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ABSTRACT

In order to guarantee efficiency and reliability of a numerical solution, a posteriori error analysis
is an important task when solving PDEs. In the case of BEM, many existing estimators (e.g. [5])
refer to error functionals with respect to the density function' ¢;, on the boundary. For industrial
purposes, one is also interested in the energy error with regard to the global reconstruction uy, on €.
In this context, I present recent ideas from Prof. Dr. Sergey Repin which are subject to my master
thesis. First implementation results of a majorant and two minorants within a 2D lowest-order BEM
example? on a square will be displayed.

The main idea comes from a variational inequality® and the fact that BEM-solutions solve the equa-
tion exactly inside €2. Therefore, special instances for majorants can be generated by finding "good"
extensions of the boundary error function e := g — youy, to €2. The minorants result from functional
analysis arguments. Further, since e has zero mean boundary trace the sources [1] and [2] apply.
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! obtained by solving a boundary integral equation, e.g. Galerkin procedure.
Zhomogeneous Dirichlet-Laplacian
3e.g. in our example solutions are minimizers of the Dirichlet-Integral



