Some Electromagnetic Wave Propagation Models for Moving Media: An Operator Theoretical Perspective.

Rainer Picard

June 7, 2018

The study of Maxwell's equations in moving media is of long standing interest, beginning with J. C. Maxwell himself. We consider Maxwell's equations with a drift term (Maxwell-Hertz-Cohn model) as our starting model for such situations and inspect its connection to the Maxwell-Minkowski model, which has replaced it, in an operatortheoretical framework. By discussing these models in a common *normal form*, following the ideas of [1], [2, Chapter 6], we are able to conveniently compare these approaches. The Maxwell-Hertz-Cohn model suggests a velocity constraint by the speed of light, which was a strong motivation for the Maxwell-Minkowski model, where this constraint is actually built into the Minkowski structure of space and time. In the light of this historical link it may be interesting that – as we will show – the constraint in the Maxwell-Hertz-Cohn model to media moving slower than the speed of light is a mathematical artifact.

References

- R. Picard. A Structural Observation for Linear Material Laws in Classical Mathematical Physics. Math. Methods Appl. Sci., 32(14):1768–1803, 2009.
- [2] R. Picard and D. F. McGhee. Partial Differential Equations: A unified Hilbert Space Approach, volume 55 of De Gruyter Expositions in Mathematics. De Gruyter. Berlin, New York, 2011.