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Acoustic wave propagation in air

Most common model: the linear wave equation for the
acoustic pressure:

@2P

@t2
� c2

0�P D 0

In frequency domain, the Helmholtz equation:

�k2
0p � �p D 0;

where P.t; x/ D Re ei!tp.x/ and k0 D
!

c0

Let us review the basic assumptions!
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Modeling assumptions in “standard” acoustics

1. Linearity: acoustic pressure (p), velocity (u), temperature (T )
small disturbances around constant base states p0, u0, T0

(Three acoustic fields in general!)

2. Still air (u0 D 0)

3. Sound propagation is isentropic (adiabatic and reversible)

Isentropy )

Acoustic velocity: u D
i

!�0

rp

Temperature fluctuations T D
T0

�0

. � 1/


p

Density fluctuations � D
1

c2
0

p

Thus, isentropy ) only one scalar field needs to be computed!
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How realistic is the isentropic assumption?
No losses (viscous, thermal) taken into account, by definition
Loss mechanisms in acoustics:

“Bulk losses” can usually be neglected in comparison with
interaction with solid surfaces

Thermal interaction:
Thermal conduction in a solid � thermal conduction in air.
Isothermal wall is the standard assumption () T D 0 at wall)
Diffusion of acoustic thermal oscillations close to wall (thermal
conductivity coefficient �)

Viscous interaction:
Non-slip condition u D 0 at wall
Diffusion of tangential momentum close to wall (viscosity
coefficient  �)

Thus, interaction with solid surface creates thermal and viscous
boundary layers
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Modeling visco–thermal losses

When are visco–thermal losses important?

Sound propagation in long narrow wave guides: musical
instruments, measurement devices

Sound propagation in small devices: microphones, hearing aids,
micro-speakers

Modeling air losses for Micro Electro Mechanical (MEMS) sensors

In summary: when
Solid Surface Area
Total Air Volume

not too small
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The linearized, compressible Navier–Stokes equations
Includes visco–thermal losses

i!� C �0r � U D 0; (Mass Conservation)

i!U C
1

�0
rp � �

�
�U C

1

3
r.r � U /

�
D 0; (Momentum Balance)

i!�0cV T C p0r � U � ��T D 0; (Energy Balance)

�, �: viscosity coefficient, thermal conductivity of air
cV : heat capacity, constant volume
Linearized equation of state (ideal gas law)

�

�0
D

p

p0
C

T

T0

Boundary conditions at solid walls:

U D 0 T D 0

Why not simply use this model?
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Acoustic boundary layer thickness

Thickness of thermal (ıT ) and
viscous (ıV ) layers in terms of
wave length (�) for audio
frequencies

102 103 104

10�4

10�3

f (Hz)

ıT =�

ıV =�

Helmholtz equation: � 10 grid points per wave length
Thus, a Helmholtz grid cannot resolve the boundary layer
Direct modeling with compressible Navier–Stokes very
computationally demanding
Recommended (e.g. by Comsol, Acoustics Module) to be used only
in hybrid modeling
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Modeling visco–thermal losses
Basically two approaches in literature:

1. Waveguide techniques
Many contributions, starting already with Kirchhoff (1868!)
Linearized Navier–Stokes equations
Exact or approximate modal solutions in wave guides (one axial
space coordinate z)
Yields a complex wave number k in transversal average pressure
p.z/ D p.0/ eikz (dispersion relation k D k.!/)

2. Boundary-layer theory
A version of Prantl’s boundary-layer technique for oscillatory
exterior flow
Applied to linearized, compressible Navier–Stokes equations
Suggested as a post-processing approach to estimate total losses from
isentropic pressure data (e.g. Searby et al., J. Propul. Power (2008))
Iterative procedure: R. Bossart, N. Joly, M. Bruneau, J. Sound
Vibration (2003)
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Our approach – outline

Boundary-layer analysis ) explicit formulas for velocity and density
fluctuations in boundary layer

Fluctuations exponentially attain isentropic conditions outside of
boundary layer

Rewrite exact mass conservation law in boundary layer to the same
form as in the isentropic case but with a modified wall boundary
condition

Suggests the use of Helmholtz equation with the modified boundary
condition for visco–thermal analysis

Modified problem well posed; easy FE implementation
Equivalent to classical expressions for special geometries
Generally applicable to most acoustic problems
Test case: results match closely Navier–Stokes solutions to a much
lower computational cost
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Isentropic approximations
Linearized, compressible Navier–Stokes equations:

i!� C �0r � U D 0; (mass)

i!U C
1

�0
rp � �

�
�U C

1

3
r.r � U /

�
D 0; (mom)

i!�0cV T C p0r � U � ��T D 0; (energy)
Equation of state: �=�0 D p=p0 C T=T0.
Boundary conditions at solid walls: U D 0, T D 0.

Isentropic assumptions ) � D � D 0 (no boundary layer) , p D c2
0�, and

i!
c2

0

p C �0r � U D 0; (mass)

i!U C
1

�0
rp D 0; (mom)

i!�0cV T C p0r � U D 0 (energy)
Boundary conditions at solid walls: n � U D 0
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Normal and tangential splitting (flat wall)

Coordinates x D .x; y; z/;
velocity U D .u; v; w/

Normal direction y, wall at y D 0

Projections on wall plane:
r D .x; 0; z/, u D .u; 0; w/

x

y

z

x

r

Tangential gradient, divergence, and Laplace operators

rT D

�
@

@x
; 0;

@

@z

�
; �T D rT � rT D

@2

@x2
C

@2

@z2
:

Then, for instance:

r � U D rT � u C
@v

@y
; rT D rTT C

�
0;

@T

@y
; 0

�
�T D �TT C

@2T

@y2
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Splitting, boundary-layer limits (flat wall)

Navier–Stokes Acoustic boundary layer equations

i!
�

�0
C rT � u C

@v

@y
D 0;

i!u C
1

�0
rTp � �

�
�Tu C

@2u

@y2
C

1

3
rT

�
rT � u C

@v

@y

� �
D 0;

i!v C
1

�0

@p

@y
� �

�
�Tv C

@2v

@y2
C

1

3

@

@y

�
rT � u C

@v

@y

��
D 0

i!�0cV T C p0

�
rT � u C

@v

@y

�
� �

�
�TT C

@2T

@y2

�
D 0;

Length scales: 1=k0 (horizontal), ı (vertical)

Rescaling variables, consider small values of �, �, ı, keeping only
leading terms
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Splitting, boundary-layer limits (flat wall)

Navier–Stokes Acoustic boundary layer equations

i!
�

�0
C rT � u C

@v

@y
D 0;

i!u C
1

�0
rTp � �

�
�Tu C

@2u

@y2
C

1

3
rT

�
rT � u C

@v

@y

� �
D 0;

i!v C
1

�0

@p

@y
� �

�
�Tv C

@2v

@y2
C

1

3

@

@y

�
rT � u C

@v

@y

��
D 0

i!�0cV T C p0

�
rT � u C

@v

@y

�
� �

�
�TT C

@2T

@y2

�
D 0;

Length scales: 1=k0 (horizontal), ı (vertical)

Rescaling variables, consider small values of �, �, ı, keeping only
leading terms
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The acoustic boundary-layer equations
i!

�

�0

C rT � u C
@v

@y
D 0;

i!u C
1

�0

rTp � �
@2u

@y2
D 0;

@p

@y
D 0;

i!�0cV T C p0

�
rT � u C

@v

@y

�
� �

@2T

@y2
D 0:

Boundary conditions at y D 0: u D 0, v D 0, T D 0;
equation of state: �=�0 D p=p0 C T=T0

Approximations to the
linearized Navier–Stokes
equations for

�, � small,

for y � O
�p

�=!;
p

�=!
�

As y ! C1, solutions approach isentropic fields satisfying

u1
D

i
!�0

rTp
1

�1
D

1

c2
0

p1; T 1
D

T0

�0

. � 1/


p1
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1: the viscous boundary layer
Tangential velocity u satisfies boundary-value problem

i!u � �
@2u

@y2
� i!u1

D 0;

ujyD0 D 0;

lim
y!C1

D u1:

Solution (Stokes second problem):

u D u1.r/
�
1 � e�.1Ci/y=ıV

�
;

where

ıV D

r
2�

!
;

is the viscous boundary-layer thickness.
x

y

u1

ıV
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2: the thermal boundary layer

Thermal boundary layer equations less straightforward to derive

Our derivation a generalization of the 1D analysis of
Rienstra & Hirschberg, An Introduction to Acoustics (2015)

Equations rewritten by introducing the excess density �e D � � �1
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2: the thermal boundary layer

i!�0cp
�e

�0
� �

@2

@y2

�e

�0
D 0 for y > 0,

�e

�0
! 0 as y ! C1,

�e

�0
D

 � 1



p1

p0
at y D 0.

Solution:
�e

�0
D

 � 1



p1.r/

p0
e�.1Ci/y=ıT ;

where

ıT D

s
2�

!�0cp
:

is the thermal boundary-layer thickness.
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From boundary layers to boundary conditions

Mass conservation law (boundary layer approximation or isentropic):

i!
�

�0
C rT � u C

@v

@y
D 0

Integration in wall-normal direction )

i!

QyZ
0

�

�0
dy C

QyZ
0

rT � u dy C vjyD Qy � vjyD0 D 0 8 Qy s.t. 0 < Qy � 1=k0,

where vjyD0 D 0 from boundary conditions.

The mass conservation law is the same in both cases!

Boundary-layer case: strong gradients in �, u

Isentropic case �, u almost constant close to wall
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From boundary layers to boundary conditions
Integrated mass conservation law using boundary-layer approximations:

i!

QyZ
0

�

�0
dy C

QyZ
0

rT � u dy C vjyD Qy � vjyD0

D i!

QyZ
0

�1

�0
dy C i!

QyZ
0

�
�

�0
�

�1

�0

�
dy C

QyZ
0

rT � u dy C vjyD Qy � vjyD0

D
�
insert exact formulas…

�
D i!

QyZ
0

�1

�0
dy C

QyZ
0

rT � u1 dy C QvjyD Qy � vW D 0

where

vW D �ıV
i � 1

2
rT � u1

� ıT
!. � 1/.1 C i/

2p0
p1;

QvjyD Qy D vjyD Qy C f . Qy/;
ˇ̌
f . Qy/

ˇ̌
� C.e� Qy=ıV C e� Qy=ıT /
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From boundary layers to boundary conditions

Thus, mass conservation law using boundary-layer approximations:

i!

QyZ
0

�1

�0

dy C

QyZ
0

rT � u1 dy C QvjyD Qy � vW D 0 8 Qy s.t. 0 < Qy � 1=k0;

where

vW D �ıV
i � 1

2
rT � u1

� ıT
!. � 1/.1 C i/

2p0
p1:

Equal to the isentropic mass conservation law with
O.ıV C ıT /-perturbed wall-normal velocity

Idea: use isentropic model, but replace v D 0 with v D vW as
boundary conditions at y D 0
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From boundary layers to boundary conditions

vW D �ıV
i � 1

2
rT � u1

� ıT
!. � 1/.1 C i/

2p0
p1

Recall: when isetropic, U can be computed from p:

u1
D

i
�0c0

rTp1

v1
D

i
�0c0

@p1

@n

Thus, setting v D vW corresponds to boundary condition
@p1

@n
� ıV

i � 1

2
�Tp1

C ıT k2
0

.i � 1/. � 1/

2
p1

D 0

Constitutes an O.ıV C ıT / perturbation of the hard-wall condition
@p1

@n
D 0

A so-called Wentzell boundary condition

August 8, 2018 20 / 37



How about curved walls?
A flat wall assumed in the above derivations

For smooth non-flat surfaces, split using U D u C .U � n/n and
curvlinear operators

rT D rTT C n
@T

@n
; r � U D rT � u C

@.U � n/

@n
;

�TT D rT � rTT:

Would in general involve wall-curvature effects, e.g.

�T D �TT C
@2T

@n2
C�

@T

@n
;

� D rT � n is (twice) the mean curvature of the wall

However, ıT , ıV � 20 – 400 �m for air in audio range

Radii of curvature for smooth walls typically � ıT , ıV

Thus, often reasonable to ignore curvature effects
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Example problem: an acoustic cavity

�io

�io

�

�w

�k2
0p � �p D 0 in �,

ik0p C
@p

@n
D 2ik0g on �io,

�ıV
i � 1

2
�Tp C ıT k2

0

.i � 1/. � 1/

2
p C

@p

@n
D 0 on �w,

nT � rTp D 0 on @�w,

k0 D !=c0: isentropic wave number
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Variational problem

Find p 2 V such that

a.q; p/ D `.q/ 8q 2 V;

where

a.q; p/ D

Z
�

rq � rp � k2
0

Z
�

qp C ik0

Z
�io

qp C
i�1

2

�
ıV

Z
�w

rTq � rTp C k2
0.�1/ ıT

Z
�w

qp
�

`.q/ D 2ik0

Z
�io

qg

Norm:

k pk
2
W D

Z
�

jrpj
2

C k2
0

Z
�

jpj
2

C ıV

Z
�w

jrTpj
2

C ıT . � 1/k2
0

Z
�w

jpj
2

Solution space W : closure of C 1.�/ in k�kW
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Well-posedness

Surprisingly small changes from “normal” Helmholtz theory

Lemma (Coercivity)
For any p 2 W , ˇ̌

a. Np; p/ C 2k0kpk
2
L2.�/

ˇ̌
�

1

2
p

13
kpk

2
W

Lemma (Injectivity)
For each k0 > 0, if p 2 W such that

a.q; p/ D 0 8q 2 W;

then p � 0.

Here we use the radiation condition on �io
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Well-posedness, finite-element approximation

Variational problem is well posed for each k0 > 0.
(Fredholm theory)

Well-posedness shown in the norm on W involving tangential
gradients on �w

Finite element approximations using standard elements (continuous,
piecewise polynomials) are conforming in W
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Implementation

Software like Comsol, FEniCS:

Specify the integrands in the variational form
Software assembles the system matrix

Example (Comsol):

Expression �k2
0qp C rq � rp in integral over �:

-k0*k0*test(p)*p+test(px)*px+test(py)*py+test(pz)*pz

Expression rTq � rTp in integral over �w:

test(pTx)*pTx+test(pTy)*pTy+test(pTz)*pTz
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Comparing with other boundary-layer approaches

Searby et al. (2008) suggest a post-processing approach to compute
boundary losses in cavity problems:

1. Calculate pressure field by isentropic analysis (Helmholtz equations)
2. Use the pressure and the tangential pressure gradients at walls to

compute total power loss

No effect of phase shifts taken into account

Their expressions for viscous & thermal losses agrees with ours:

Ploss D
ıV

4!�0

Z
�w

jrTpj
2

C . � 1/
ıT !

4�0c2

Z
�w

jpj
2;

Bossart, Joly, Bruneau (2003) suggest a iterative approach
(predictor–corrector) to account for boundary-layer effects

Our approach is strongly coupled
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Schmidt/Thöns–Zueva/Joly and Cremer/Pierce models

The viscous (but not thermal) part of the BC previously derived by
Schmidt, Thöns–Zueva (2014, technical report)

A. Pierce in Acoustics (1981) derives a condition equivalent to our

vW D �ıV
i � 1

2
rT � u1

� ıT
!. � 1/.1 C i/

2p0
p1

Based on work by L. Cremer (1948)

Appears not to have been used in numerical computations
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Comparing with waveguide solutions
The waveguide case extensively covered in the literature
(e.g. Kirchhoff (1868); Keith (1975); Rienstra & Hirschberg (2015))

These are exact solutions of the linearized Navier–Stokes equations
in e.g. infinite tubes

Long thin cylindrical wave guide; cross section area A,
circumference L

1D solution ansatz: p.z/ D Opeikz, k 2 C (no transversal or
circumferential dependence)

Substituting ansatz into our variational form yields dispersion
relation (k0 D !=c0)

k2

k2
0

D
A �

i�1
2

. � 1/ıT L

A C
i�1
2

ıV L

Agrees, in the large-radius limit, with the one obtained from the
exact solution
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Limits of applicability

102 103 104
10�2

10�1

100

101

radius 1 mm

f (Hz)

jRe kj=k0 (exact)
jRe kj=k0 (BL)

jIm kj=k0 (exact)
jIm kj=k0 (BL)

102 103 104
10�1

100

101

radius 0.1 mm

f (Hz)

jRe kj=k0 (WG)
jRe kj=k0 (BL)

jIm kj=k0 (WG)
jIm kj=k0 (BL)

Circular tube, diameter 1 mm (solid) & 0.1 mm (dashed)
Red: exact wave number
Blue: boundary layer approximation
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Numerical tests: the compression driver

Illustration by Chetvorno,
licence CCO 1.0 (Wikipedia)

Sound source for
acoustic horns

Acoustic transformer:
high pressure/low velocity !

low pressure/high velocity

Greatly improves
radiation efficiency

Contains narrow chambers,
channels

Visco–thermal losses significant
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More realistic compression driver
Simplified geometry but typical dimensions:

Membrane diameter: 84 mm

Compression chamber depth: 0.5 mm

Compression ratio: 12

Boundary-layer effects significant in compression chamber and
phase plug
Comparing:

Hybrid solver: N–S (compression chamber + phase plug) and
Helmholtz (waveguide)
Helmholtz with our visco–thermal BC in compression chamber +
phase plug
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Meshes

Exploiting symmetry: computing a 20ı slice

boundary layer elements

Middle: highly stretched boundary-layer elements used for N–S case

Right: mesh for our model
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Test problem

Left boundary: stiff piston sound source; constant velocity
on boundary
Compression chamber, phase plug:
1. Compressible N–S, vanishing velocity and temperature on

boundaries, boundary-layer meshes. P 2 elements for p; P 3 for u, T

2. Helmholtz equation. BC either @p=@n D 0 or our proposed condition.
P 2 elements

Waveguide: Helmholtz equation, @p=@n D 0 BC
Right boundary �out: 1st-order absorbing BC

Observing radiated power

Po D
1

2�0c0

Z
�out

jpj
2
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Radiated power

103 104
�5

0

5

10

15

f (Hz)

P
o
(d
B
)

Hybrid N–S/Helmholtz
Boundary approximation
Lossless
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Computational cost

Degrees
of freedom

Memory
used

Solution time
per frequency

Hybrid N–S/Helmholtz 1 033 276 101 613 MB 2 111 s
Helmholtz our BC 63 725 1 242 MB 12 s
Quotient 16.21 81.8 180

About two order of magnitude less memory and CPU time with
proposed approach
Also:

Our model easily solved on a laptop
Hybrid N–S/Helmholtz required all 24 available cores of a node in an
HPC cluster
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Final remarks

Further details in:

M. Berggren, A. Bernland, and D. Noreland. Acoustic boundary layers as
boundary conditions. J. Comput. Phys., 371:633–650, 2018

The method is general, simple to implement, and seems accurate!

Applicable for design optimization of e.g. compression drivers

More careful look at wall curvature effects needed

Unclear how to treat edges and corners. Boundary layers of
boundary layers? Nonlinear effects?

Taking into account wall roughness, patterns on wall, perforations?
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