PHASE-FIELD FRACTURE PROPAGATION - MATRIX-FREE IMPLEMENTATION -

DANIEL JODLBAUER

Computational Methods for PDEs Johann Radon Institute Altenberger Straße 69, 4040 Linz e-mail: daniel.jodlbauer@ricam.oeaw.ac.at

ABSTRACT

The non-linear and non-convex nature of the energy functional combined with the variational inequality associated to phase-field fracture models puts a great challenge to most optimization algorithms. Dealing with possibly many iterations of the non-linear solver (e.g. active set), a fast method for solving the linearized problems is essential for an efficient performance. In this talk, we take a look at a matrix-free linear solver, which gains additional speed by eliminating the need to update the Jacobian every time when either the grid, linearization point (within Newton's method) or active set changes.

ACKNOWLEDGEMENTS

This work has been supported by the Austrian Science Fund (FWF) grant No. P-29181 "Goal-Oriented Error Control for Phase-Field Fracture Coupled to Multiphysics Problems".

REFERENCES

- B. Bourdin, G. Francfort and J.-J. Marigo, Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, 48, 797–826, 2000
- [2] T. Heister, M. F. Wheeler and T. Wick, A primal-dual active set method and predictor-corrector mesh adaptivity for computing fracture propagation using a phase-field approach, Comput. Methods Appl. Mech. Engrg, 290, 466 – 495, 2015
- [3] M. Kronbichler and K. Kormann. A generic interface for parallel cell-based finite element operator application, Computers & Fluids, **63**, 135–147, 2012