarce. Now they have become abun-
dant. These days there is often more computing power available than we are
able to properly utilize.

This development has made the role of a software developer crucial, even
more so than before. These days it is possible even for small, agile teams to
succeed. They just need to work the right way on the right market.

Web development provides one feasible target for these kind of teams.
Thanks to the prevalence of web it's now possible to reach millions of po-
tential users with a relative ease. You could say web browser has subsumed
the role of operating system and blurred the distinction between various
platforms.

Almost ubiquitously supported JavaScript programming language and
still developing HTML5 standard combined together form the dynamic duo
of web development. Throw in CSS3 and you have got a winner. In some
cases amalgamation of this technology provides a signi�cant alternative to
established Flash and Java based solutions.

JavaScript � a Joke Language? Before, in the 90s, developers may have
sneered at JavaScript and treated it as a language for script kiddies. Perhaps
the language deserved some of that.

Surprisingly, the core of the language is quite powerful. Perceived prob-
lems often stem from various cross-browser incompabilities and poor browser
APIs. Particularly DOM is a good example of this.

JavaScript Libraries Various JavaScript libraries have arisen to work
around these problems. jQuery in particular has become a shining example

2

of one. It manages to hide nasty cross-browser issues and make it possible
for a casual coder to focus on getting things done.

There is a huge collection of libraries like this out there just waiting for
you. There is rarely any good reason to stick with vanilla JavaScript.

Goals The main purpose of this article is to provide some insight to JavaScript
based app development. I will cover very basics of JavaScript, the program-
ming language.

After that I will have a look at it as compared to a full web development
stack ranging from client to server.

Once I'm done with JavaScript, I will move onto HTML5 and discuss
the concept a bit further. It is way too broad to cover in full detail in this
context. I do aim to provide some starting points for a reader interested in
the subject.

Finally I will discuss a JavaScript and HTML5 Canvas based application,
CanvasDraw.

I will revisit the concepts discussed in a brief conclusion.

2 JavaScript � Programming Language

�Java is to JavaScript as ham is to hamster.�

Often people not familiar with JavaScript think it's the same thing as
Java. The truth could not be further apart.

The name JavaScript has been derived through a poorly thought out
decision by marketers at Netscape [6]. It was probably thought to give the
language some kind of leverage since Java was the hip thing in the golden
90s.

Oh well, even despite this poor decision the language has managed to
thrive, or at least become popular. It is easily one of the most deployed
languages out there. Almost every web browser provides some kind of support
for JavaScript. This makes it a truly ubiquitous platform to develop for.

2.1 History

Brendan Eich started developing JavaScript in 1995 for Netscape's then pop-
ular Navigator web browser. The idea was to provide some kind of scripting
interface to make it easier for programmers to develop various functionality
to otherwise static webpages. [6]

3

Microsoft responded by implementing a similar language, JScript. Even
though the languages nowadays look pretty much the same, there are some
minor di�erences between them. They are not big enough for me to worry
about, though, so I won't bug you about them.

Since then the speci�cation of the language has been formalized. This
speci�cation is also known as ECMAScript [1]. Various implementations are
based on it. Perhaps the most known ones besides JavaScript is Adobe's
ActionScript [2] and its versions.

2.2 Outlook

At the time Eich was particularly impressed by Self, Scheme and similar
languages. From Java 1.0 he took Math and Time libraries. As a result he
integrated various features from these languages to his mighty little hack of
a week [6].

Overall the language is quite simple. It looks a bit like C and Java. Par-
ticularly bracketed syntax is probably familiar to friends of these languages.
Similarity-wise that's about it, though.

2.3 Typing

JavaScript uses weak, dynamic typing [1]. Since the language accepts almost
anything except for the most blatant errors, this makes it quite �exible. It
also means that it's quite easy to make inadvertent errors. These will get
caught later on as some poor user does some nasty thing the developer didn't
anticipate properly.

Especially comparison operator (==) may be tricky for a beginning pro-
grammer. It coerces the comparable items to the same type by default and
executes the comparison based on that. In some cases this may yield unex-
pected result. This is the reason why some favor using non-coercing operator
(===) instead.

2.4 Basic Types

The language provides basic types including Object, Array, String, Number,
null and unde�ned [1].

Object is the core type of the language. It is simply a hash (key-value
pairs).

In most, if not all JavaScript implementations, it is also ordered. This
means the keys of an Object appear in given order when iterated. Note that

4

this is not guaranteed by the ECMAScript speci�cation [1] so it may not be
quite safe to rely on this behavior.

Here's a small example of what Object looks like:

var duck = {
name : ' donald ' ,
age : 42

} ;

// l e t ' s p r i n t out some va l u e s
conso l e . l og (duck . name , duck [' age ']) ;

// s e t some proper ty
duck . he ight = 123 ;

Note that �duck.name� and �duck['age']� achieve pretty much the same
thing. The latter syntax is used particularly when key happens to clash
with some JavaScript keyword. It is also handy while iterating values of an
Object.

Array in JavaScript is indexed from zero just like in most popular lan-
guages perhaps with Lua as an exception. They may also be treated as
queues or stacks using the API.

An Array can look like this:

var lotteryNums = [12 , 25 , 5 , 2 , 6 , 3 , 2 1] ;

// ex t ra number
lotteryNums . push (2 2) ;

// not gonna need i t . go t good numbers a l r eady
lotteryNums . pop () ;

String simply signi�es an array of characters. It is possible to iterate it
just like a regular Array.

A very simple String:

var name = ' Joe ' ;

Number type is a bit special. Even though the language contains functions
such as parseInt, it stores all numbers using some kind of �oating point
presentation. This is a good enough solution as long as you are not doing

5

any high precision mathematics. There are libraries such as BigNumber1

that work around this issue, though.
A couple of Numbers:

var a = 2 ;
var b = 5 . 2 ;

null and unde�ned null and unde�ned are more or less equivalent se-
mantically. Of these particularly unde�ned is used. It comes around in
many places. JavaScript Garden [8] lists its usages as follows:

• Accessing the (unmodi�ed) global variable unde�ned.

• Implicit returns of functions due to missing return statements.

• return statements which do not explicitly return anything.

• Lookups of non-existent properties.

• Function parameters which do not had any explicit value passed.

• Anything that has been set to the value of unde�ned.

Often null may be replaced simply by using unde�ned. Some parts of
JavaScript's internals rely on the usage of null, though [8].

The following example shows null and unde�ned in action:

var c ;
var d = undef ined ;
var e = nu l l ;

c on so l e . l og (c) ; // undef ined
conso l e . l og (d) ; // undef ined
conso l e . l og (e) ; // nu l l

2.5 Basic Structures

JavaScript includes a variety of handy language structures. I will cover basic
conditionals, exceptions, loops and functions next.

1http://jsfromhell.com/classes/bignumber

6

http://jsfromhell.com/classes/bignumber

Conditionals form the core of most modern languages. JavaScript pro-
vides very standard conditionals.

The basic one looks like this:

var a = true ;
var b = 21 ;
var r e s u l t ;

i f (a) {
r e s u l t = ' got a ' ;

}
else i f (b == 13) {

r e s u l t = ' no a , b matched ' ;
}
else {

r e s u l t = ' no match ;
}

conso l e . l og (r e s u l t) ;

In addition it is possible to use Cish ternary operator like this:

var a = ' 13 ' ;
var b = a == 14? ' got a ' : ' noo ' ;

There are also the usual and and or :

var a , b = 1 , 0 ;

// e va l u a t e s as f a l s e , s e l e c t s b
var c = a && b ;

// e va l u a t e s as true , s e l e c t s a
var d = a | | b ;

The language contains also a switch statement:

var favor i t eMov ie = 'Rambo ' ;
var r e s u l t ;

switch (f avor i t eMov ie) {
case 'Rambo ' :

r e s u l t = 'Awesome ! ' ;
break ;

case 'Water World ' :

7

r e s u l t = 'That sucks . ' ;
break ;

default :
r e s u l t = 'Ok . . . ' ;

}

con so l e . l og (r e s u l t) ;

Exceptions work as well:

var t r i g g e rE r r o r = func t i on () {
throw new Error ('Uh oh , did something nasty ! ') ;

} ;

t ry {
// do something nasty to t r i g g e r excep t i on
t r i g g e rE r r o r () ;

} catch (e) {
// catch i t
conso l e . l og (e) ;

}

Looping Arrays is quite simple in JavaScript. It contains the usual for,
while and do-while.

var i ;
var lotteryNums = [12 , 25 , 5 ,

2 , 6 , 3 , 2 1] ;
var amount = lotteryNums . l ength ;

var printNumber = func t i on () {
conso l e . l og (lotteryNums [i]) ;

}

for (i in lotteryNums) {
printNumber () ;

}

i = 0 ;
while (i++ < amount) {

printNumber () ;

8

}

i = 0 ;
do {

printNumber () ;
} while (i++ < amount) ;

Some people prefer to use an each or forEach method like this:

// another way (JS 1.6+)
lotteryNums . forEach (

// i t ' s p o s s i b l e to omit i
// and array i f needed
f unc t i on (number , i , array) {

conso l e . l og (number) ;
}

) ;

In case the browser doesn't support this yet, it is possible to add it there
simply by attaching a suitable function to the prototype of Array 2.10.

One example of this may be found at https://developer.mozilla.org/
en/JavaScript/Reference/Global_Objects/Array/forEach.

Looping Objects is relatively straightforward. As can be seen below, the
syntax resembles Array one quite a bit:

var duck = {
name : ' donald ' ,
age : 42

} ;

for (var k in duck) {
var v = duck [k] ;

c on so l e . l og (k , v) ;
}

Of course longer term writing something like that each time you want to
loop through your keys and values gets boring. Some people use a solution
like this:

Object . forEach (duck ,
func t i on (k , v) {

conso l e . l og (k , v) ;

9

https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Array/forEach
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Array/forEach

}
) ;

// compact a l t e r n a t i v e t ha t j u s t might work in t h i s case
Object . forEach (duck , con so l e . l og) ;

It is important to know that it is not advisable to attach forEach or a
similar method to Object's prototype directly [8]. This will most likely break
some library code depending on a vanilla Object. Instead it is preferable to
attach this kind of methods directly to the Object itself.

In case you just need to access just keys or values, you could implement
Object.keys and Object.values. It is possible to iterate contents of that just
like above in the case of Arrays.

Some people work around the prototype issue simply by wrapping Object
in a Hash like this:

// some wrap Object in Hash c l a s s
var hashDuck = new Hash (duck) ;

// now we can use t h i s
hashDuck . each (

func t i on (k , v) {
conso l e . l og (k , v) ;

}
) ;

// as above , t h i s shou ld work took
hashDuck . each (conso l e . l og) ;

2.6 Functions

are treated as �rst class citizens in JavaScript. A basic function de�nition
may look something this:

f unc t i on h e l l o () {
conso l e . l og (' h e l l o world ! ') ;

}

var h e l l oK i t t y = func t i on () {
conso l e . l og (' He l lo k i t t y ! ') ;

} ;

10

// invoca t i on s
h e l l o () ;
h e l l oK i t t y () ;

It is quite common to pass them around and use them as callbacks. This
is particularly true when JavaScript is used in event driven programming.
Here's a small example showing that:

var amountOfCats = 0 ;

// j u s t some s e l e c t o r and method
// ~not~ a par t o f JS core
$ (' catCounter ') . on (' c l i c k ' ,

f unc t i on () {
amountOfCats++;

}
) ;

Function arguments may be accessed also using a speci�c Arguments
object. Despite looking like an Array, it is not one so don't expect it to work
exactly like one. Here's a quick example:

var showArgs = func t i on () {
conso l e . l og (

' f i r s t arg ' , arguments [0] ,
' a l l ' , arguments

) ;
} ;

showArgs (' shoe ' , ' cat ' , ' p i e ') ;

Even though the language doesn't support named arguments o�cially, it
is possible to mimic this behavior simply by passing an Object.

This is particularly useful in case the function has lots of arguments.
Keeping track of them gets kind of tricky once you pass the limit of two or
three. Optimally your functions should take only one or two arguments at
maximum.

2.7 Scoping

Scoping-wise it uses a bit di�erent kind of system than many other languages.
Instead of having a block scope, it uses function one.

11

Obviously this means that even variables de�ned within blocks within
your main scope are visible to it. This is the reason why some developers
make their variable de�nitions at the beginning of a function as a precaution.
Here's a small example illustrating this:

var random = func t i on () {
var a = 5 ; // random as any

var s e c r e t = func t i on () {
// not v i s i b l e to parent
var b = 10 ;

// acces s parent scope
return a ;

} ;

return s e c r e t () ;
} ;

random () ;

2.8 this

this is one of the interesting features of JavaScript. It simply points to the
current parent. Commonly this is problematic especially when dealing with
callbacks. The following example illustrates this:

var Button = {
i n i t i a l i z e : f unc t i on () {

var s e l f = t h i s ;

t h i s ._d = f a l s e ;

f unc t i on t ogg l e () {
s e l f ._d = ! s e l f ._d;

}

// e x t e r na l l i b !
$E(' div ') . on (' p r e s s ' , t o gg l e) ;

}
}

12

This solution exploits the way JavaScript's scoping works. An alternative
would be to pass reference to parent as an argument.

2.9 Global variables

By default variables are treated as global. In browser environment they are
bound to the window Object.

In case the developer want to use a local variable, she has to declare it
using speci�c var keyword. It is highly recommended that global variables
are avoided since they are quite brittle and prone to errors.

In case global scope within a script or an app is needed, a speci�c global
Object is often de�ned. After that it is just a matter of referring to it instead.

The main bene�t of this is that the real global scope won't get unneces-
sarily polluted. The next example illustrates this:

// s t a sh f o r g l o b a l s o f our app
APP = {} ;

APP. amountOfBananas = 13 ;

// l o c a l
var animal = 'monkey ' ;

2.10 Inheritance

One of the main di�erences between JavaScript and many other Object based
languages is the fact that JavaScript provides prototypal inheritance instead
of a class based one. It is, however, possible to implement a class based
system using this scheme.

In prototypal inheritance scheme the system keeps track of prototype
chains and provides means of seeking Object properties using it. In case an
attribute is not found within the current Object, the system will traverse
to a parent, seeks there and so on. In case nothing is found, unde�ned is
returned.

An example showing how to deal with inheritance in JavaScript may be
found at http://phrogz.net/js/classes/OOPinJS2.html. Various Java-
Script frameworks provide some kind of solution of their own so there is
rarely reason to bake your own solution unless you happen to need something
special.

The main advantage of JavaScript's approach is that it allows you to
extend existing functionality with little e�ort.

13

http://phrogz.net/js/classes/OOPinJS2.html

2.11 Programming paradigms

As JavaScript is a very �exible language it is possible to use common pro-
gramming paradigms in it. It is no problem to mix some functional code
with object oriented one for instance.

It is particularly well suited for event driven programming due to its
nature as seen in the examples above.

2.12 Problem Spots

Even though JavaScript is a decent language it has some shortcomings. As
mentioned earlier weak typing may be troublesome especially if you are not
too aware of how it's coercing your types.

The fact that all variables are global by default is another nasty detail.
More often than not you want to explicitly use local variables, not global. It
would be much nicer to provide a global keyword and treat all variables as
local instead.

The language doesn't provide any kind of support for operator overload-
ing. This is particularly troublesome if you need to develop custom types
that blend in with the language. As it is you have to handle your operations
using explicit methods.

In case of Microsoft's JScript it is not possible to use trailing com-
mas within Array and Object de�nitions like in regular implementations of
JavaScript. This can be somewhat annoying especially if you have gotten
used to putting them there in other languages.

It is possible to work around these issues using a precompiler. There
are actual languages that have been built upon JavaScript that solve some
of these issues in their own way. Co�eeScript2 provides perhaps the most
known example of these.

2.13 Further Resources

Further resources related to JavaScript may be found at https://github.
com/bebraw/jswiki/wiki. A quick search should yield more starting points.

I do recommend checking out Douglas Crockford's lectures3 in particular.
They may be a bit opinionated but even still contain a lot of eye opening
pointers.

2http://jashkenas.github.com/coffee-script/.
3http://developer.yahoo.com/yui/theater/

14

https://github.com/bebraw/jswiki/wiki
https://github.com/bebraw/jswiki/wiki
http://jashkenas.github.com/coffee-script/

3 JavaScript in Web Development Stack

Traditionally web development has been split into two separate wholes: server
and client side. Of these server makes sure the pages are shown correctly.
On static pages client side does virtually nothing except for rendering the
page.

The introduction of JavaScript and similar technologies, such as Flash,
made it possible to do certain kind of processing on the client side as well.

Flash in particular is used for implementing full scale applications and
games running on top of web browser. JavaScript and various HTML5 APIs
enable developers to do the same.

3.1 AJAX

In the early 2000's Microsoft introduced a way to make asynchronous calls
to the server using some JavaScript code. Other browsers quickly mimicked
this API. As a result now very popular concept AJAX was born.

AJAX enables web developers to create interactive pages with ease [10].
As a result features, such as suggesting search, are now commonplace.

3.2 Cloud Computing

As web has become more ubiquitous it has transformed into an application
platform of sorts. The core idea this cloud way of thinking is that the users
may access their data as long as they have access to some kind of client. The
user's data is stored on the server. [5]

This is very di�erent compared to the way personal computing is thought
of traditionally. Before applications were something that had to be specif-
ically installed on the user's operating system. Cloud based applications
mitigate this entirely.

Even though they seem to present a step forward to ubiquitous computing
[13], they do raise several issues. It is possible the application server su�ers
from downtime. In this case access to the application may be restricted.

Another issue has to do with data and its privacy. It is true the data
will be probably better backed up than on normal desktop use. Who can
guarantee that only the right persons have access to it?

In case the data is not con�dential this may be a small price to pay for
the advantages.

15

3.3 Client-Server Architecture

As mentioned in the introduction of this section client-server architecture
forms the core of all web applications. It is always there in one way or
another. From developers point of view this forms an interesting dilemma.

There are a wide range of solutions out there, way too to enumerate
properly. Commonly a speci�c framework is used to ease the burden of the
developer.

These frameworks take care of some common problems developers have
to deal with on daily basis. They usually contain some kind of easy access
to database, way to handle what is shown to the user using templating and
some way to route URIs to these templates.

Usually they provide a certain kind of architecture on top of which to build
your site or application. Particularly MVC4 and its variants are popular.

3.4 Common Solutions

It is common to use a language such as Ruby, Python, PHP or Java on the
server side and write interactive bits using some JavaScript. This incurs
some mental overhead to the developer as he needs to be pro�cient in many
languages at once.

Even if the developer is pro�cient switching between languages always
leads to some kind of context switch. This is turn may lead to inadvertent
errors.

There are solutions available that try to mitigate this problem by gen-
erating the JavaScript code needed based on a snippet written in the host
language. Pyjamas5 provides on solution such as this for Python.

Of course this means access to some speci�c JavaScript based function-
ality may be limited. You might for example use some very speci�c widget
you found. In this case you may have to implement some kind of kludge to
get it working the way you want to.

3.5 Pure JavaScript Stack

Recently another way of thinking has arisen. What if instead of trying to con-
vert some code from another language to JavaScript we just used JavaScript
on the server side as well? As it happens this is a workable idea.

4Model, View, Controller [12]
5http://pyjs.org/.

16

http://pyjs.org/

node6, a JavaScript server library built on top of Google's blazingly fast
V8 engine, is perhaps the most interesting step towards this direction. It
provides an asynchronous way, similar to Erlang, to implement server side
functionality.

It works on quite low-level so a variety of higher level libraries and frame-
works have been built on top of it. A listing of these may be found at
https://github.com/joyent/node/wiki/modules.

3.6 Web Based Development

There are various tools available that might revolutionize the way we think
about development. Traditionally code is written using an Integrated De-
velopment Environment (IDE) or text editor running directly on operating
system and then tested using a web browser or some terminal based tool that
emulates browser environment. What if development was done directly on
the web instead?

Various web based JavaScript editors provide an answer to this question.
They range from simple solutions such as jsFiddle7 to more robust ones such
as Cloud98 and Akshell9. Akshell in particular promises to cover the whole
stack so you can develop whole application without ever leaving the browser.

The main advantage of this approach is that it decouples the IDE from
your computer making it possible to access it almost anywhere without ad-
ditional trickery. Solutions such as this might also enable some interesting
team based functionality to be developed.

One example of this could be collaborative code editing and pair coding
via web. Currently Google Docs applications give a nice idea how collabora-
tive work like his could work out in practice.

4 HTML5

Traditionally HTML has been designed to be a content sharing platform, not
application one. This unfortunately shows. Even though various frameworks
try to hack around the limitations, there is only so much they can do.

HTML5 speci�cation makes a few steps to amend this. It exposes new
APIs for developers that enable them to do more than before. The speci�-
cation is still more or less in �ux. There are various parts that are quite well

6http://nodejs.org/
7http://jsfiddle.net/
8http://cloud9ide.com/
9http://www.akshell.com/

17

https://github.com/joyent/node/wiki/modules
http://nodejs.org/
http://jsfiddle.net/
http://cloud9ide.com/
http://www.akshell.com/

supported already by modern web browsers. Canvas API [7] in particular
provides a good example of this.

4.1 Available Features

In addition to Canvas, HTML5 provides APIs for Audio, Video, 3D, Web
Workers, Web Sockets, History and such. There's simply too much in the
spec [3] to enumerate here.

There are of course improvements to the HTML markup that make it
possible to express semantics in more accurate manner. CSS3 includes some
new features that complement HTML5 well.

In some way the speci�cation takes browsers closer to Adobe's Flash.
Some functionality that required Flash before may be implemented using
native ways. HTML5 has not been designed to replace Flash entirely. It will
rather complement it and work as a fallback in some cases.

4.2 Canvas API

To quote the speci�cation [7], Canvas API provides an immediate-mode API
and associated utility methods for drawing two-dimensional vector graphics
to a raster rendering area. In order to do allow this it provides a speci�c
Canvas element. It may be de�ned like this using HTML markup:

<canvas id="myCanvas" width="640" height="480"></canvas>

The canvas provides a 2D context that may be used to manipulate its
content. The following JavaScript example demonstrates this:

var canvas = document . getElementById ("myCanvas") .
var ctx = canvas . getContext (' 2d ') ;

2D Context may be thought as a state machine. It allows you to transform
the output space before actually drawing on it. For instance in order to draw
a clock you might just draw straight lines while rotating the context every
once in a while. This makes it possible to avoid some tricky math.

The API is quite low-level by its nature. Even though it provides some
useful abstractions in some ways it isn't that useful out of the box. Various
wrappers10 aim to work around its handicaps.

In order to give some kind of idea of the API I've listed its attributes and
methods in the following list based on the o�cial speci�cation [7]:

10https://github.com/bebraw/jswiki/wiki/Canvas-wrappers

18

https://github.com/bebraw/jswiki/wiki/Canvas-wrappers

• canvas - back-reference to the actual canvas

• save, restore - state related methods

• rotate, scale, setTransform, transform, translate - various transforma-
tion methods

• globalAlpha, globalCompositeOperation - compositing attributes

• �llStyle, strokeStyle, createLinearGradient, createRadialGradient, cre-
atePattern - colors and styles

• lineCap, lineJoin, lineWidth, miterLimit - line styles

• shadowBlur, shadowColor, shadowO�setX, shadowO�setY - shadows

• clearRect, �llRect, strokeRect - rectangles

• arc, arcTo, beginPath, bezierCurveTo, clip, closePath, �ll, lineTo, moveTo,
quadraticCurveTo, rect, stroke, isPointInPath - paths

• font, textAlign, textBaseline, �llText, measureText, strokeText - text

• drawImage - drawing images

• createImageData, getImageData, putImageData - pixel manipulation

Example The following example shows how you might draw a linear gra-
dient using the API:

var canvas = document . getElementById ("myCanvas") ;
var ctx = canvas . getContext ("2d") ;

// s e t up g rad i en t
var grad = ctx . c r ea teL inearGrad i ent (0 , 0 ,

canvas . width , canvas . he ight) ;
grad . addColorStop (0 , ' ye l low ') ;
grad . addColorStop (0 . 4 , ' green ') ;
grad . addColorStop (0 . 8 , ' b lack ') ;
grad . addColorStop (1 , ' b lack ') ;

// draw grad i en t
ctx . f i l l S t y l e = grad ;
ctx . f i l l R e c t (0 , 0 , canvas . width , canvas . he ight)

19

Even though the example itself is quite trivial, it shows the main steps.
First you have to set up the context. After that you have to set some states,
�llStyle in this case, and �nally execute some operation (�llRect).

As mentioned earlier it would be possible to transform the output space
before rendering. In addition it's possible to set global alpha and compositing
mode that will be used when applying new data on the canvas.

It is notable, however, that globalCompositeOperation does not apply
for pixel-wise operations, such as putImageData. Considering this it is often
desirable to use drawImage method instead since it composites properly.

4.3 Starting Points

�Dive into HTML5� [11] by Mark Pilgrim provides one starting point. Various
demos may be found at http://html5demos.com/. A quick search should
yield more interesting resources to study.

20

http://html5demos.com/

5 CanvasDraw

Figure 1: Default View of the Application

CanvasDraw (�gure 1) is a drawing application built using JavaScript and
HTML5 technologies. It utilizes Canvas API in particular. On JavaScript
side it relies on RightJS and RequireJS libraries.

It has been designed for http://www.ratemydrawings.com site. Rate
My Drawings (RMD) is a drawing community aimed for people of all ages.
As can be inferred from the name it makes it possible for the users to share
and rate their drawings. The drawings are drawn using a set of applications
provided by the site itself.

In addition to drawing applications the site provides basic forum func-
tionality. Competitions and other community events are arranged on regular
basis.

5.1 Overview

The current drawing tools available are based on Java and Flash. Canvas-
Draw is meant to complement, and possibly replace, these tools.

21

http://www.ratemydrawings.com

Compared to earlier tools CanvasDraw has some unique advantages and
taps into HTML5 development happening. Browsers have improved their
capabilities by leaps and bounds making implementation of applications like
this possible.

In some ways it cannot quite match existing tools. Java tool in particular
is simply �too good� in some respects. Some features, such as layer blending
modes, are not feasible due to the limitations of the available APIs.

There are already HTML5 Canvas based tools, such as DeviantArt's
Muro11, Mugtug's Sketchpad12 or Mr.doob's Harmony13 out there. All ap-
plications like this are bound by the same API. Fortunately there are some
ways that may be used to di�erentiate from the competition.

This is true particularly when it comes to surrounding services, brand and
overall architecture of the application. With some right choices a signi�cant
di�erence may be made.

5.2 Libraries

The application relies heavily on RightJS14 and RequireJS15. Both libraries
have proven to be quite invaluable in practice even though they are not that
widely used yet.

RightJS provides various utilities and a simple implementation of classes.
The library contains also a handy variety of user interface plugins.

The library aims to provide some kind of �right� way to develop JavaScript.
It can be considered as a some kind of mixture of more well known alterna-
tives such as jQuery, MooTools or Prototype. There are also some Rubyish
concepts in the library.

The following example shows how to implement a simple cat counter using
RightJS:

var amountOfCats = 0 ;
var catCount = $E(' div ') .

t ex t ('No ca t s ! ') .
in se r tTo (document . body) ;

var addCat = func t i on () {

11http://muro.deviantart.com/
12http://mugtug.com/sketchpad/
13http://mrdoob.com/projects/harmony/
14http://rightjs.org/
15http://requirejs.org/

22

http://muro.deviantart.com/
http://mugtug.com/sketchpad/
http://mrdoob.com/projects/harmony/
http://rightjs.org/
http://requirejs.org/

amountOfCats++;

catCount . t ex t ('Amount o f ca t s : ' + amountOfCats) ;
} ;

var addCat = $E(' div ') .
t ex t (' addCat ') .
on (' c l i c k ' , addCat) .
in se r tTo (document . body) ;

RequireJS JavaScript does not have concept of modules by default. This
is particularly troublesome in any larger scale development.

Fortunately RequireJS manages to provide a neat solution for this prob-
lem. It provides a nice module loader and a very basic build system that
utilizes various mini�ers16 available.

The cool thing about RequireJS is that it makes it easy to generate speci�c
debug and release builds of the application. There are also various handy
build options designed particularly for development work.

Check out the following example to better understand what RequireJS
modules are all about. Note how dependencies are injected to the module
and how it is possible to expose the interface of the module.

// module f o r some app conf ,
// i tems may conta in funcs too
de f i n e ({

debug : true ,
logUndo : f a l s e ,

}) ;

// more compl ica ted d e f i n i t i o n
// example o f a p l u g in
de f i n e ({

meta : {
t o o l t i p : ' Kickass ' ,
a t t r i b u t e s : {

width : 5
}

} ,
execute : f unc t i on (opts) {

16Google Closure Compiler, UglifyJS

23

// do something fab now
}

}) ;

// de f wi th deps
de f i n e ([' u t i l s /math '] ,

f unc t i on (math) {
// s t a sh l o c a l u t i l s here

// and de f i n e what to share
return {

execute : f unc t i on () {
// use the math Luke !
return math . s q r t (1 2 3) ;

}
} ;

}) ;

Compared to normal JavaScript there is some overhead. It is de�nitely
worth it, though. A more complete example of how to use RequireJS in your
application may be found at http://bit.ly/fL2jzH.

5.3 Architecture

The application has been designed to be easily con�gurable. This has been
made possible by implementing the application more as a plugin platform.

Every panel and tool of the application is a plugin. Even tools may
contain plugin systems within them. For instance various brush variants
have been implemented as plugins.

Each plugin contains at least some callbacks and possibly some metadata
describing it further. Panel plugins contain user interface de�nitions. These
de�nitions are further styled by using some CSS.

At the time of writing I'm developing an iPad speci�c port of the appli-
cation that utilizes the same functional core as the desktop version. Even
though desktop version works on iPad, it does not provide quite optimal
experience due to limitations of a touch interface.

5.4 Functionality

The application provides functionality you might expect to see in a drawing
application. In addition to hotkeys, layers, zoom and undo it provides basic

24

http://bit.ly/fL2jzH

drawing tools. These tools include brush, pen, eraser, blender, shape, bucket
�ll and eyedropper. It is also possible to load and save drawings.

Hotkeys The architecture of the application makes it easy to bind �press�
and �drag� hotkeys. The former ones of these invoke the tool instantly. Latter
ones are invoked as long as the key is pressed after which it switches back to
the previously selected tool. The actual binding looks something like this:

hotkeys : {
p r e s s : {

1 : ' brush ' ,
2 : ' pen ' ,
q : ' blend ' ,
w: ' l i n e ' ,
. . .

} ,
drag : {

c : ' drag ' ,
. . .

}
}

It simply maps a hotkey to some tool based on its name. Previously I
had actual bindings in the tool themselves. I feel it is easier to manage this
way.

Since dealing with shortcuts is quite messy in JavaScript as evidenced
by [14]. I ended up using an external library, shortcut.js17 for handling
actual binding. The library allows one to use key combinations and special
characters in addition to single keys. I use a state pattern for dealing with
�drag� hotkeys. I have documented this solution in more detail at http:

//bit.ly/ih9JN5.

Layers The layer system of CanvasDraw is based on CSS z-index property
and absolute positioning. This makes it possible to overlay multiple canvasii
on top of each other while letting the browser handle compositing. It is also
possible to modify opacity of these canvasii thanks to the widely implemented
CSS3 opacity property. For now that has not been exposed via the user
interface, though.

In addition to actual image data each layer contains name, visibility and
alpha lock data. Alpha lock makes it possible to constrain drawn strokes to

17http://www.openjs.com/scripts/events/keyboard_shortcuts/

25

http://bit.ly/ih9JN5
http://bit.ly/ih9JN5
http://www.openjs.com/scripts/events/keyboard_shortcuts/

currently visible strokes meaning it can be used as a sort of a mask. This
can be highly useful for coloring.

The layers may be sorted freely. There is also copying and �attening
functionality.

The only major feature missing are layer blending modes. At the time be-
ing it simply is not possible to implement this standard functionality without
a signi�cant performance overhead.

Zoom Finding a good way to implement zoom performing well enough on
low-end systems provided quite a challenge. The easiest way to implement
zoom using Canvas is simply to use CSS. Unfortunately that incurs some
overhead.

While being accurate that simply is not acceptable. I ended up going
entirely another route. I have split layer data to two data structures. One
contains actual, �original� data while the other contains the data shown to
the user.

In case the user operates on zoom level 1 (no zoom), the application will
simply modify original data directly. In case the user zooms things get inter-
esting. In this case the canvas is rescaled and the contents of original layer
are drawn on zoom layer using Canvas native method known as drawImage.
This performs actual scaling.

Thanks to this painting on the zoomed layer is e�ectively as fast as it
is in the non-zoomed case. There is some overhead caused by the need to
redraw the strokes to the original canvas after each stroke on zoomed layer.
In practice this hasn't proven to be a real issue. It is interactive performance
that counts.

Undo The zoom system provided by the application spans a wide range of
layer related functionality and tools modifying canvas. The system is based
on a simple queue keeping track of performed commands. For each undoable
command an anti-command has been de�ned.

In case of �move layer� the actual command (redo) can be stated as �move
from n slot to m slot� while anti-command may be stated simply as �move
from m slot to n slot�. There are cases that are more complicated as they
need to keep track of actual image data.

There are some hard undo limits in the system after which it will simply
start to discard data. In this case undo branching has been disabled as well
meaning that in case you undo a few times and perform an entirely new
operation it will simply discard the old items that could have been redone
before.

26

Figure 2: Some Brushes of the Application

Brushes The basic brush system (�gure 2) provided by the application is
fairly standard. It uses a method also known as �stamping�. In this solution
a drawn stroke is imagined to consist of individual dabs. Each dab is then
rendered on the canvas using drawImage method of the Canvas API [7].

In order to make it easier to develop new brushes I designed a special
architecture that makes it possible to vary various properties of a stamp
based brush based on callbacks. These properties include stamp texture,
rotation, scale, translation, alpha, color and spacing.

The following snippet should give a better idea of what stamp brushes
look like:

d e f i n e ([' . / common '] , f unc t i on (common) {
return common . createStampBrush ({

name : ' sw i r l y ' , // name o f the brush ,
// maps to d e f a u l t stamp
meta : {

t o o l t i p : ' Grass brush ' ,
a t t r i b u t e s : { // d e f a u l t v a l u e s f o r a t t r i b u t e s

spac ing : 4
}

27

} ,
c a l l b a c k s : {

. . .
}

}) ;
}) ;

There is also an advanced system that allows to create special passed
brushes. In this case each resulting dab is treated as stack of these individ-
ual stamps. This makes it possible to implement various interesting e�ects
including some kind of shadow e�ects and such. The following snippet should
give a better idea how this works out in practice:

d e f i n e ([' . / common '] , f unc t i on (common) {
return common . createStampBrush ({

name : ' sw i r l y ' , // name o f the brush ,
// maps to d e f a u l t stamp
// names o f stamp images to use . o v e r r i d e s "name"
stamps : [' sw i r l 1 ' , ' sw i r l 2 ' , ' sw i r l 3 '] ,
meta : {

t o o l t i p : ' Grass brush ' ,
a t t r i b u t e s : { // d e f a u l t v a l u e s f o r a t t r i b u t e s

spac ing : 4
}

} ,
c a l l b a c k s : {

stamp : func t i on (opts) {
// by d e f a u l t the system w i l l use j u s t
// the f i r s t image i f you want to c y c l e
// the images ,
// you can do something l i k e t h i s
return opts . stamps [

opts . index % opts . stamps . l ength
] ;

// op t s . stamps i s j u s t a l i s t
// con ta in ing stamp names .
// based on t h i s you cou ld j u s t
// re turn something l i k e " sw i r l 3 "

}
}

}) ;

28

}) ;

In addition to stamp architecture there are several purely procedural
brushes in the application. They are procedural in the sense that they do
not utilize any prede�ned textures. Instead they just draw their result using
the available APIs. In case of fur brush it actually takes the current stroke
data in count and uses it to perform some extra shading in case the current
dab is near enough existing ones.

All brushes of CanvasDraw are compatible with Wacom digitizer pressure.
They are particularly useful for achieving painterly e�ects and mimicking
natural media.

Figure 3: Pens of the Application

Pens Compared to brushes pens (�gure 3) provide a di�erent kind of way of
drawing. They are drawn procedurally and utilize shadow API of Canvas [7].
Shadow API in particular makes it possible to achieve smooth, continuous
results. Pens are useful for lineart and sketching in particular.

Performance-wise pens available currently cannot match brushes. This
is due to the fact that they are drawn using a bu�er that is cleared and
then redrawn at the beginning of each draw cycle. There are various ways to

29

speed it up. These rely on minimizing the amount of clearing and drawing
performed.

Due to the way the pens work they are not unfortunately compatible with
Wacom digitizer pressure.

Figure 4: Erasers of the Application

Erasers Erasers (�gure 4) may be considered a special case of brushes.
Instead of adding color to the canvas they just remove it. This is achieved
using �destination-out� globalCompositeOperation [7] instead of the default
(�source-in�) one.

Blenders Currently CanvasDraw provides three special blenders (�gure
5) that may be used to manipulate existing color data. They work like
stamping brushes except for the fact that they sample the existing data and
then manipulate it somehow.

In the case of blur variants (two leftmost) the data is simply blurred by
using Mario Klingemann's implementation of stackblur for Canvas18.

18http://www.quasimondo.com/StackBlurForCanvas/StackBlurDemo.html

30

http://www.quasimondo.com/StackBlurForCanvas/StackBlurDemo.html

Figure 5: Blenders of the Application

Smudge (the rightmost) makes it possible to literally push image data
around. The basic idea is very simple. It is based on sampling and then
applying a �lighter� version of the sample on the next dab. This is commonly
done using alpha blending. After this has been done, sample and mix again
at next dab till done.

Shapes The application provides a set of basic shapes (�gure 6) including
�lled and outlined versions of rectangle and ellipse. In addition a special
scan�ll based ��ll� tool is provided.

Scan�ll makes it possible to draw shapes while adding and subtracting in
an interactive manner.

Besides these basic shapes there is a separate �line� tool that could be
treated as a shape as well. It has been just separated in the user interface
considering it is quite commonly used.

Bucket Fill Given bucket �ll is a fairly standard feature the application
provides it. Since Canvas API does not actually include an implementation

31

Figure 6: Shapes of the Application

of it one had to be implemented using the slow pixel-wise API. Since it can
take quite a few seconds to execute the tool on slow systems a special progress
dialog system had to be implemented.

The current implementation if based on William Malone's work [9]. I have
no doubt there are faster ways to implement it. This solution is passable for
now, though.

Eyedropper The application includes standard eyedropper tool. It simply
samples the pixel color under the cursor and sets current color to it.

Save/Load It is possible to save drawings either locally or to �nalize the
results and send them to the server. In the latter case the application just
�attens layer data. Local save dumps the data to a �le in JSON19 format.
The contents of this �le may then be easily restored.

19http://www.json.org/

32

http://www.json.org/

5.5 Experiences

Developing CanvasDraw might not have been as easy as initially envisioned.
This is partly due to my relative inexperience as a frontend and JavaScript
development.

My earlier e�orts de�nitely helped a lot, though. Some of the issues
encountered would have been tough to handle in any case.

To give a recent example the release of Firefox 4 broke blending tools due
to the way it deals with clipping areas. The bug has been acknowledged by
the development team. Now it's just a matter of waiting for a �x or �nding
some kind of workaround. At the worst case I have to write a patch to �x
the issue myself and then hope that it gets applied.

Now that CanvasDraw is in a relatively stable state I have a nice architec-
ture to build new projects upon. This, in addition to the knowledge gained,
will be a huge boon for further development.

Canvas Issues In some ways HTML5 Canvas managed to reach my ex-
pectations. In some cases I did have to work around its limitations. Zoom
and layer system in particular were quite time consuming to implement.

The API is pretty low-level by its nature. Unfortunately it is missing some
functionality that would be nice to have. In some cases browsers implement
its functionality in a di�erent manner.

Sometimes it is possible to workaround browser speci�c issues but not
always. This can be particularly frustrating. In some cases working around
some issue is simply not feasible due to the performance. If you are willing
to restrict your application to work in a small set of browsers, or even one,
you will have less to worry about.

One major issue I came upon has to do with the way the API deals
with color. Color channels have been limited to 8 bits per channel. This
leads to very noticeable rounding errors while compositing. It would be
possible to keep track of accurate color data internally. This comes with some
development overhead, though. Fortunately this is something not noticeable
in common use cases.

5.6 Further Development

The development of the application will likely continue. Various functionality
may be added. It is also possible that the application will fork into a few
separate applications based on a common core.

One interesting possibility would be to implement the drawing core of
the application using WebGL [4] and use that where available. This should

33

make it possible to reach better performance since it has been accelerated by
GPU better than Canvas at the moment.

There have been talks of open sourcing the core. I retain the rights to
the source except for certain very speci�c parts so it is quite possible we will
see an open source version of the application at some point.

Open sourcing is not simply a matter of putting the source available
somewhere. More thought than that should be put to it.

It is quite possible this could lead to some new, interesting innovation.
Perhaps it is possible a healthy developer community could be built around
CanvasDraw.

6 Conclusion

It seems JavaScript development has hit mainstream, at least in smaller scale.
It is commonly used to enhance web sites.

The fact that the technology was not initially designed for web appli-
cations unfortunately shows. The whole infrastructure has been built upon
hacks. Fortunately these are often hidden from a developer. Especially vari-
ous libraries have helped a lot in this regard.

Google's applications provide perhaps the most prominent example of
wide-scale usage of JavaScript. They de�nitely show it is possible to come
up with impressive applications that in some ways put their desktop brethren
in shame.

In addition to pure frontend development JavaScript has started to make
inroads to the server side as well. This development has been made possible
especially by node and similar projects during the past few years.

It looks like the future of JavaScript will be bright, at least for the time
being. It is easily the most used and deployed language out there that is
often perhaps overlooked as an alternative. If you are willing to overcome
the initial learning curve, you will be rewarded. The web is yours.

It is easy to compare JavaScript to another seminal language, C. In my
mind it �ts the exact same purpose but for web instead of systems. I bet
Brendan Eich didn't anticipate that when he spent a week designing the �rst
version of it.

References

[1] �ECMA-262 ECMAScript Language Speci�cation�, 2009.
URL http://www.ecma-international.org/publications/files/

34

http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf

ECMA-ST/ECMA-262.pdf

[2] �ActionScript 3.0 Language Speci�cation�, 2011.
URL http://livedocs.adobe.com/specs/actionscript/3/as3_

specification.html

[3] �HTML5 Speci�cation�, 2011.
URL http://dev.w3.org/html5/spec/Overview.html

[4] �WebGL Speci�cation�, 2011.
URL https://www.khronos.org/registry/webgl/specs/1.0/

[5] M. Armbrust et al.: �A view of cloud computing�, Communications of
the ACM, 53(4), ss. 50�58, 2010, ISSN 0001-0782.

[6] Brendan Eich: �JavaScript at ten years�, teoksessa �Proceedings of the
tenth ACM SIGPLAN international conference on Functional program-
ming�, (s. 129), ACM, 2005, ISBN 1595930647.

[7] W3C HTML Working Group: �Canvas 2D API Speci�cation 1.0�, 2009.
URL http://dev.w3.org/html5/canvas-api/canvas-2d-api.html

[8] Zhang Yi Jiang Ivo Wetzel: �JavaScript Garden�, 2011.
URL http://bonsaiden.github.com/JavaScript-Garden/

[9] William Malone: �Create a Paint Bucket Tool in HTML5 and
JavaScript�, 2011.
URL http://www.williammalone.com/articles/

html5-canvas-javascript-paint-bucket-tool/

[10] L.D. Paulson: �Building rich web applications with Ajax�, Computer,
38(10), ss. 14�17, 2005, ISSN 0018-9162.

[11] Mark Pilgrim: �Dive Into HTML5�, 2011.
URL http://diveintohtml5.org/

[12] T. Reenskaug: �The model-view-controller (mvc) its past and present�,
JavaZONE, Oslo, (ss. 2007�03), 2003.

[13] Mark Weiser: �Ubiquitous Computing�, Computer, 26, ss. 71�72, 1995,
ISSN 0018-9162.

[14] Jan Wolter: �JavaScript Madness: Keyboard Events�, 2011.
URL http://unixpapa.com/js/key.html

35

http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf
http://livedocs.adobe.com/specs/actionscript/3/as3_specification.html
http://livedocs.adobe.com/specs/actionscript/3/as3_specification.html
http://dev.w3.org/html5/spec/Overview.html
https://www.khronos.org/registry/webgl/specs/1.0/
http://dev.w3.org/html5/canvas-api/canvas-2d-api.html
http://bonsaiden.github.com/JavaScript-Garden/
http://www.williammalone.com/articles/html5-canvas-javascript-paint-bucket-tool/
http://www.williammalone.com/articles/html5-canvas-javascript-paint-bucket-tool/
http://diveintohtml5.org/
http://unixpapa.com/js/key.html

	Introduction
	JavaScript – Programming Language
	History
	Outlook
	Typing
	Basic Types
	Basic Structures
	Functions
	Scoping
	this
	Global variables
	Inheritance
	Programming paradigms
	Problem Spots
	Further Resources

	JavaScript in Web Development Stack
	AJAX
	Cloud Computing
	Client-Server Architecture
	Common Solutions
	Pure JavaScript Stack
	Web Based Development

	HTML5
	Available Features
	Canvas API
	Starting Points

	CanvasDraw
	Overview
	Libraries
	Architecture
	Functionality
	Experiences
	Further Development

	Conclusion

