HOMOGENISATION OF MAXWELL'S EQUATIONS REVISITED

MARCUS MOPPI WAURICK

Department of Mathematics and Statistics University of Strathclyde 26 Richmond Street UK-G1 1XH Glasgow, SCOTLAND e-mail: marcus.waurick@strath.ac.uk

ABSTRACT

In this talk, I will introduce the homogenisation problem associated to the full time-dependent Maxwell equations. Highlighting earlier results and approaches to periodic homogenisation problems, I will proceed to discuss a certain non-periodic setting: Let $\Omega \subseteq \mathbb{R}^3$ open. A sequence $(a_n)_n$ in $L^{\infty}(\Omega)^{3\times3}$ is said to be *G*-convergent to $a \in L^{\infty}(\Omega)^{3\times3}$, if $a_n = a_n^*$, $a_n(x) \ge \alpha \mathbf{1}_{3\times3}$ for some $\alpha > 0$ and a.e. $x \in \Omega$ and for all $f \in H^{-1}(\Omega)$ and $u_n \in H_0^1(\Omega)$ the equations

 $-\operatorname{div} a_n \operatorname{grad} u_n = f \quad (n \in \mathbb{N})$

imply $u_n \to u$ weakly in $H_0^1(\Omega)$, where $u \in H_0^1(\Omega)$ satisfies

$$-\operatorname{div} \operatorname{agrad} u = f.$$

The main result will be the following: Let $\Omega \subseteq \mathbb{R}^3$ open, bounded with weak Lipschitz boundary. Let $(\varepsilon_n)_n$, $(\mu_n)_n$ be *G*-convergent sequences in $L^{\infty}(\Omega)^{3\times 3}$ with limits ε and μ . Then for all $(f,g) \in C_c^1(\mathbb{R}; L^2(\Omega)^6)$ and (E_n, H_n) being in certain (non-standard) Sobolev spaces ensuring existence and uniqueness of the Maxwell problem with E_n satisfying the electric boundary condition with the property

$$\partial_t \varepsilon_n E_n - \operatorname{curl} H_n = f$$
$$\partial_t \mu_n H_n + \operatorname{curl} E_n = g,$$

we have that E_n and H_n converge weakly in $L^2_{loc}(\mathbb{R} \times \Omega)$ to (E, H) with

$$\partial_t \varepsilon E - \operatorname{curl} H = f$$

 $\partial_t \mu H + \operatorname{curl} E = g$

The results are related to findings in [1, 2], in particular to [1, Example 7.5].

REFERENCES

- [1] Waurick, M. Nonlocal H-convergence, arXiv:1804.02026, 2018.
- [2] Waurick, M. On the homogenization of partial integro-differential-algebraic equations Operators and Matrices, 10(2): 247-283, 2016