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Introduction



Elastic turbulence

Flows of viscoelastic flu-
ids exhibit a phenomenon
called elastic turbulence.1

As opposed to regular vis-
cous fluids the flow of a vis-
coelastic fluid can become
unstable at very low values
of Reynolds number.

Figure 1: Experimental set-up.1

Figure 2: Elastic turbulence.
Wi = 13, Re = 0.7.1

1 Groisman and Steinberg (2000)
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Stability of steady flows

linear stability analysis
• linearization of the governing eqs with respect to perturbations
• yields a sufficient condition for the instability of the steady flow
nonlinear stability analysis
• energy method, Lyapunov functional
• yields a sufficient condition for the stability of the steady flow

Figure 3: Bifurcation diagrams.2

2Morozov and van Saarloos (2007) 3



Giesekus model



Free energy and entropy production

Consider a homogeneous incompressible viscoelastic material
characterized by the free energy ψ,

ψ
def
= −cVθ

[
ln

(
θ

θref

)
− 1

]
+

µ

2ρ

(
TrBκp(t)

− 3− ln detBκp(t)

)
,

(1)
and the entropy production ξ = ζ

θ , where

ζ
def
= 2νDδ : Dδ + κ

|∇θ|2

θ

+
µ2

2ν1
Tr

[
αB2κp(t)

+ (1− 3α)Bκp(t)
+ (1− α)B−1

κp(t)
+ (3α− 2)I

]
.

(2)
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Governing equations

The postulated free energy and entropy production yield the
governing equations for the mechanical evolution of the
material (a similar derivation can be found in3)

div v = 0,

ρ
dv
dt = divT,

ν1
▽

Bκp(t)
= −µ

[
αB2κp(t)

+ (1− 2α)Bκp(t)
− (1− α)I

]
,

(3a)

(3b)

(3c)

where the Cauchy stress tensor T is given by the formulae 4

T = mI+ Tδ, Tδ = 2νDδ + µ
(
Bκp(t)

)
δ
.

Boundary conditions: v · n|∂Ω = 0, (I− n⊗ n)v|∂Ω = vbdr.
3Hron et al. (2017)
4D def

= 1
2 (∇v+∇v⊤), Aδ

def
= A− 1

3 (TrA)I,
▽
A def

= ∂A
∂t + (v · ∇)A−∇vA− A∇v⊤ 5



Steady flow & perturbed flow

The triplet of unknown fields is denoted by

W def
= [v,m,Bκp(t)

]. (4)

The steady flow is denoted by

Ŵ def
= [v̂, m̂, B̂κp(t)

], (5)

and the perturbation from the steady flow is denoted by

W̃ def
= [ṽ, m̃, B̃κp(t)

]. (6)

note The steady flow Ŵ and the perturbed flow Ŵ+ W̃ both
represent solutions of the governing equations.

Under which conditions do we get

W̃ t→+∞−−−−→ 0? (7)
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Lyapunov functional



Construction of Lyapunov functional

Following the approach proposed by5 we define the Lyapunov
functional as

V(W̃∥Ŵ)
def
= Emech(Ŵ+ W̃)− Emech(Ŵ)− DŴEmech(Ŵ)[W̃], (8)

where

Emech (W)
def
=

∫
Ω

[
1
2ρ |v|

2 +
1
2µ

(
TrBκp(t)

− 3− ln detBκp(t)

)]
dv,

(9)
The explicit formula for the Lyapunov functional then reads

V(W̃∥Ŵ) =∫
Ω

1
2ρ|ṽ|

2dv −
∫
Ω

1
2µ ln det

(
I+ B̂κp(t)

−1
B̃κp(t)

)
dv

+

∫
Ω

1
2µ Tr

(
B̂κp(t)

−1
B̃κp(t)

)
dv. (10)

5Bulíček et al. (2017)
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Time derivative of Lyapunov functional

The time derivative of the Lyapunov functional can be
estimated as follows
dV
dt (W̃∥Ŵ) ≤ C1(Ŵ, ν, ν1, µ)

∥∥∇ṽ∥∥2L2(Ω)
+C2(Ŵ, ν, ν1, µ)

∥∥∥B̃κp(t)

∥∥∥2
L2(Ω)

,

(11)
which in turn yields unconditional asymptotic stability of the
steady flow provided that

C1, C2 < 0.

note The explicit formulae for C1, C2 are omitted here.
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Taylor–Couette problem



Application to Taylor–Couette problem

Outline of procedure:
• Scaling
dimensionless numbers
Re, Wi

• Steady flow
numerical solution of a
BVP

• Stability of steady flow
evaluation of the
constants C1, C2

r

R2

R1

ϕ
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Ω2

gr̂

gϕ̂

Figure 4: Taylor–Couette geometry.
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Stability of steady Taylor–Couette flow

0.0 2.4 4.8 7.2 9.6 12.0

Re

0.00

0.06

0.12

0.18

0.24

0.30

W
i

unconditional

asymptotic

stability

C1, C2 < 0

C1, C2 ≥ 0

C1 < 0, C2 ≥ 0

C1 ≥ 0, C2 < 0

Figure 5: Stability regions in Re–Wi plane.
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Conclusion



Conclusion

• We have addressed the lack of analytical results for the
stability problem of flows of viscoelastic fluids by
construction of a suitable Lyapunov functional.

• We have derived bounds on the values of Reynolds and
Weissenberg numbers which guarantee the flow stability
subject to any finite perturbation.

• We have explicitly evaluated the bounds on Reynolds and
Weissenberg numbers in the case of Taylor–Couette type
flow.

note The construction of the Lyapunov functional relies on the
underlying thermodynamic arguments.
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