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Abstract

The paper deals with the identification of material parameters characterizing components in het-
erogeneous geocomposites provided that the interfaces separating different materials are known.
We use the optimal control approach with flux type cost functionals. Since solutions to the
respective state problems are not regular, in general, the original cost functionals are expressed
in terms of integrals over the computational domain using the Green formula. We prove the
existence of solutions to the optimal control problem and establish convergence results for ap-
propriately defined discretizations. The rest of the paper is devoted to computational aspects,
in particular how to handle high sensitivity of the problem on the accuracy of data gained by
measurements.
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1. Introduction

Inverse problems of material parameter identification play a significant role in many fields of
engineering, especially in situations when material testing by classical procedures fails to provide
material parameters necessary for various mathematical models based on partial differential
equations. Using flow in porous media as an example, the classical material testing consists
of taking material samples and testing permeability by laboratory devices. There are several
drawbacks of this classical procedure, especially when we want to solve geotechnical problems:
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• The heterogeneity of geomaterials existing even on the small scale causes that different
permeability values are obtained from different samples despite that they correspond to
the same geological type. To avoid this effect, the size of the sample should correspond to
a representative volume of the material which can have too large dimensions for laboratory
testing. In this case, large-scale in situ tests have to be performed in dimensions proper
to the heterogeneity and their evaluation needs to solve inverse identification problems.

• For understanding of the role of the microstructure of laboratory size samples, the standard
tests are not sufficient as they only allow to evaluate global (effective) response without
possibility to identify the local material characteristics.

For geotechnics dealing with processes in heterogeneous geomaterials and geological environ-
ment, the use of inverse identification problems is therefore very desirable. But usually we meet
another problem - the lack of measurements necessary as input for the identification. The in-situ
tests usually concern the existing geological situation and the measurements can be done only on
the earth surface, the surface of underground openings or in specially prepared boreholes. The
material properties are evaluated from a response to external influences as mechanical loads,
sources of fluid or heat etc. An example can be the pumping test in hydrogeology, i.e. pumping
water to some boreholes and measuring the reaction in pressure or outflow in other boreholes.
Another example can be the measurement of deformations due to excavation or blasting in some
distance from the measurements. In general, for in-situ tests there is only little and localized
input information, moreover frequently corrupted by measurements inaccuracy (a noise).

Even classical laboratory tests on smaller size samples do not provide enough information
for finding local material properties and understanding the influence of inner microstructures to
the overall behaviour. As a particular problem of this type, we can mention the understanding
of the influence of grouting to mechanical and hydraulic properties, see e.g. [3].

To reduce the noise (accuracy) of measurements, we shall prefer the quantities excluding
very local effects by averaging. To balance the small amount of input information provided
by measurements with the number of required outputs, we take two measures. If possible, the
amount of measured data is increased by repeating the tests with different external influences
(loading and sources inside the investigated domain or on its boundary). On the other hand,
the reduction of the amount of the required output information is done by introducing apriori
knowledge about the partition of the considered domain into several parts where homogeneous
material can be assumed. Consequently, the identification concerns only a (small) number of
parameters which represent the material properties in homogeneous parts. Note that we do
not require that the homogeneous parts are continuous, on the contrary, they can be very
discontinuous e.g. when a binary material (a mixture of two materials) is considered.

The accuracy of the identification is still influenced by the noise in the measurements and
accuracy of the provided decomposition of the investigated domain into homogeneous parts.
In geotechnical applications, the above domain decomposition can be done by extrapolation of
geophysical investigations for in-situ applications or by computer tomography in the case of
laboratory tests. The geophysical investigation or tomography can be used not only for the
determination of the material interfaces but also for getting a guess of the type of material in
individual parts of the considered domain and consequently a guess of their material proper-
ties. As shown later, such guess is beneficiary for both regularization and starting an iterative
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optimization procedure. Note that the example of layered material indicates that the identi-
fied parameters can be more influenced by the volume fractions of the individual homogeneous
subdomains than by the exact position of the material interfaces.

In this paper, we consider a model problem of the Darcy flow in saturated piecewise homo-
geneous, isotropic porous media governed by the equation −div(k∇u) = f , where the unknown
u has the physical meaning of the pressure and f is a source term (fluid flow rate). We are
interested in identification of the unknown permeability k.

The identification is made by measuring the amount of water entering and leaking out of the
sample. We start with a single experiment clarifying how to get data needed in the identification
problem. Consider a very simple situation depicted in Figure 1: Γ1 and Γ2 are inflow segments.
Above them there are water columns of a constant height determining a constant pressure on
each Γi, i=1, 2. At the same time we measure the total amount of the water penetrating into
the sample, i.e. the constants c1, c2 (to keep a constant height, water is continuously refilled).
On the outflow segment Γ3 we prescribe the ambient pressure, e.g. u=0 and measure the amount
of leaked out water, i.e. the constant c3.

As the flow velocity is given by v = −k∇u the measured amount of inflow and outflow
determines

∫
Γi
k ∂u
∂n ds on Γi, i=1, 2, 3.

1

3

2

constant

height water columnwater column

1, 2 inflow

3 outflow

Figure 1: Schematic diagram of the experimental setup. The flux
∫

Γi
k ∂u
∂n ds is

known on the inflow and outflow boundary segments Γ1,Γ2, and Γ3.

Note that the classical identification experiment considers only inflow in one segment (the
whole upper side) and outflow from another segment (the whole bottom side). Such experiment
is able to identify the permeability of isotropic homogeneous material or effective permeability in
one direction of heterogeneous material. For identification of the permeabilities of several parts
of a material sample we need more experiments, which are realized by changing the location
(and possibly also the number) of inflow/outflow segments along the boundary. To simplify
our presentation we shall restrict ourselves to one experiment, which is enough for theoretical
analysis of the problem.
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The corresponding mathematical model leads to an optimal control problem driven by the
scalar, second order elliptic equation whose permeability coefficient k plays the role of the control
variable. Optimal control of systems by coefficients of PDE’s is the topic which is nowadays very
well studied in the literature (e.g. [5], [9], [8]) and the references therein. The overall majority
of papers deals with least-squares type approaches using measured data which are available in
the whole computational domain or its boundary or their substantial parts. Let us observe
that the cost functional in our problem is not of this type. It is defined by a sum of integral
mean values of fluxes on a system of inflow and outflow boundary segments. The individual
functionals contain only modest information for identification purposes with consequences for
the numerical realization mentioned above. On the other hand, the theoretical analysis of this
problem is standard. It is based on continuity and compactness arguments to prove the existence
of a solution and density and basic properties of finite element spaces to establish convergence
results [7].

The main difficulty we face in this problem is a high sensitivity of the final result on the
accuracy of measurements. If the measurements are noise-free then the material parameters
can be identified practically exactly. On the other hand, if the measurements are polluted
by a noise, then some material components can be very far from the true value. To involve
uncertainties of measured data the authors used in [2] the Bayesian inverse which seems to be
robust and providing more information about the identified parameters. The present paper uses
the Tikhonov regularization, the advantage of which is an easy implementation and cheaper
computations comparing with the Bayesian inverse. In this paper, we consider a linear model.
Nonlinear problems can arise e.g. due to the presence of fractures in the material, see [1]. When
considering time evolution, then nonlinearity can appear due to modelling of flow in unsaturated
or variably saturated porous material. In mechanics, the coal-polyurethane composite from [3]
was also investigated by nonlinear models. In [12] perfect plasticity and limit analysis have been
used to determine uniaxial composite strength and the related failure zones.

The paper is organized as follows In Section 2 the optimal control problem is formulated
with the cost functional based on averaged flux over boundary segments. Since the coefficients
of the state equation are piecewise constant, one can not expect high global regularity of the
solution. For this reason, the original cost functional is expressed in terms of integrals over the
whole domain in which the state problem is defined. This is done in Section 3 where the new
expression for the cost functional is also used for the proof that the identification problem has
a solution. Section 4 is devoted to the discretization of the problem and convergence analysis.
The rest of the paper deals with computational aspects. In Section 5 the algebraic form of
the optimal control problem is presented. Finally, in Section 6 two model examples are solved
numerically demonstrating that the proposed method works very well in practice.

2. Formulation of the problem

Let Ω ⊂ R2 be a bounded domain with the Lipschitz boundary ∂Ω = ΓD ∪ ΓN , where ΓN

and ΓD are non-empty and disjoint. In addition, ΓD consists of segments Γj , j = 1, ...,m:

ΓD =

m⋃
j=1

Γj , ∃δ > 0 : dist(Γi,Γj) ≥ δ, i 6= j, and m ≥ 2. (2.1)
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Finally, Ω is decomposed into q subdomains Ωi, i = 1, ..., q:

Ω =

q⋃
i=1

Ωi, Ωi ∩ Ωj = ∅, i 6= j, (2.2)

see Figure 2.

Ω1

Ω2

Ω3

Ω4

Ω5

Ω6

Γ1

Γ2

Γ3

Figure 2: Decomposition of Ω and its boundary

For any positive function k such that k|Ωi ∈ P0(Ωi), i = 1, ..., q (i.e. k is piecewise constant
over {Ωi}) we define the mixed Dirichlet–Neumann problem: Find u := u(k) satisfying

−div(k∇u) = f in Ω

u = ui on Γi, i = 1, ...,m

k
∂u

∂n
= 0 on ΓN ,

(P̃(k))

where ui are given Dirichlet data on Γi, i = 1, ...,m. The weak formulation of (P̃(k)) reads as
follows: {

Find u := u(k) ∈ u0 + V (Ω) such that

a(k, u, v) = (f, v)0,Ω ∀v ∈ V (Ω).
(P(k))

Here

V (Ω) = {v ∈ H1(Ω) | v = 0 on ΓD},

a(k, u, v) =

∫
Ω
k∇u · ∇v dx, f ∈ L2(Ω),

and u0 ∈ H1(Ω) is such that u0|Γi = ui, i = 1, ...,m.

Our aim will be to identify the function k on the basis of flux measurements on Γi, i = 1, ...,m.
To this end we introduce the set

Uad = {k ∈ L∞(Ω) | 0 < kmin ≤ k ≤ kmax, k|Ωi ∈ P0(Ωi), i = 1, ..., q} (2.3)

and the cost functional

J(k) = 1
2

m∑
i=1

Ji(k) := 1
2

m∑
i=1

(∫
Γi

k
∂u(k)

∂n
ds− ci

)2

, (2.4)
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where kmin, kmax are given, u(k) is the solution of (P(k)), k ∈ Uad, and ci ∈ R are the flux
measurements on Γi, i = 1, ...,m.

The identification problem is formulated as follows:{
Find k∗ ∈ Uad such that

J(k∗) ≤ J(k) ∀k ∈ Uad.
(P)

3. Existence result with an equivalent computable expression of J

Instead of the curvilinear integrals defining the cost functional J (which needs an additional
regularity of solution u) we give an equivalent expression of J in terms of integrals using Green’s
formula.

Let u := u(k), k ∈ Uad be the solution to (P(k)) and define the functional Lu ∈ (H1(Ω))′ by

Lu(v) = a(k, u(k), v)− (f, v)0,Ω ∀v ∈ H1(Ω). (3.1)

From the definition of (P(k)) it follows that Lu(v) = 0 ∀v ∈ V (Ω) implying Lu(v1) = Lu(v2)
for any v1, v2 ∈ H1(Ω), v1 = v2 on ΓD. Thus Lu can be considered as a linear functional on the
trace space H1/2(ΓD), where

H1/2(ΓD) = {ψ ∈ L2(ΓD) | ∃v ∈ H1(Ω), v = ψ on ΓD}.

Instead of Lu(v) in (3.1) we shall write 〈µu, ψ〉, µu ∈ (H1/2(ΓD))′, where ψ = v on ΓD or simply
〈µu, v〉. Thus (3.1) becomes

a(k, u(k), v) = (f, v)0,Ω + 〈µu, v〉 ∀v ∈ H1(Ω). (3.2)

In particular, choosing v ≡ 1 in Ω we have

〈µu, 1〉 = −
∫

Ω
f dx. (3.3)

Let us observe that if u(k) is sufficiently regular then

〈µu, v〉 =

∫
ΓD

∂u(k)

∂n
v ds.

In what follows we extend the additive property∫
ΓD

k
∂u(k)

∂n
v ds =

m∑
i=1

∫
Γi

k
∂u(k)

∂n
v ds

valid for regular solutions u(k) of (P(k)) to µu ∈ (H1/2(ΓD))′ from (3.2). To this end define the
spaces

Vi(Ω) = {v ∈ H1(Ω) | v = 0 on any Γj , j 6= i}, i = 1, ...,m.

From (3.2) it follows that

〈µu, v〉 = a(k, u(k), v)− (f, v)0,Ω ∀v ∈ Vi(Ω), i = 1, ...,m.
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As before one can show that µu depends only on the trace of v on Γi provided that v ∈ Vi(Ω).
Let µiu ∈ (H1/2(Γi))

′, i = 1, ...,m be the functional over H1/2(Γi), where

H1/2(Γi) = {ψ ∈ L2(Γi) | ∃v ∈ Vi(Ω), v = ψ on Γi}.

Then3

a(k, u(k), v) = (f, v)0,Ω + 〈µiu, v〉 ∀v ∈ Vi(Ω). (3.4)

It is easy to show that any function v ∈ H1(Ω) can be written in the form

v = v0 +

m∑
i=1

vi, (3.5)

where v0 ∈ H1
0 (Ω) and vi ∈ Vi(Ω), i = 1, ...,m. To prove (3.5) we use the partition of unity

technique. Let {Qi}mi=0 be a covering of Ω such that Γi ⊂ Qi, Qi ∩ Γj = ∅, ∀j 6= i, i = 1, ...,m,
and Q0 ⊂ Ω. Then there exist functions ϕi, i = 0, ...,m such that

ϕi ∈ C∞0 (Qi), 0 ≤ ϕi ≤ 1 in Qi, i = 0, ...,m and
m∑
i=0

ϕi ≡ 1 in Ω. (3.6)

Let v ∈ H1(Ω) and define
vi = vϕi, i = 0, ...,m. (3.7)

Then v0 ∈ H1
0 (Ω), supp vi ⊂ Qi so that vi ∈ Vi(Ω), vi = v on Γi for i = 1, ...,m and (3.5) is

satisfied. Inserting (3.5) into (3.2) we get:

〈µu, v〉 = a(k, u(k), v)− (f, v)0,Ω = a(k, u(k), v0)− (f, v0)0,Ω

+

m∑
i=1

[a(k, u(k), vi)− (f, vi)0,Ω]
(3.4)
=

m∑
i=1

〈µiu, vi〉, (3.8)

using that a(k, u(k), v0)− (f, v0)0,Ω = 0 ∀v0 ∈ H1
0 (Ω). This proves the additive property of µu.

From (3.8) we see that

〈µiu, vi〉 = a(k, u(k), vi)− (f, vi)0,Ω =

∫
supp vi

(k∇u(k) · ∇vi − fvi) dx (3.9)

holds for any vi defined by (3.7). In particular, if v ≡ 1 in Ω, the decomposition (3.5) reads:

ϕ0 +
m∑
i=1

ϕi = 1 in Ω.

Since ϕi ∈ Vi(Ω) and ϕi = 1 on Γi, i = 1, ...,m we obtain from (3.9):

〈µiu, 1〉 =

∫
suppϕi

(k∇u(k) · ∇ϕi − fϕi) dx. (3.10)

3To simplify notation, the duality between (H1/2(Γi))
′ and H1/2(Γi) is still denoted by 〈 , 〉.
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In addition,
m∑
i=1

〈µiu, 1〉 = −
∫

Ω
f dx. (3.11)

This leads to another expression of J(k) which will be used in computations and also in the
forthcoming existence and convergence analysis, namely

J(k) = 1
2

m∑
i=1

(∫
suppϕi

(
k∇u(k) · ∇ϕi − fϕi

)
dx− ci

)2

. (3.12)

Now we are ready to prove the existence of a solution to (P) with the cost functional J defined
by (3.12).

Define the control-to-state mapping Φ : Uad → u0 + V (Ω) by

Φ(k) = u(k) ∈ u0 + V (Ω), k ∈ Uad

with u(k) being solution to (P(k)).

Lemma 3.1. The mapping Φ is continuous in Uad:

kn → k in L∞(Ω), kn, k ∈ Uad =⇒ u(kn)→ u(k) in H1(Ω), (3.13)

where u(kn), u(k) is the solution to (P(kn)), and (P(k)), respectively.

Proof. Proof is standard and it can be omitted.

From Lemma 3.1, compactness of Uad in L∞(Ω) and continuity of J defined by (3.12) we obtain
the following existence result.

Theorem 3.1. Problem (P) has a solution.

4. Discretization of (P) and convergence analysis

In this section we shall define the discrete version (Ph) of (P) and study the mutual relation
between (P) and (Ph) if h→ 0+.

Next we shall suppose that Ω and all Ωi, i = 1, ..., q are polygonal domains. Let {Th}
be a regular family of triangulations of Ω such that each Th ∈ {Th} is consistent with the
decomposition of ∂Ω into ΓN , ΓD and Ω into Ωi, i = 1, ..., q. With any Th we associate the finite
element spaces

Ṽh(Ω) = {vh ∈ C(Ω) | vh|Ti ∈ P1(T ) ∀Ti ∈ Th},

Vh(Ω) = {vh ∈ Ṽh(Ω) | vh = 0 on ΓD}.

In addition, the function u0 defining the Dirichlet data on ΓD is supposed to belong to H2(Ω).
The discretization of (P(k)), k ∈ Uad reads as follows:{

Find uh := uh(k) ∈ uh0 + Vh(Ω) such that

a(k, uh, vh) = (f, vh)0,Ω ∀vh ∈ Vh(Ω),
(Ph(k))
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where uh0 = rhu0 and rh is the piecewise linear Lagrange interpolation operator on Th.

The discretization of the identification problem (P) is defined by{
Find k∗(h) ∈ Uad such that

Jh(k∗(h)) ≤ Jh(k) ∀k ∈ Uad,
(Ph)

where

Jh(k) = 1
2

m∑
i=1

(∫
suppϕi

(k∇uh(k) · ∇rhϕi − frhϕi) dx− ci
)2

, (4.1)

uh(k) ∈ uh0 + Vh(Ω) is the solution to (Ph(k)) and {ϕi}mi=1 are the functions from (3.6). The
pair (uh(k∗(h)), k∗(h)) ∈ (uh0 + Vh(Ω))× Uad will be called an optimal pair of (Ph).

The following existence result is readily seen.

Theorem 4.1. Problem (Ph) has a solution for any h > 0.

In the remaining part of this section we shall study the relation between (P) and (Ph) if
h→ 0+.

To this end we shall need the following auxiliary result.

Lemma 4.1. Let kn → k in L∞(Ω), n → ∞, kn, k ∈ Uad and {uhn(kn)} be the sequence of
solutions to (Phn(kn)), where hn → 0+ if n→∞. Then

uhn(kn)→ u(k) in H1(Ω) (4.2)

Jhn(kn)→ J(k) as n→∞. (4.3)

In addition, u(k) is the solution to (P(k)).

Proof. We use the definition of (Phn(kn)):{
Find uhn(kn) ∈ uhn0 + Vhn(Ω) such that

a(kn, uhn(kn), vhn) = (f, vhn)0,Ω ∀vhn ∈ Vhn(Ω).
(4.4)

Since u0 ∈ H2(Ω) it holds that

rhnu0 → u0 in H1(Ω), n→∞. (4.5)

From this and (4.4) we immediately obtain that {uhn(kn)} is bounded in H1(Ω). Therefore there
exists a subsequence of {uhn(kn)} (denoted by the same symbol) and a function u ∈ u0 + V (Ω)
such that

uhn(kn) ⇀ u (weakly) in H1(Ω), n→∞. (4.6)

To prove that u solves (P(k)) we need the following density result (see [4]):

∀v ∈ V (Ω) ∃{vhn}, vhn ∈ Vhn(Ω) : vhn → v in H1(Ω), n→∞. (4.7)

Letting n→∞ in (4.4) and using (4.5), (4.6), and (4.7) we prove that u := u(k) solves (P(k)).
Owing to the uniqueness of the solution to (P(k)), (4.5) holds for the whole sequence. Strong
convergence of {uhn(kn)} to u(k) can be proven in a standard way. To prove (4.3) we use (4.1),
(4.2) and the fact that rhnϕi → ϕi in H1(Ω), n→∞, ∀i = 1, ...,m.
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Remark 4.1. Observe that if {ϕi}mi=0 is the system of functions satisfying (3.6) then {rhϕi}mi=0

shares the same properties.

The main result of this section is the following theorem.

Theorem 4.2. For any sequence of optimal pairs {(uh(k∗(h)), k∗(h))} of (Ph), h → 0+ there
exists a subsequence {(uhn(k∗(hn)), k∗(hn))} and a couple (u(k∗), k∗) ∈ (u0 + V (Ω))× Uad such
that

uhn(k∗(hn))→ u(k∗) in H1(Ω) (4.8)

k∗(hn)→ k∗ in L∞(Ω), n→∞. (4.9)

In addition, (u(k∗), k∗) is an optimal pair of (P). Any accumulation point of {(uh(k∗(h)), k∗(h))}
in the sense of (4.8) and (4.9) possesses this property.

Proof. The existence of a subsequence {(uhn(k∗(hn)), k∗(hn))} and a pair (u(k∗), k∗) satisfying
(4.8) and (4.9) follows from compactness of Uad in L∞(Ω) and (4.2). To prove that (u(k∗), k∗)
is an optimal pair we use the definition of (Phn):

Jhn(k∗(hn)) ≤ Jhn(k) ∀k ∈ Uad (4.10)

Passing to the limit with n→∞, i.e. also hn → 0+ in (4.10) we obtain

J(k∗) ≤ J(k) ∀k ∈ Uad

making use of (4.3).

5. Numerical realization

Let k = (k1, ..., kq) ∈ Rq be the vector containing the parameters defining the diffusion
coefficient k. The nodal values of the approximate solution of the state problem (P(k)) is
obtained by the solution of the linear algebraic system

A(k)u = b,

where A(k) is the stiffness matrix (depending on k) and b is the force vector. Let Ji(k) denote
the discretized objective function Ji(k). The evaluation of Ji(k) is done using (3.12) with ϕi

given by the sum of the Courant basis functions at the nodes placed on the Γi. Let zi be the
vector of nodal values of ϕi. Then the objective function in matrix form reads as

Ji(k) = 1
2

(
uTÂ(k)zi − b̂Tzi − ci

)2
,

where Â(k) and b̂ are the stiffness matrix and force vector corresponding the state problem
with the pure Neumann condition on ∂Ω.

The matrix form of adjoint problem (A.2) is

A(k)pi = Â(k)zi. (5.1)
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Finally the partial derivatives are computed using (A.3) resulting in

∂Ji(k)

∂kj
=
(
uTÂ(k)zi − b̂Tzi − ci

)
uT∂A(k)

∂kj
(zi − pi), j = 1, ..., q, i = 1, ...,m. (5.2)

In practice the number of integral flux measurements per experiment is much less than the
number of the subdomains. Therefore, it is very likely that we cannot determine the coefficient
k by using one experiment only. Instead several experiments need to be done under different
input conditions generating optimization problems (Ph)`, ` = 1, ..., L. Here L stands for the
total number of experiments corresponding to different positions (and possibly the number) of
segments Γi which define their own cost functionals whose algebraic counterparts are denoted
by J 1, ....,J L. We can then use e.g. the scalarization approach and minimize their weighted
sum

J (k) =
L∑

`=1

w`J `(k), (5.3)

where w` > 0 are suitable weights. The same approach has been used to a closely related
problem in [6]. In the rest of the paper we assume w` = 1, ` = 1, ..., L.

6. Numerical examples

Let Ω =]0, 1[×]0, 1[ and let f = 0 in Ω. The state problem was discretized using a uniform
triangular mesh. The finite element solver was implemented in MATLAB [10]. The mesh size
h = 1

40 was used. This mesh is fine enough and the use of slightly coarser or denser mesh does
not result in essentially different results.

Throughout this section we assume that in addition to the knowledge of the exact boundaries
of the subdomains {Ωi} we know a reasonably good initial guess vector k0 that predicts the order
of magnitudes of the components of the true kref . The availability of good k0 allows us to reduce
the set of admissible parameters. Therefore we assume that k ∈ Uad, where

Uad = {k ∈ Rq | kmin
i ≤ ki ≤ kmax

i , i = 1, ..., q}

is the discrete analogue of Uad and kmin,kmax ∈ Rq are two given positive vectors.

As inverse problems are generally ill-posed, some form of an additional regularization is
needed especially if there is some sort of noise present in the observations [11]. In what follows
we utilize the following Tikhonov regularization with a weight ρ ≥ 0:

Jr(k) = J (k) +
ρ

2

q∑
i=1

(ki − k0
i )2, (6.1)

where J (k) is defined by (5.3). To choose the weight ρ optimally in the Tikhonov regularization
is generally an unsolved problem. We experimented with the L-curve method [11]. For some
subdomain decomposition/experiment/noise combinations it gave useful information for choos-
ing ρ but for some other not. However, our experiences might not reflect the situation with real
data. Therefore, further elaboration of this topic was left to future studies and in the following
examples ρ was determined ad hoc.
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Example 1. The setting of the (synthetic) identification problem is the same as in [2] (Sec-
tion 3). The subdomain decomposition is depicted in Figure 3. We have three experiments
with different locations for the inflow/outflow boundaries (see Figure 4). As suggested in
[2] we used logarithmic transformation κ = log(k) in the minimization of J . This trans-
formation brings the advance that the optimizers ”see” variables that have the same order
of magnitude. We simulate the measurements by computing the boundary fluxes cj , j =
1, ...,m from the numerical solution corresponding to the following known vector of perme-
abilities kref = log([9000, 100, 5000, 4, 300, 2, 200]). As the initial guess vector we used k0 =
[9, 5, 9, 1, 5, 1, 5] ≈ log([8103, 148, 8103, 3, 148, 3, 148]). The lower and upper bounds were set
to kmin = log([2000, 50, 2000, 1, 50, 1, 50]), kmax = log([10000, 500, 10000, 5, 500, 5, 500]), respec-
tively. As the initial guess for the optimizer, the vector k0 was used.

Figure 3: Subdomain topology

Figure 4: Location the of boundary measurements for three experiments. In-
put boundary segments (ui = 1) are marked with red and output boundary
segments (ui = 0) are marked with green.

In optimization we used fmincon procedure with active-set option from the MATLAB Op-
timization Toolbox. The procedure applies a variant of the gradient based sequential quadratic
progamming algorithm with a quasi-Newton approximation of the Hessian. The gradients were
hand coded using the formulae (5.1), (5.2) derived in Section 5 and supplied to the optimizer. In
the case of measurements without noise (and without regularization, i.e. ρ = 0), the optimizer
found the correct parameter vector with a very high accuracy.

Next we introduced noisy measurements for each experiment. Let {cref
j } be the set of fluxes
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Table 1: Initial and final objective function values as well as the number of
iterations and the number of objective function evaluations for Example 1.

init.cost final cost iter/feval

clean 1.73× 104 1.91× 10−15 37/90
noisy 1.79× 104 1.05× 10−5 33/86
regul. 1.79× 104 0.844 27/102

corresponding to the reference solution kref . Then we define the perturbed fluxes {c̃j} as follows:

c̃j = cj + ηj , ηj ∼ N (0, σ2
j ), σj = pcref

j , p ≥ 0, j = 1, ...,m.

Next the problem was solved with noisy data with the parameter p = 0.02. The effect of
noise and regularization is demonstrated in Figure 5. The summary of the cost function value
evolution and the number of iterations (and cost function evaluations) is shown in Table 1.
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1.8

Figure 5: Ratio of the identified parameters k∗i to the exact values kref
i . Blue

column – no noise, green column – noise with p = 0.02 without the regular-
ization; yellow column – noise with p = 0.02 and the regularization with the
parameter ρ = 1.

Let us comment on the number of experiments needed. If there is q unknown coefficients
ki, then clearly we should have at least q extra equations for unique solvability. Due to the
flux balance (our noisy data by its construction satisfies it, too) one of the fluxes is a linear
combination of others (within one experiment). So in reality, if we have e.g. m flux measurements
per experiment, we only have m − 1 new conditions per experiment. Thus, if we have q =
9 unknowns and we use two measurements per experiment, we should perform at least nine
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experiments. So from the computational point of view, having as many flux measurements per
experiment is advantageous, but not necessarily feasible in the laboratory environment.

Example 2. This is yet another synthetic model problem. The division of Ω into the subdomains
is depicted in Figure 6. Unlike the previous example now there are two subdomains that do
not meet the boundary ∂Ω. Again the measurements are simulated by computing the fluxes
corresponding to the vector kref = log([9000, 100, 2, 2, 300, 200, 5000, 3000, 4]). As the initial
guess vector we used k0 = [9, 5, 1, 1, 5, 5, 9, 8, 1] ≈ log([8103, 148, 3, 3, 148, 148, 8103, 2981, 3]).
The upper and lower bounds are kmin = log([2000, 50, 1, 1, 50, 50, 2000, 2000, 1]) and kmax =
log([10000, 500, 5, 5, 500, 500, 10000, 10000, 5]). We performed four experiments with six or five
flux boundaries depicted in Figure 7. That setup simulates the situation where fluxes can be
measured only at the top and bottom of the specimen. The first and the second experiment
(similarly the third and the fourth experiment) correspond to the case where we rotate the
specimen 90 degrees between experiments.

Figure 6: Subdomain topology

Figure 7: Locations of the boundary the measurements for four experiments.
Input boundary segments (ui = 1) are marked with red and output boundary
segments (ui = 0) are marked with green.

The results of optimization in the absense of noise and with noise are shown in Figure 8. The
summary of the cost function value evolution and the number of iterations (and cost function
evaluations) is shown in Table 2.
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Figure 8: Ratio of the identified parameters k∗i to the exact values kref
i . Blue

column – no noise, green column – noise with p = 0.02 without the regular-
ization; yellow column – noise with p = 0.02 and the Tikhonov regularization
with the parameter ρ = 0.05.

7. Conclusions

The aim of this paper is to identify the unknown permeability coefficient k in a piecewise
homogeneous, isotropic media by using an optimal control approach. Data needed to define cost
functionals are obtained by measuring the amount of injected and leaked out water from the
sample. In the first theoretical part the problem is formulated and the original cost functionals
are expressed in a way which is more convenient for computations. After the discretization of
the state equation by a standard finite element method, the resulting algebraic problem leads to
a non-convex but smooth minimization problem. Since the problem turned out to be sensitive to
the accuracy of measured data, the Tikhonov regularization was used to suppress this occurrence.

The numerical examples demonstrate that with a reasonable number of noiseless measure-

Table 2: Initial and final objective function values as well as the number of
iterations and the number of objective function evaluations for Example 2.

init.cost final cost iter/feval

clean 1.76× 104 2.44× 10−13 49/145
noisy 1.79× 104 0.265 52/130
regul. 1.79× 104 2.50 32/54
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ments, the optimizer supplied with exact gradients easily finds the exact solution. With noisy
measurements the situation is, of course, more subtle. As the main contribution of this paper
is the clever evaluation of the cost function and its gradient using the standard finite element
method, the noise reduction was considered to be left to other studies.
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Appendix A. Sensitivity analysis

Let

J(k) =

m∑
i=1

Ji(k)

be defined by (3.12), where

Ji(k) = 1
2

(∫
Ω

(
k∇u(k) · ∇ϕi − fϕi

)
dx− ci

)2

− 1
2

(∫
Ω

(
k∇u(k) · ∇q − fq

)
dx︸ ︷︷ ︸

=0

)2
∀q ∈ V (Ω).

We shall compute the directional derivative J ′i(k, h) of Ji at k ∈ Uad and direction h ∈ L∞(Ω),
h|Ωi ∈ P0(Ωi), i = 1, ..., q. From (3.10) it follows

J ′i(k, h) = lim
t→0+

Ji(k + th)− Ji(k)

t

= (〈µiu, 1〉 − ci)
∫

Ω

(
h∇u(k) · ∇ϕi + k∇u′(k, h) · ∇ϕi

)
dx

− (〈µiu, 1〉 − ci)
∫

Ω

(
h∇u(k) · ∇q + k∇u′(k, h) · ∇q

)
dx

= (〈µiu, 1〉 − ci)
∫

Ω

(
h∇u(k) · ∇ϕi − h∇u(k) · ∇q

)
dx

+ (〈µiu, 1〉 − ci)
∫

Ω

(
k∇u′(k, h) · ∇ϕi − k∇u′(k, h) · ∇q

)
dx (A.1)

holds for any q ∈ V (Ω).

Let pi ∈ V (Ω) be the adjoint state defined by the adjoint equation∫
Ω
k∇pi · ∇z dx =

∫
Ω
k∇ϕi · ∇z dx ∀z ∈ V (Ω). (A.2)

In particular, if z := u′(k, h) ∈ V (Ω) in (A.2) we see that∫
Ω

(
k∇pi · ∇u′(k, h)− k∇ϕi · ∇u′(k, h)

)
dx = 0.

Choosing q = pi in (A.1) we finally obtain:

J ′i(k, h) = (〈µiu, 1〉 − ci)
∫

Ω
h∇u(k) · (∇ϕi −∇pi) dx, (A.3)

where pi ∈ V (Ω) solves (A.2), i = 1, ...,m.
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