

IMPLEMENTATION OF FUNCTIONAL-TYPE A POSTERIORI ERROR ESTIMATES FOR LINEAR PROBLEMS IN SOLID MECHANICS

Maksim Frolov

Peter the Great St.Petersburg Polytechnic University

AANMPDE11, FINLAND 06–10 August 2018 joint work with Prof. Sergey I. Repin^{1,2,3} Dr. Maria Churilova³ Olga Chistiakova³

¹PDMI RAS (St. Petersburg)
 ²University of Jyväskylä
 ³Peter the Great St.Petersburg Polytechnic University

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Problems in 2D

Classical Elasticity Cosserat Elasticity (microstructure) **Reissner-Mindlin Plates**

Introduction	Problem statement	New error estimate for RM	Numerics	Conclusions	Adaptation
A priori	and a poste	eriori estimates			

- u exact solution.
- u_h approximate solution (h a mesh parameter).
- $|||u u_h||| \le C(u,...)h^{\alpha}$, $\alpha > 0$ a priori error estimate.
- $|||u u_h||| \le \mathcal{M}(u_h, ...)$ a posteriori error estimate.
- Efficiency index $I_{eff} = \mathcal{M} / ||| u u_h |||$.

Introduction	Problem statement	New error estimate for RM	Numerics	Conclusions	Adaptation
A poste	eriori error e	stimates			

1. Error estimates in global norms Indicators Guaranteed and reliable estimates

2. Adaptive algorithms Construction of local indicators Convergence of adaptive algorithms

- 4 回 ト 4 三 ト 4 三

Introduction Problem statement New error estimate for RM Numerics Conclusions Adaptation Key features of classical approaches to error control in FEM

- Element u_h the exact solution of a discrete problem (Galerkin approximation).
- Simplicity of approaches and low computational costs are preferable by engineers.
- In most cases, indicators are considered rather than majorants (reliable functionals).

It is better to have an estimate that is efficiently applicable, but reliable and robust to deviations.

(a) < (b) < (b) < (b) </p>

Repin S., Xanthis L.S. Comp. Meth. Appl. Mech. Engrg. 1996

Repin S. Math. Comput. 2000

Neittaanmäki P., Repin S.	2004
Repin S.	2008
Mali O., Neittaanmäki P., Repin S.	2014

э

Introduction	Problem statement	New error estimate for RM	Numerics	Conclusions	Adaptation
Error e	estimation				

Constitutive Relation, Residual-Based, Postprocessing (SPR,...),...

- Boisse P., Perrin S., Coffignal G., Hadjeb K. 1999
- Liberman E. 2001
- Carstensen C. 2002, Carstensen C., Weinberg K. 2001, 2003, Carstensen C., Schöberl J. 2006, Carstensen C. et al. 2011, Carstensen C., Hu J. 2008, Hu J., Huang Y. 2010
- Boroomand B., Ghaffarian M., Zienkiewicz O.C. 2004, Castellazzi G., de Miranda S., Ubertini F. 2011
- Lovadina C., Stenberg R. 2005, Beirão da Veiga L., Chinosi C., Lovadina C., Stenberg R. 2008, Beirão da Veiga L., Niiranen J., Stenberg R. 2013

• ...

イロト イポト イヨト イヨト

Introduction Problem statement New error estimate for RM Numerics Conclusions Adaptation Functional approach: KL and RM plates

- Neittaanmäki P., Repin S. East-West J. Numer. Math. 2001
- Frolov M., Neittaanmäki P., Repin S. ECCOMAS 2004
- Frolov M. Russ. J. Numer. Anal. Math. Model. 2004
- Repin S., Frolov M. Zap. Nauchn. Sem. POMI 2004 (J. of Math. Sci., 2006)
- Frolov M., Neittaanmäki P., Repin S. *Probl. Mat. Anal.* 2005 (J. of Math. Sci., 2006)
- Frolov M. Mesh Methods for Boundary-Value Problems and Applications, Kazan, 2014
- Frolov M., Chistiakova O. *IOP Conf. Series: Materials Science* and Engineering 208 (2017) 012043

8

・ロン ・四 と ・ ヨ と ・ ヨ と

э

This model describes a bending of linearly elastic plates of small to moderate thickness in terms of the pair of variables in $\Omega \in \mathbb{R}^2$ u = u(x) — scalar-valued function (displacement), $\theta = \theta(x)$ — vector-valued function (rotations)

$$\begin{cases}
-\operatorname{Div} (\operatorname{C}\varepsilon(\theta)) = \gamma & \text{in } \Omega, \\
-\operatorname{div}\gamma = g & \text{in } \Omega, \\
\gamma = \lambda t^{-2} (\nabla u - \theta) & \text{in } \Omega,
\end{cases}$$
(1)

t — thickness of a plate; $\lambda = \frac{Ek}{2(1+\nu)}$, $\varepsilon(\theta) = \frac{1}{2}(\nabla \theta + (\nabla \theta)^T)$; gt³ represents the transverse loading; C — is the tensor of bending moduli; E and ν — material constants; k — a correction factor (5/6).

(人間) とうり くうり

Introduction	Problem statement	New error estimate for RM	Numerics	Conclusions	Adaptation
Bounda	ry condition	าร			

- $\bullet~\Gamma_{\rm D}$ and $\Gamma_{\rm S}$ are two non-intersecting parts of the boundary $\Gamma;$
- $\Gamma_{\rm D}$ clamped part, $u = 0, \theta = 0$ on $\Gamma_{\rm D}$;

•
$$\Gamma_{\rm S}$$
 — free part,
 $\partial u/\partial n = \theta \cdot n \text{ on } \Gamma_{\rm S},$
 $C\varepsilon(\theta)n = 0 \text{ on } \Gamma_{\rm S};$

 $\Gamma_{\rm S}$ — supported part instead of $\partial u/\partial n = \theta \cdot n$ on $\Gamma_{\rm S}$, one has u = 0 on $\Gamma_{\rm S}$.

The case $\Gamma=\Gamma_{\rm D}$ was considered in 2004-2005.

Find a triple $(u, \theta, \gamma) \in U \times \Theta \times Q$

$$\begin{cases} \int C\varepsilon(\theta) : \varepsilon(\varphi) \, d\Omega - \int \gamma \cdot \varphi \, d\Omega = 0, \quad \forall \varphi \in \Theta, \\ \int \Omega \\ \int \gamma \cdot \nabla w \, d\Omega = \int gw \, d\Omega, \qquad \forall w \in U, \\ \int \Omega \\ \int (\lambda^{-1}t^2\gamma - (\nabla u - \theta)) \cdot \tau \, d\Omega = 0, \quad \forall \tau \in Q, \end{cases}$$
(2)

$$\begin{split} & U = \left\{ w \in \mathbb{W}_2^1(\Omega) \mid w = 0 \text{ on } \Gamma_{\mathrm{D}} \right\}, \\ & \Theta = \left\{ \varphi \in \mathbb{W}_2^1(\Omega, \mathbb{R}^2) \mid \varphi = 0 \text{ on } \Gamma_{\mathrm{D}} \right\}, \\ & Q = \mathbb{L}_2(\Omega, \mathbb{R}^2). \end{split}$$

Introduction Problem statement New error estimate for RM Numerics Conclusions Adaptation
Assumptions

Domain $\Omega \subset \mathbb{R}^2$ – bounded connected domain with Lipschitz-continuous boundary, $g \in \mathbb{L}_2(\Omega)$,

 C — symmetric and there exist ξ_1 and ξ_2

$$\xi_1|\varkappa|^2 \leq \mathbf{C}\varkappa:\varkappa\leq\xi_2|\varkappa|^2 \quad \forall \varkappa\in\mathbb{M}^{2\times 2}_{sym}, \quad |\varkappa|^2=\varkappa:\varkappa,$$

where $\mathbb{M}^{2\times 2}_{sym}$ — the space of symmetric tensors of 2nd rank. For an isotropic material

$$C\varkappa = \frac{E}{12(1-\nu^2)} \left((1-\nu)\varkappa + \nu \operatorname{tr} \varkappa \mathbb{I} \right),$$

where \mathbb{I} — identity tensor of 2nd rank.

< 同 > < 国 > < 国 >

$$(\tilde{u}, \tilde{\theta})$$
 — an arbitrary pair of conforming approximations $e_{\tilde{u}} = u - \tilde{u}, \ e_{\tilde{\theta}} = \theta - \tilde{\theta}, \ e_{\tilde{\gamma}} = \gamma - \tilde{\gamma}$ — errors.

We introduce free elements

vector ỹ
arbitrary tensor x̃ divided into two parts
x̃ = [x̃¹, x̃²], where
ỹ, x̃¹, x̃² ∈ ℍ(Ω, div) := {y ∈ L₂(Ω, ℝ²) | divy ∈ L₂(Ω)}.

・ 同 ト ・ ヨ ト ・ ヨ ト

$$\begin{split} \|e_{\widetilde{\gamma}}\|_{\Omega}^{2} &:= \int_{\Omega} |e_{\widetilde{\gamma}}|^{2} dx, \qquad \|e_{\widetilde{\theta}}\|^{2} := \int_{\Omega} C\varepsilon(e_{\widetilde{\theta}}) : \varepsilon(e_{\widetilde{\theta}}) dx \\ \|\nabla\varphi\|_{\Omega}^{2} &\leq \mathfrak{c}_{I}^{2} \|\varphi\|^{2} \\ \|\varphi\|_{\Omega}^{2} &\leq \mathfrak{c}_{II}^{2} \|\varphi\|^{2} \\ &\frac{1}{|\Omega|} \|w\|_{\Omega}^{2} + \frac{1}{|\Gamma_{\mathrm{S}}|} \|w\|_{\Gamma_{\mathrm{S}}}^{2} \leq \mathfrak{c}_{III}^{2} \|\nabla w\|_{\Omega}^{2} \\ &\frac{1}{|\Omega|} \|\varphi\|_{\Omega}^{2} + \frac{1}{|\Gamma_{\mathrm{S}}|} \|\varphi\|_{\Gamma_{\mathrm{S}}}^{2} \leq \mathfrak{c}_{IV}^{2} \|\varphi\|^{2} \end{split}$$

$$\left\|\left|\boldsymbol{e}_{\tilde{\boldsymbol{\theta}}}\right\|\right\|^{2} + \lambda^{-1}t^{2}\left\|\boldsymbol{e}_{\tilde{\boldsymbol{\gamma}}}\right\|_{\Omega}^{2} \leq \hat{\boldsymbol{a}}^{2} + \lambda^{-1}t^{2}\hat{\boldsymbol{b}}^{2} \tag{3}$$

$$\begin{split} \hat{\mathbf{a}} &= \|\!\|\mathbf{C}^{-1}\mathbf{sym}(\tilde{\tilde{\varkappa}}) - \varepsilon(\tilde{\theta})\|\!\| + \mathbf{c}_{I}\|\mathbf{skew}(\tilde{\tilde{\varkappa}})\|_{\Omega} + \\ &+ \mathbf{c}_{II}\mathbf{c}_{III}\sqrt{|\Omega|} \|\|\mathbf{g} + \mathbf{div}\tilde{\tilde{y}}\|_{\Omega}^{2} + \|\Gamma_{\mathrm{S}}\| \|\tilde{\tilde{y}} \cdot n\|_{\Gamma_{\mathrm{S}}}^{2} + \\ &+ \mathbf{c}_{IV}\sqrt{|\Omega|} \|\|\tilde{\tilde{y}} + [\mathbf{div}\tilde{\tilde{\varkappa}}^{1}, \mathbf{div}\tilde{\tilde{\varkappa}}^{2}]\|_{\Omega}^{2} + \|\Gamma_{\mathrm{S}}\| \|[\tilde{\tilde{\varkappa}}^{1} \cdot n, \tilde{\tilde{\varkappa}}^{2} \cdot n]\|_{\Gamma_{\mathrm{S}}}^{2}, \\ \hat{b} &= \|\tilde{\tilde{y}} - \tilde{\gamma}\|_{\Omega} + \mathbf{c}_{III}\sqrt{|\Omega|} \|\|\mathbf{g} + \mathbf{div}\tilde{\tilde{y}}\|_{\Omega}^{2} + \|\Gamma_{\mathrm{S}}\| \|\|\tilde{\tilde{y}} \cdot n\|_{\Gamma_{\mathrm{S}}}^{2}. \end{split}$$

The estimate is exact for $\tilde{\tilde{\varkappa}} = \mathrm{C}\varepsilon(\theta)$ and $\tilde{\tilde{y}} = \gamma$

▲口→ ▲圖→ ▲注→ ▲注→

≡ ∽ ९ (~

Introduction	Problem statement	New error estimate for RM	Numerics	Conclusions	Adaptation
Comme	ercial softwa	ire			

- Hidden implementations.
- Algorithms behave different from version to version.
- ANSYS Mechanical: variety of elements (SHELL, SOLID,...).
- Incorrect settings? Locking? Bugs?

Bathe K.-J., Dvorkin E.N. Int. J. Numer. Methods Eng. 1986, Simo J.C., Armero F. Int. J. Numer. Methods Eng. 1992.

- Can the functional approach provide reliable and efficient error control even on coarse meshes?
- Is this approach practically applicable for non-Galerkin approximations as well as for Galerkin ones?

radius 0.25 m thickness 0.0025 m $E = 2e11 \text{ N/m}^2$ $\nu = 0.3$

ANSYS Verification Manual: VM138, S.P. Timoshenko SHELL181-ELEMENT, Loading = 6585.175 N/m^2

Example I. ANSYS solution

Functional-type a posteriori error estimates in solid mechanics

æ

18

Introduction Problem statement New error estimate for RM Numerics Conclusions Adaptation
Example I. Error estimation: Results

*Locking for Galerkin approximation: maximum of u is 0.027e-2 instead of 0.140e-2

DOFs	123	435	1635	6339*
Error	0.689e5	0.359e5	0.181e5	0.842e4
Estimate	0.101e6	0.527e5	0.266e5	0.133e5
ratio	1.5	1.5	1.5	1.5

< 同 > < 三 > < 三 >

Introduction	Problem statement	New error estimate for RM	Numerics	Conclusions	Adaptation
Conclus	sions				

- The functional approach is suitable even for coarse meshes
- It is robust due to unknown information about numerical procedures
- The approach forms a good independent tool for error control for commercial software

▲□ ▶ ▲ 三 ▶ ▲ 三

Introduction	Problem statement	New error estimate for RM	Numerics	Conclusions	Adaptation
Remark	ks and furth	er tasks			

- Task 1: Construction of adaptive algorithms
- Task 2: Complete theoretical justification (efficiency estimates)
- Task 3: Application of new approximations

Previous work was partially supported by the Russian Foundation for Basic Research (14-01-31273-mol_a, 14-01-00162-a)

Current research is supported the Grant of the President of the Russian Federation **MD-1071.2017.1**

A (10) A (10)

- S: compute \tilde{u} on a current finite element mesh;
- **2** \underline{E} : compute estimate from individual loads to elements;
- <u>M</u>: mark elements of a mesh with large local errors by some marking strategy;
- \underline{R} : divide marked elements and locally refine a mesh.

Solver:

Bathe K.-J., Dvorkin E.N. *Int. J. Numer. Methods Eng.* 1985 <u>Estimator</u>:

Functional a posteriori error estimate, 2014 Marker:

Local error indicator larger than prescribed threshold <u>Refiner</u>:

Karavaev A.S., Kopysov S.P. Bulletin of Udmurt University 2013

Carstensen C. et al. *Comput. Methods Appl. Mech. Engrg.* 2011 Razzaque plate

side 1.0 m thickness 0.1 m $E = 1092 \text{ N/m}^2$ $\nu = 0.3$

Uniform loading Horizontal edges are hard clamped

Functional-type a posteriori error estimates in solid mechanics

▲□→ ▲ □→ ▲ □→

100

-20

Local error indicator:

Solver and estimate comparison:

Mesh	4×	:4	8x8 16x16 32x32		16×16		:32	
	C.	Ours	C.	Ours	С.	Ours	C.	Ours
Disp.	0.67	0.64	0.76	0.75	0.78	0.78	0.79	0.79
Err.	16.1	18.3	4.7	4.9	1.7	1.4	0.9	0.9
l _{eff}	0.35*	1.8	0.87*	1.8	0.97*	1.8	0.99*	1.8

Functional-type a posteriori error estimates in solid mechanics

3

100

n e

Introduction Problem statement New error estimate for RM Numerics Conclusions Adaptation Example II. Refinement: Uniform vs Adaptive

Number of elements: 5174 vs 3076 Relative error: 0.62% vs 0.48%

Functional-type a posteriori error estimates in solid mechanics

A (1) > (1) > (1)

- 🖌 🖻

Local error indicator and mesh adaptation:

< (T) > < Functional-type a posteriori error estimates in solid mechanics

-

э

Introduction Problem statement New error estimate for RM Numerics Conclusions Adaptation Classical and Cosserat elasticity: a posteriori error control

- Repin S. *de Gruyter* 2008 (non-symmetric), Frolov M. *Comp. Math. Math. Phys.* 2013, ...
- Repin S., Frolov M. Probl. Math. Anal. 2011, Frolov M. J. Appl. Math. Mech. 2014, RMMM, ENUMATH-2013, ACOMEN-2014, Churilova M., Frolov M. Mater. Phys. Mech. 2017,...

Conclusions:

explicit symmetry condition for tensor variable + standard FEM approximations = unsatisfactory results implicit symmetry condition + FE for mixed methods = reliable estimates with efficient implementation

• P.A. Raviart, J.M. Thomas. *Lecture Notes in Mathematics*. Berlin: Springer, 1977

Mapping of the reference square $\hat{\mathcal{K}}$ to arbitrary quadrilateral (DOFs – normal components of a vector-field in the midpoints)

 $\mathcal{RT}_0(\hat{\mathcal{K}}) = \mathcal{P}_{1,0}(\hat{\mathcal{K}}) \times \mathcal{P}_{0,1}(\hat{\mathcal{K}})$, where $\mathcal{P}_{i,j}(\hat{\mathcal{K}})$ – space of polynomials over $\hat{\mathcal{K}} = (-1,1) \times (-1,1)$ power of *i* or less on \hat{x}_1 and j – on \hat{x}_2 .

• D.N. Arnold, D.Boffi, R.S. Falk. SIAM J. Numer. Anal., 2005 $\mathcal{ABF}_0(\hat{\mathcal{K}}) = \mathcal{P}_{2,0}(\hat{\mathcal{K}}) \times \mathcal{P}_{0,2}(\hat{\mathcal{K}})$ – a wider space that includes the original DOFs on edges and two additional internal DOFs on every element

THANK YOU FOR ATTENTION

 < □ > < □ > < □ > < ≥ > < ≥ > < ≥ >
 ≥

 Functional-type a posteriori error estimates in solid mechanics

Conclusions

DEAR SERGEY IGOREVICH HAPPY BIRTHDAY

WITH WARMEST REGARDS FROM ALMA MATER

Functional-type a posteriori error estimates in solid mechanics