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Mechanical background Stable states in elasticity

Elasticity

Q c R® reference configuration

y:Q —R> deformation

F :=Vy deformation gradient , det F >0

T:Q - R¥>3  1st Piola-Kirchhoff stress tensor

f:T, = IR® density of surface forces

T(x) := T(x,Vy(x)) constitutive law (Cauchy elasticity)

divT =0 equilibrium equations
y=yonloC0RQ, f=Tn on [} C 002 boundary conditions
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Mechanical background

Stable states in elasticity

Hyperelasticity

Assumption: 1st Piola-Kirchhoff stress tensor T has a potential:
T, .= (W)
OFj;

W :TR*3 - IR U {+o0} stored energy density
Work can be stored in elastic materials (no loss)
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Mechanical background Stable states in elasticity

Hyperelasticity

J(y) = /Q W(Vy(x))dx— [ f-ydS.

M

Minimizers of J formally satisfy equilibrium equations.
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Mechanical background Stable states in elasticity

Properties of W

(i) W:R>? — R is continuous
(i) W(F) = W(RF) for all R € SO(3) and all F € R3*®
(i) W(F) = +ooc if det F — 0,

(iv) W(F) = 4o if det F < 0 ( This excludes convexity of W)
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Mechanical background Stable states in elasticity

Nonconvexity could be fatal....(at least in 1D)

I(u)::/o(l |u'))? 4+ v dx .

Consider {ux} a sequence of zig-zag functions driving / to its infimum.

ux — 0in L2(0,1)
up — 0 weakly in L2(0,1)

0=infl= lim I(u) <1(0)=1
k—o0
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Mechanical background Stable states in elasticity

Nonconvexity could be fatal....(at least in 1D)

I(u)::/o(l |u'))? 4+ v dx .

Consider {ux} a sequence of zig-zag functions driving / to its infimum.

ux — 0in L2(0,1)
up — 0 weakly in L2(0,1)

0=infl= lim I(u) <1(0)=1
k—o0

No weak lower semicontinuity and no minimizer because:/(u) > 0.
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Mechanical background Stable states in elasticity

Polyconvexity — Ball (1977), Morrey (1952)

J.M. Ball's notion of polyconvexity (1977)

W(F) = h(F,cof F,det F) if det F > 0

cof F := (det F)F~"

h:IRY — R is convex
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Mechanical background Stable states in elasticity

Existence of solutions

(i) W polyconvex, W(F) = +oc if det F <0
(i) W(F) = W(RF) for all R € SO(3) and all F € R**?
(iii) W(F) — +o0 if det F — 0,

(iv) C(|F|P + |cof F|9 + det F") < W(F) for p >3, g >3/2, r > 1,
>0
Minimizers of J exist in

0+ A= {WH(QR?), y =y on Iy, det Vy > 0}, if there is y such
that J(y) < +oo.
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Mechanical background Stable states in elasticity

Polyconvexity

@ It is relatively easy to construct polyconvex functions.
o Examples for various crystallographic structures (V. Ebbing).

o It allows us to ensure injectivity of deformations and orientation
preservation.
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Mechanical background Stable states in elasticity

Existence of solutions

The proof is based on convexity of h and special properties of

determinants and cofactors, namely if y, — y in WP for p > 3 then
(Reshetnyak, 1968)

det Vy, — det Vy in LP/3

and

cof Vy, — cof Vy in LP/?
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Mechanical background Stable states in elasticity

Why is it so?

....because determinant is the divergence.
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Mechanical background Stable states in elasticity

Why is it so?

...because determinant is the divergence

If ¢ € C§°(R2) the strong convergence of yx — y and the weak
convergence of partial derivatives of y, allows us to write (n = 2)

[ 9 [ 19y 9 L OyR
/QsadetVykdX—/ o <ykaxz><p+ < iy pdx

O
_ 1 Oy 880 8)’k &P
B / (y 5X2> Ox1 * (y Ox1 ) Ox €53
10y7\ O
T / ( (3'X2> 6X1 u (y 3X1> aXQ dx

Wiy 9 19y? _/
/95X1< 3X2)<p 8x2( Y ox >g0dx QtpdetVydx,

Density of C§°(R) in LP/(P=)(Q) finishes the argument
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Mechanical background Stable states in elasticity

Why is it so?

...because determinant is the divergence

If ¢ € C§°(R2) the strong convergence of yx — y and the weak
convergence of partial derivatives of y, allows us to write (n = 2)

/andetVykdX:/ 8?(1 <ykgi§><p+£ < y&gyk)godx
- [, (52) 5o + (45 ) G
o / ( 8x2> T (y g;) gz s
/anl ( g}:@)ﬁ 822( ylgy >90dx—/9g0detVydx.
Density of C§°(R) in LP/(P=)(Q) finishes the argument

We can replicate the above calculation for all other
subdeterminants/minors of the gradient matrix
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Beyond polyconvexity

Beyond polyconvexity

In many applications polyconvexity is not suitable, e.g., in modeling of
shape memory alloys, where W has a multiwell structure, e.g.

W(F) = min W;(F) ,
where

W;(F) is minimized iff F = RF;, F; € IR3*? given, R rotation

Courtesy of Institute of Physics, ASCR.
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Beyond polyconvexity

Shape memory alloys

Principle of shape memory:

o high temperature:
atomic grid with high symmetry (usually cubic):
the so-called austenite, higher heat capacity

parent austenite
cubic)
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Beyond polyconvexity

Shape memory alloys

Principle of shape memory:
o high temperature:
atomic grid with high symmetry (usually cubic):
the so-called austenite, higher heat capacity
o low temperature
atomic grid with lower symmetry: martensite, lower heat capacity

parent austenite
(cubic)
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Beyond polyconvexity

Shape memory alloys

Principle of shape memory:
o high temperature:
atomic grid with high symmetry (usually cubic):
the so-called austenite, higher heat capacity
o low temperature
atomic grid with lower symmetry: martensite, lower heat capacity
typically in many symmetry-related variants;

one variant
of martensite

parent austenite

(cubic) another

variant of
martensite g
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Beyond polyconvexity

Shape memory alloys

Principle of shape memory:
o high temperature:
atomic grid with high symmetry (usually cubic):
the so-called austenite, higher heat capacity
o low temperature
atomic grid with lower symmetry: martensite, lower heat capacity
typically in many symmetry-related variants;

one variant
of martensite

parent austenite

(cubic) another

variant of
martensite
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Beyond polyconvexity

Shape memory alloys

Principle of shape memory:
o high temperature:
atomic grid with high symmetry (usually cubic):
the so-called austenite, higher heat capacity
o low temperature
atomic grid with lower symmetry: martensite, lower heat capacity
typically in many symmetry-related variants;
one variant
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parent austenite
(cubic another

variant of
martensite
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Beyond polyconvexity

Shape memory alloys

Principle of shape memory:
o high temperature:
atomic grid with high symmetry (usually cubic):
the so-called austenite, higher heat capacity
o low temperature
atomic grid with lower symmetry: martensite, lower heat capacity
typically in many symmetry-related variants;

one variant
of martensite

X

000000

another
variant of
martensite
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Beyond polyconvexity

Shape memory alloys

Principle of shape memory:
o high temperature:
atomic grid with high symmetry (usually cubic):
the so-called austenite, higher heat capacity
o low temperature
atomic grid with lower symmetry: martensite, lower heat capacity
typically in many symmetry-related variants;

one variant
of martensite

parent austenite ¥
{cubic) another
variant of
martensite
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Beyond polyconvexity

Shape memory alloys

Principle of shape memory:
o high temperature:
atomic grid with high symmetry (usually cubic):
the so-called austenite, higher heat capacity
o low temperature
atomic grid with lower symmetry: martensite, lower heat capacity
typically in many symmetry-related variants;

twinned
martensite
composed from
two variants
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Beyond polyconvexity

Complicated combination appear without mechanical stress, too:

VA &

marten3|te
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Beyond polyconvexity

Complicated combination appear without mechanical stress, too:

| //// Vi,

arten3|te
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Beyond polyconvexity

Complicated combination appear without mechanical stress, too:

austenite
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Beyond polyconvexity

How about if W is not polyconvex?

c(=1+|FIP) < W(F) < C(L+|FI?)
and quasiconve, i.e.,

W(F)Q| < /Q W(Vio(x)) dx

for all o € WH(Q; IR?), ¢(x) = Fx on 9 then J is wlsc on WP,
(p>1)

The upper bound is not suitable for elasticity!
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Beyond polyconvexity

How about if W is not polyconvex?

c(=1+|FIP) < W(F) < C(L+|FI?)
and quasiconve, i.e.,

W(F)Q| < /Q W(Vio(x)) dx

for all o € WH(Q; IR?), ¢(x) = Fx on 9 then J is wlsc on WP,
(p>1)

The upper bound is not suitable for elasticity!

W:W1+W2a

where W is polyconvex and W, quasiconvex is ok, too.

Martin Kruzik Institute of Information Theory and Automation, Praha Mathematical elasticity — when calculus of variations meets mechanics



Beyond polyconvexity

Quasiconvexity in elasticity

@ quasiconvexity is necessary and sufficient but polynomial upper
bounds on W allow for non-physical states
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Beyond polyconvexity

Quasiconvexity in elasticity

@ quasiconvexity is necessary and sufficient but polynomial upper
bounds on W allow for non-physical states

o frame-indifference implies W(F) = W(C), C = F'F, det C > 0,
i.e., we lose control over the sign of det F
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Beyond polyconvexity

Quasiconvexity in elasticity

@ quasiconvexity is necessary and sufficient but polynomial upper
bounds on W allow for non-physical states

o frame-indifference implies W(F) = W(C), C = F'F, det C > 0,
i.e., we lose control over the sign of det F

@ relaxation of multi-well problems, i.e., finding the largest
quasiconvex function below W (mostly impossible)
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Beyond polyconvexity

Quasiconvexity in elasticity

@ quasiconvexity is necessary and sufficient but polynomial upper
bounds on W allow for non-physical states

o frame-indifference implies W(F) = W(C), C = F'F, det C > 0,
i.e., we lose control over the sign of det F

@ relaxation of multi-well problems, i.e., finding the largest
quasiconvex function below W (mostly impossible)

o C=F"F=(QF)"(QF)=(RF)"(RF), @ € O(3)\ SO(3),
R € SO(3) existence of “dark orbits” QF which are not physical
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Beyond polyconvexity

Quasiconvexity in elasticity

@ quasiconvexity is necessary and sufficient but polynomial upper
bounds on W allow for non-physical states

o frame-indifference implies W(F) = W(C), C = F'F, det C > 0,
i.e., we lose control over the sign of det F

@ relaxation of multi-well problems, i.e., finding the largest
quasiconvex function below W (mostly impossible)

e C=FTF=(QF)T(QF) = (RF)T(RF), Q € O(3)\ SO(3),
R € SO(3) existence of “dark orbits” QF which are not physical

@ One of the problems in J.M. Ball's survey “Open problems in
elasticity":
Prove the existence of energy minimizers for elastostatics for
quasiconvex stored-energy functions satisfying

W(A) = +oo whenever det A — 0,
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Beyond polyconvexity

Why is it difficult?

To exploit quasiconvexity we need to manipulate boundary data of the

sequence. If y, — y in WP, y(x) = x and yk(x) = x for x € 9Q then
quasiconvexity immediately implies that

k—o0

Iiminf/QW(Vyk)dXZ/QW(Vy)dx

If yi(x) # x on 9Q but yx — y we modify yx to wx € WP such that
lyk # wi| + |Vyk # Vwg| — 0 and we — x, wi(x) = x on 99, and

||m|nf/ W (Vyk) dx—Ilmlnf/ W (V wy) dx>/W ) dx .

here we want to have x

some matching here
Martin Kruzik Institute of Information Theory and Automation, Praha
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Beyond polyconvexity

Why is it difficult?

@ The key ingredient in the proof of this proposition is the
construction of some kind of cut-off

o Usually we take some smooth 75 : Q — [0,1], |Vns| < C/§

(X)'_ 1 ian
=0 onon.

Wi(s)s = Nsyk + (1 — ns)x

@ But our constraint det > 0 is not convex
~ we may easily “fall out” from the set of deformations.
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Beyond polyconvexity

Constructing a cut-off under the det # 0 constraint

@ ... in some situations we can find remedy in convex integration and
partial differential inclusions, solve Vwy(x) € S if x € Qs, S
contains invertible matrices only
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Beyond polyconvexity

Constructing a cut-off under the det # 0 constraint

@ ... in some situations we can find remedy in convex integration and
partial differential inclusions, solve Vwy(x) € S if x € Qs, S
contains invertible matrices only

e B.B., MK., G. Pathé; 2012: p = 400 S = AO(n), A # 0
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Beyond polyconvexity

Constructing a cut-off under the det # 0 constraint

@ ... in some situations we can find remedy in convex integration and
partial differential inclusions, solve Vwy(x) € S if x € Qs, S
contains invertible matrices only

e B.B., M.K,, G. Path¢; 2012: p = 400 S = AO(n), A # 0

@ Rindler, Koumatos, Wiedemann; 2013: p < n, S contains matrices
with positive determinant
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Beyond polyconvexity

Constructing a cut-off under the det # 0 constraint

@ ... in some situations we can find remedy in convex integration and
partial differential inclusions, solve Vwy(x) € S if x € Qs, S
contains invertible matrices only

e B.B., M.K,, G. Path¢; 2012: p = 400 S = AO(n), A # 0

@ Rindler, Koumatos, Wiedemann; 2013: p < n, S contains matrices
with positive determinant

e B.B., M.K. 2013: p = +00, n = 2, bi-Lipschitz deformations,
positive determinant
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Beyond polyconvexity

What else can we do ? Non-simple material regularization

The energy is regularized as

Jy) = /Q W(Vy) + €| V2y|Pdx.
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Beyond polyconvexity

What else can we do ? Non-simple material regularization

The energy is regularized as

Jy) = /Q W(Vy) + £[V2y[Pdx.

o the regularization is related to interfacial energies
@ e.g. it penalizes fast spatial oscillations of the gradient

@ this yields existence of minimizers since now the energy is convex in
the highest gradient

[Ball, Crooks, 2011], [Ball, Mora-Corral, 2009]
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Beyond polyconvexity

What else can we do ? Non-simple material regularization

The energy is regularized as

Jy) = / W(Vy) + €| V2y|Pdx.

Nevertheless, a clear physical justification of this particular form seems
not to be clear...
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Beyond polyconvexity

Why is polyconvexity ok?

@ It exploits weak continuity of y +— det Vy and y — cof Vy from
Sobolev to Lebesgue spaces, convexity, and the Hahn-Banach
theorem/Mazur lemma

@ No cut-off needed!
@ We should try to exploit it more!

Mathematical elasticity — when calculus of variations meets mechanics
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Beyond polyconvexity

Gradient-polyconvexity

J(y) = /Q W (Vy(x), Veof Vy(x), Vdet Vy(x)) dx — £(y),

W(F,-,-) is convex.
Additionally, we assume that for some ¢ > 0, and p,q,r,s > 1 it holds

that

A F|P + (det F)~=S + |A1]9 + |As|" if det F

W(F,Al,Az)z{c(| P+ (det F)™ + &gl +[2a]") - if det F >0,
00 otherwise.
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Beyond polyconvexity

Gradient-polyconvexity

How is this different to
Jy) = / W(Vy) + €| V2y|Pdx?
Q

Admissible deformations are in W?2P!
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Beyond polyconvexity

Example

Take Q = (0,1)® and deformation (fersome ¢ > 1)

y(x1, %2, x3) = (X17X s X3X12) :
2xq 0 0
so that Vy(xi, x2, x3) = o X;l/(t+1) Xlt/(t+1) 0
2X1 X3 0 X12

It follows that
0 < det Vy € Wh(Q) cof Vy € Who(Q; IR**3)
But V2y ¢ [} IR¥7%) ~ y ¢ W2H(QR®)

On the other hand, y € W*P(Q;IR?*) N L=(Q; IR?) for every
1<p<l+t.

Martin Kruzik Institute of Information Theory and Automation, Praha Mathematical elasticity — when calculus of variations meets mechanics



Beyond polyconvexity

Figure: Deformed cube in the frame of the reference domain (0,1)° as in the
example for t = 100. (Picture by J. Valdman)
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Beyond polyconvexity

St. Venant-Kirchhoff material

Let ¢ : IR**®> — IR be a stored energy density of an anisotropic Saint
Venant-Kirchhoff material, i.e.,

0< p(F) = éC(FTF —1d): (F'F-1d),

where C is the fourth-order and positive definite tensor of elastic

constants.
Then
W(G) = ©(G) + a(|Vcof G|7 + |Vdet G|” + (det G)™°) if det G > 0,
B ) otherwise

is gradient polyconvex.
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Beyond polyconvexity

Existence of minimizers

Theorem (BB, MK, AS)

Let be W gradient polyconvex on Q and W coercive as above. ietp > 2,
a> =25 r>15>0 and assume that for some given measurable function

vo : To — IR the following set

A:={y e WHP(Q;R?):
cof Vy € WHI(Q; IR**3), det Vy € WHT(Q),
(det Vy)~* € L}(Q), det Vy >0 a.e. inQ, y =y on o}

is nonempty. If inf 4 J < co then the functional
J= / W(Vy(x), Veof Vy(x), Vdet Vy(x)) dx
Q

has a minimizer on A.
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Beyond polyconvexity

Remarks

@ We can also add dependence on x, y(x) without major changes
@ The non-emptiness of
A:={ye WHP(Q;R?):
cof Vy € WH9(Q; R**3), det Vy € WL (Q),
(det Vy)™ € L}(Q), det Vy > 0a.e. in Q, y =ypon o}

has to be assumed!
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Beyond polyconvexity

Remarks

@ We can also add dependence on x, y(x) without major changes

@ The non-emptiness of
A:={y e WHP(Q;R?):
cof Vy € WHI(Q; IR**3), det Vy € WH(Q),
(det Vy)™* € 11(Q), detVy >0 ae. inQ, y =y, on o}

has to be assumed!
(8

An analogous situation also happens in classical polyconvexity
&
Actually, this is connected to the relaxation problem....
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Beyond polyconvexity

Sketch of proof |

o Take a minimizing sequence {y} with y, — y in WP(Q; R?)
@ Based on coercivity we have that

cof Vy, — Hin WHI(Q;R**3) and  det Vy, — & in WH(Q).
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Beyond polyconvexity

Sketch of proof |

o Take a minimizing sequence {yx} with y, — y in WhP(Q; R?)

@ Based on coercivity we have that

cof Vyx — Hin WH9(Q;IR**3) and det Vy, — 6 in WH(Q).

¢

Due to the weak continuity of minors:
H = cof Vy and § = det Vy
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Beyond polyconvexity

Sketch of proof |

o Take a minimizing sequence {yx} with y, — y in WhP(Q; R?)
@ Based on coercivity we have that

cof Vyx — Hin WH9(Q;IR**3) and det Vy, — 6 in WH(Q).

¢

Due to the weak continuity of minors:
= cof Vy and § = det Vy

@ Due to the coercivity fQ (et Vy)s dx, det Vy > 0.
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Beyond polyconvexity

Sketch of proof |

o Take a minimizing sequence {yx} with y, — y in WhP(Q; R?)
@ Based on coercivity we have that

cof Vyx — Hin WH9(Q;IR**3) and det Vy, — 6 in W (Q).

¢

Due to the weak continuity of minors:
= cof Vy and § = det Vy

@ Due to the coercivity fﬂ (et Vy)5 dx, det Vy > 0.

The weak limit is in A.
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Beyond polyconvexity

Sketch of proof Il

To pass to the limit in
/ W(Vy(x), Veof Vy(x), Vdet Vy(x)) dx

<I|m|nf/ W (Vyk(x), Veof Vy(x), Vdet Vyj(x)) dx
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Beyond polyconvexity

Sketch of proof Il

To pass to the limit in
/ W(Vy(x), Veof Vy(x), Vdet Vy(x)) dx

<I|m|nf/ W (Vyk(x), Veof Vy(x), Vdet Vyj(x)) dx

e exploit convexity in Vdet (-) and Vcof (-)
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Beyond polyconvexity

Sketch of proof Il

To pass to the limit in
/ W (Vy(x), Veof Vy(x), Vdet Vy(x)) dx
Q

gliminf/ W (Vyi(x), Veof Vy(x), Vdet Vyi(x)) dx
Q

k—o0

e exploit convexity in Vdet (-) and Vcof (-)

@ need at least pointwise convergence in the first term (or convergence
in measure)

Martin Kruzik Institute of Information Theory and Automation, Praha Mathematical elasticity — when calculus of variations meets mechanics



Beyond polyconvexity

Sketch of proof Il

To pass to the limit in
/ W (Vy(x), Veof Vy(x), Vdet Vy(x)) dx
Q

< Iikm inf [ W(Vyk(x), Veof Vyi(x), Vdet Vyy(x)) dx
— 00 Q

e exploit convexity in Vdet () and Vcof (+)

@ need at least pointwise convergence in the first term (or convergence
in measure)

4

Use the information on cofactor and determinant!
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Beyond polyconvexity

Sketch of proof Ill

@ We know that the determinant and the cofactor converge pointwise
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Beyond polyconvexity

Sketch of proof Ill

@ We know that the determinant and the cofactor converge pointwise

By Cramer’s rule we have

(Vy(x) ™ = m

and thus,
(Vyi(x)) ™ — (Vy(x))
Consequently,

Vyi(x) = (cof Vyi(x))™ " det Vy(x)
— (cof Vy(x))~ Tdet Vy(x) = Vy(x),

Apply Fatou lemma
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Beyond polyconvexity

What we have proved...

Theorem (BB, MK, AS)

Let be W gradient polyconvex on Q and W coercive as above. ietp > 2,
a> =25 r>15>0 and assume that for some given measurable function

vo : To — IR the following set

A:={y e WHP(Q;R?):
cof Vy € WHI(Q; IR**3), det Vy € WHT(Q),
(det Vy)~* € L}(Q), det Vy >0 a.e. inQ, y =y on o}

is nonempty. If inf 4 J < co then the functional
J= / W(Vy(x), Veof Vy(x), Vdet Vy(x)) dx
Q

has a minimizer on A.
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Beyond polyconvexity

Remark: Ciarlet-Necas condition

We can additionally impose Ciarlet-Necas condition

/Q det Vy(x) dx < £3(4()) (1)

~> Injectivity almost everywhere in the deformed configuration

[Ciarlet, Netas, 1985], [Hencl, Koskela, 2014]
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Beyond polyconvexity

Remark: Ciarlet-Necas condition

We can additionally impose Ciarlet-Necas condition

/Q det Vy(x) dx < £3((Q)) (1)

~» Injectivity almost everywhere in the deformed configuration

~> can be improved to injectivity everywhere if
|Vy|3/det Vy € L2+°(Q)

for some § > 0

[Ciarlet, Ne&as, 1985], [Hencl, Koskela, 2014]
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Beyond polyconvexity

Remark: Ciarlet-Necas condition

We can additionally impose Ciarlet-Necas condition

[ det vy dx < (@) 1)
~> Injectivity almost everywhere in the deformed configuration
~» can be improved to injectivity everywhere if
|Vy|3/det Vy € L2+°(Q)

for some § > 0

)

the distortion is in L"~1*9 which implies that y is an open map

[Ciarlet, Netas, 1985], [Hencl, Koskela, 201!
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Beyond polyconvexity

Remark: Lower bound on the determinant

We can strengthen the coercivity as

W(F, Ay, D) > {C(|F|p+ (deti F)== + [Aq|? + |Agl7) if det £ > 0,

o0 otherwise.

Proposition (BB, MK, AS)

Take a gradient polyconvex energy with a coercivity according to r > 3
and s > 3_"3 (And have the same assumptions as above.) Then, for eVery _y € A, there iS

r

€>0 suchthatdetVy >¢ on Q

This € depends just on the bound on the energy. In this case
y € W2HQ; R?).
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Beyond polyconvexity

Remark: Lower bound on the determinant

We can strengthen the coercivity as

W(F, A1, Ag) > c(IFIP + (det F)=° + |Aq]9 4 |A]7)  if det F > 0,
TR o0 otherwise.

Proposition (BB, MK, AS)
Take a gradient polyconvex energy with a coercivity according to r > 3
and s > % (And have the same assumptions as above.) Then, for every y S ./4, there is

€>0 suchthat detVy >¢ on Q

This € depends just on the bound on the energy. In this case
y € W2H(Q; R?).

~» because under these assumptions the Jacobian is positive up to the
boundary!

[Healey, Kemer, 2009]
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Beyond polyconvexity

Remark: Lower bound on the determinant

Proposition (BB, MK, AS)

Take a gradient polyconvex energy with a coercivity according to r > 3
and s> 32‘3 (And have the same assumptions as above.) Then, fOI’ eVery _y € A, thel’e iS

€>0 suchthatdetVy >¢ on Q

This € depends just on the bound on the energy.

If there is a lower bound on the determinant one may derive a
Euler-Lagrange equation.

[Healey, Krémer, 2009]

Martin Kruzik Institute of Information Theory and Automation, Praha Mathematical elasticity — when calculus of variations meets mechanics



Beyond polyconvexity

Strong compactness

Proposition (B.B., M.K., AS.)
Let Q C IR", n > 2, be a Lipschitz bounded domain and let
{yitken € WHP(S;IR"™) for p > n be such that for some s > 0

i“g} (||)’k||W1vP(Q;1R") + [|cof VkaBV(Q;IR"X")
€
+ |ldet VykllBv(e) + [l[det Vyx| 1)) < oo .

Then there is a (nonrelabeled) subsequence and y € W1P(Q;IR") such
that for k — oo we have the following convergence results: y, — y in
Wh9(Q; R") for every 1 < d < p, det Vy, — det Vy in L"(Q) for every
1 <r < p/n, cof Vy, — cof Vy in L9(Q;IR"*") for every
1<qg<p/(n—1), and |[det Vy,|~t — |det Vy|~t in L}(Q) for every
0<t<s.
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Beyond polyconvexity

Take-home message

@ Many requirements of mechanics cannot be fulfilled by CoV

e New variational principle for elasticity (non-standard elliptic
regularization)
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Beyond polyconvexity

Take-home message

@ Many requirements of mechanics cannot be fulfilled by CoV

e New variational principle for elasticity (non-standard elliptic
regularization)

@ We exploit weak continuity of subdeterminants (but in Sobolev
spaces), control of 1/detVy
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Beyond polyconvexity

Take-home message

@ Many requirements of mechanics cannot be fulfilled by CoV

e New variational principle for elasticity (non-standard elliptic
regularization)

@ We exploit weak continuity of subdeterminants (but in Sobolev
spaces), control of 1/detVy

o If n =2, gradient polyconvexity is the same like adding the full 2nd
gradient
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Take-home message

@ Many requirements of mechanics cannot be fulfilled by CoV

e New variational principle for elasticity (non-standard elliptic
regularization)

@ We exploit weak continuity of subdeterminants (but in Sobolev
spaces), control of 1/detVy

o If n =2, gradient polyconvexity is the same like adding the full 2nd
gradient

e Immediate applications to plasticity, SMA modeling (Mielke's
energetic solution)
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Beyond polyconvexity

Take-home message

@ Many requirements of mechanics cannot be fulfilled by CoV

e New variational principle for elasticity (non-standard elliptic
regularization)

@ We exploit weak continuity of subdeterminants (but in Sobolev
spaces), control of 1/detVy

o If n =2, gradient polyconvexity is the same like adding the full 2nd
gradient

e Immediate applications to plasticity, SMA modeling (Mielke's
energetic solution)

@ Locking/strain-limiting materials (L(Vy(x)) < 0)
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