A FAST FOURIER TRANSFORM BASED DIRECT SOLVER FOR THE HELMHOLTZ PROBLEM

MONIKA WOLFMAYR

Faculty of Information Technology; University of Jyväskylä; P.O. Box 35 (Agora); FIN 40014 Jyväskylä; FINLAND
e-mail: wolfmayr@jyu.fi

ABSTRACT

In this talk, we consider the derivation and application of a fast direct solver employing fast Fourier transform (FFT) in order to solve the Helmholtz equation. We discuss the method for solving the Helmholtz equation in a two- or three-dimensional rectangular domain with an absorbing boundary condition, see [2]. The Helmholtz problem is discretized by standard bilinear and trilinear finite elements on an orthogonal mesh yielding a separable system of linear equations. We present numerical results for two- and three-dimensional problems solved by the FFT based direct solver. This is a joint work with Jari Toivanen (University of Jyväskylä, Finland).

REFERENCES

