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Beyond polyconvexity Stable states in elasticity

Elasticity

Ω ⊂ IR3 reference configuration

y : Ω̄→ IR3 deformation

F := ∇y deformation gradient , det F > 0

T : Ω̄→ IR3×3 1st Piola-Kirchhoff stress tensor

f : Γ1 → IR3 density of surface forces

T (x) := T̂ (x ,∇y(x)) constitutive law (Cauchy elasticity)

divT = 0 equilibrium equations
y = y0 on Γ0 ⊂ ∂Ω, f=Tn on Γ1 ⊂ ∂Ω boundary conditions
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Hyperelasticity
Assumption: 1st Piola-Kirchhoff stress tensor T has a potential:

Tij := ∂W (∇y)
∂Fij

W : IR3×3 → IR ∪ {+∞} stored energy density
Work can be stored in elastic materials (no loss)
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Hyperelasticity

J(y) :=
∫

Ω
W (∇y(x)) dx −

∫
Γ1

f · y dS .

Minimizers of J formally satisfy equilibrium equations.
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Properties of W

(i) W : IR3×3
+ → IR is continuous

(ii) W (F ) = W (RF ) for all R ∈ SO(3) and all F ∈ IR3×3

(iii) W (F )→ +∞ if det F → 0+

(iv) W (F ) = +∞ if det F ≤ 0 ( This excludes convexity of W )
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Nonconvexity could be fatal....(at least in 1D)

I(u) :=
∫ 1

0
(1− |u′|)2 + u2 dx .

Consider {uk} a sequence of zig-zag functions driving I to its infimum.

uk → 0 in L2(0, 1)

u′k → 0 weakly in L2(0, 1)

0 = inf I = lim
k→∞

I(uk) < I(0) = 1

No weak lower semicontinuity and no minimizer because I(u) > 0.
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Polyconvexity – Ball (1977), Morrey (1952)

J.M. Ball’s notion of polyconvexity (1977)

W (F ) = h(F , cof F ,det F ) if det F > 0

cof F := (det F )F−>

h : IR19 → IR is convex
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Existence of solutions

(i) W polyconvex, W (F ) = +∞ if det F ≤ 0

(ii) W (F ) = W (RF ) for all R ∈ SO(3) and all F ∈ IR3×3

(iii) W (F )→ +∞ if det F → 0+

(iv) C(|F |p + |cof F |q + det F r ) ≤W (F ) for p > 3, q ≥ 3/2, r > 1,
C > 0

Minimizers of J exist in
∅ 6= A := {W 1,p(Ω; IR3), y = y0 on Γ0, det∇y > 0}, if there is y such
that J(y) < +∞.
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Polyconvexity

It is relatively easy to construct polyconvex functions.
Examples for various crystallographic structures (V. Ebbing).
It allows us to ensure injectivity of deformations and orientation
preservation.
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Existence of solutions

The proof is based on convexity of h and special properties of
determinants and cofactors, namely if yk ⇀ y in W 1,p for p > 3 then
(Reshetnyak, 1968)

det∇yk ⇀ det∇y in Lp/3

and

cof∇yk ⇀ cof∇y in Lp/2 .
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Why is it so?
....because determinant is the divergence.
If ϕ ∈ C∞0 (Ω) the strong convergence of yk → y and the weak
convergence of partial derivatives of yk allows us to write (n = 2):∫

Ω
ϕdet∇yk dx =

∫
Ω

∂
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k
∂y 2

k
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)
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)
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= −
∫
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)
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∫
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(
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)
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(
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(
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∫
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ϕdet∇y dx .

Density of C∞0 (Ω) in Lp/(p−n)(Ω) finishes the argument.

We can replicate the above calculation for all other
subdeterminants/minors of the gradient matrix.
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Mechanical background
Beyond polyconvexity Stable states in elasticity

Why is it so?
....because determinant is the divergence.
If ϕ ∈ C∞0 (Ω) the strong convergence of yk → y and the weak
convergence of partial derivatives of yk allows us to write (n = 2):∫

Ω
ϕdet∇yk dx =

∫
Ω

∂

∂x1

(
y 1

k
∂y 2

k
∂x2

)
ϕ+ ∂

∂x2

(
−y 1

k
∂y 2

k
∂x1

)
ϕdx

= −
∫

Ω

(
y 1

k
∂y 2

k
∂x2

)
∂ϕ

∂x1
+
(

y 1
k
∂y 2

k
∂x1

)
∂ϕ

∂x2
dx

→ −
∫

Ω

(
y 1 ∂y 2

∂x2

)
∂ϕ

∂x1
+
(

y 1 ∂y 2

∂x1

)
∂ϕ

∂x2
dx

=
∫

Ω

∂

∂x1

(
y 1 ∂y 2

∂x2

)
ϕ+ ∂

∂x2

(
−y 1 ∂y 2

∂x1

)
ϕdx =

∫
Ω
ϕdet∇y dx .

Density of C∞0 (Ω) in Lp/(p−n)(Ω) finishes the argument.

We can replicate the above calculation for all other
subdeterminants/minors of the gradient matrix.
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Beyond polyconvexity

In many applications polyconvexity is not suitable, e.g., in modeling of
shape memory alloys, where W has a multiwell structure, e.g.

W (F ) = min
i

Wi (F ) ,

where

Wi (F ) is minimized iff F = RFi ,Fi ∈ IR3×3
+ given, R rotation

Courtesy of Institute of Physics, ASCR.
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Shape memory alloys
Principle of shape memory:
◦ high temperature:

atomic grid with high symmetry (usually cubic):
the so-called austenite, higher heat capacity
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Complicated combination appear without mechanical stress, too:
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How about if W is not polyconvex?

If
c(−1 + |F |p) ≤W (F ) ≤ C(1 + |F |p)

and quasiconvex, i.e.,

W (F )|Ω| ≤
∫

Ω
W (∇ϕ(x)) dx

for all ϕ ∈W 1,∞(Ω; IR3), ϕ(x) = Fx on ∂Ω then J is wlsc on W 1,p,
(p > 1)

The upper bound is not suitable for elasticity!

W = W1 + W2 ,

where W1 is polyconvex and W2 quasiconvex is ok, too.
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Quasiconvexity in elasticity

quasiconvexity is necessary and sufficient but polynomial upper
bounds on W allow for non-physical states
frame-indifference implies W (F ) = W̄ (C), C = F>F , det C ≥ 0,
i.e., we lose control over the sign of det F
relaxation of multi-well problems, i.e., finding the largest
quasiconvex function below W (mostly impossible)
C = F>F = (QF )>(QF ) = (RF )>(RF ), Q ∈ O(3) \ SO(3),
R ∈ SO(3) existence of “dark orbits” QF which are not physical
One of the problems in J.M. Ball’s survey “Open problems in
elasticity”:
Prove the existence of energy minimizers for elastostatics for
quasiconvex stored-energy functions satisfying

W (A)→ +∞ whenever det A→ 0+
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Why is it difficult?
To exploit quasiconvexity we need to manipulate boundary data of the
sequence. If yk ⇀ y in W 1,p, y(x) = x and yk(x) = x for x ∈ ∂Ω then
quasiconvexity immediately implies that

lim inf
k→∞

∫
Ω

W (∇yk) dx ≥
∫

Ω
W (∇y) dx .

If yk(x) 6= x on ∂Ω but yk ⇀ y we modify yk to wk ∈W 1,p such that
|yk 6= wk |+ |∇yk 6= ∇wk | → 0 and wk ⇀ x , wk(x) = x on ∂Ω, and

lim inf
k→∞

∫
Ω

W (∇yk) dx = lim inf
k→∞

∫
Ω

W (∇wk) dx ≥
∫

Ω
W (I) dx .
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Why is it difficult?

The key ingredient in the proof of this proposition is the
construction of some kind of cut-off
Usually we take some smooth ηδ : Ω̄→ [0, 1], |∇ηδ| < C/δ

ηδ(x) :=
{

1 in Ωδ

0 on ∂Ω .

wk(δ)δ = ηδyk + (1− ηδ)x

But our constraint det > 0 is not convex
; we may easily “fall out” from the set of deformations.
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Constructing a cut-off under the det 6= 0 constraint

... in some situations we can find remedy in convex integration and
partial differential inclusions, solve ∇wk(x) ∈ S if x ∈ Ωδ, S
contains invertible matrices only
B.B., M.K., G. Pathó; 2012: p = +∞ S = λO(n), λ 6= 0
Rindler, Koumatos, Wiedemann; 2013: p < n, S contains matrices
with positive determinant
B.B., M.K. 2013: p = +∞, n = 2, bi-Lipschitz deformations,
positive determinant
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Constructing a cut-off under the det 6= 0 constraint

... in some situations we can find remedy in convex integration and
partial differential inclusions, solve ∇wk(x) ∈ S if x ∈ Ωδ, S
contains invertible matrices only
B.B., M.K., G. Pathó; 2012: p = +∞ S = λO(n), λ 6= 0
Rindler, Koumatos, Wiedemann; 2013: p < n, S contains matrices
with positive determinant
B.B., M.K. 2013: p = +∞, n = 2, bi-Lipschitz deformations,
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What else can we do ? Non-simple material regularization

The energy is regularized as

J(y) =
∫

Ω
W (∇y) + ε|∇2y |pdx .
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Beyond polyconvexity

What else can we do ? Non-simple material regularization

The energy is regularized as

J(y) =
∫

Ω
W (∇y) + ε|∇2y |pdx .

the regularization is related to interfacial energies
e.g. it penalizes fast spatial oscillations of the gradient
this yields existence of minimizers since now the energy is convex in
the highest gradient

[Ball, Crooks, 2011], [Ball, Mora-Corral, 2009]
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Beyond polyconvexity

What else can we do ? Non-simple material regularization

The energy is regularized as

J(y) =
∫

Ω
W (∇y) + ε|∇2y |pdx .

Nevertheless, a clear physical justification of this particular form seems
not to be clear...
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Beyond polyconvexity

Why is polyconvexity ok?

It exploits weak continuity of y 7→ det∇y and y 7→ cof∇y from
Sobolev to Lebesgue spaces, convexity, and the Hahn-Banach
theorem/Mazur lemma
No cut-off needed!
We should try to exploit it more!
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Gradient-polyconvexity

J(y) :=
∫

Ω
Ŵ (∇y(x),∇cof∇y(x),∇det∇y(x)) dx − `(y),

Ŵ (F , ·, ·) is convex.
Additionally, we assume that for some c > 0, and p, q, r , s ≥ 1 it holds
that

Ŵ (F ,∆1,∆2) ≥
{

c
(
|F |p + (det F )−s + |∆1|q + |∆2|r

)
if det F > 0,

∞ otherwise.
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Gradient-polyconvexity

How is this different to

J(y) =
∫

Ω
W (∇y) + ε|∇2y |pdx?

Admissible deformations are in W 2,p!
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Example

Take Ω = (0, 1)3 and deformation (for some t ≥ 1)

y(x1, x2, x3) :=
(

x2
1 , x2 x t/(t+1)

1 , x3 x2
1

)
,

so that ∇y(x1, x2, x3) =

 2x1 0 0
t

t+1 x2 x−1/(t+1)
1 x t/(t+1)

1 0
2 x1 x3 0 x2

1

 .

It follows that

0 < det∇y ∈W 1,∞(Ω) cof∇y ∈W 1,∞(Ω; IR3×3)

But ∇2y 6∈ L1(Ω; IR3×3×3) ; y 6∈W 2,1(Ω; IR3)

On the other hand, y ∈W 1,p(Ω; IR3) ∩ L∞(Ω; IR3) for every
1 ≤ p < 1 + t.
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Figure: Deformed cube in the frame of the reference domain (0, 1)3 as in the
example for t = 100. (Picture by J. Valdman)
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St. Venant-Kirchhoff material

Let ϕ : IR3×3 → IR be a stored energy density of an anisotropic Saint
Venant-Kirchhoff material, i.e.,

0 ≤ ϕ(F ) := 1
8C(F>F − Id) : (F>F − Id) ,

where C is the fourth-order and positive definite tensor of elastic
constants.

Then

Ŵ (G) :=
{
ϕ(G) + α(|∇cof G |q + |∇det G |r + (det G)−s) if det G > 0,
∞ otherwise

is gradient polyconvex.
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Existence of minimizers

Theorem (BB, MK, AS)
Let be W gradient polyconvex on Ω and Ŵ coercive as above. Let p > 2,

q ≥ p
p−1 , r > 1, s > 0 and assume that for some given measurable function

y0 : Γ0 → IR3 the following set

A : = {y ∈W 1,p(Ω; IR3) :
cof∇y ∈W 1,q(Ω; IR3×3), det∇y ∈W 1,r (Ω),
(det∇y)−s ∈ L1(Ω), det∇y > 0 a.e. in Ω, y = y0 on Γ0}

is nonempty. If infA J <∞ then the functional

J =
∫

Ω
Ŵ (∇y(x),∇cof∇y(x),∇det∇y(x)) dx

has a minimizer on A.
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Remarks

We can also add dependence on x , y(x) without major changes
The non-emptiness of

A : = {y ∈W 1,p(Ω; IR3) :
cof∇y ∈W 1,q(Ω; IR3×3), det∇y ∈W 1,r (Ω),
(det∇y)−s ∈ L1(Ω), det∇y > 0 a.e. in Ω, y = y0 on Γ0}

has to be assumed!
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Remarks

We can also add dependence on x , y(x) without major changes
The non-emptiness of

A : = {y ∈W 1,p(Ω; IR3) :
cof∇y ∈W 1,q(Ω; IR3×3), det∇y ∈W 1,r (Ω),
(det∇y)−s ∈ L1(Ω), det∇y > 0 a.e. in Ω, y = y0 on Γ0}

has to be assumed!
⇓

An analogous situation also happens in classical polyconvexity
&

Actually, this is connected to the relaxation problem....
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Sketch of proof I

Take a minimizing sequence {yk} with yk ⇀ y in W 1,p(Ω; IR3)
Based on coercivity we have that

cof∇yk ⇀ H in W 1,q(Ω; IR3×3) and det∇yk ⇀ δ in W 1,r (Ω).

Due to the coercivity
∫

Ω
1

(det∇y)s dx , det∇y > 0.
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⇓

Due to the weak continuity of minors:
H = cof∇y and δ = det∇y
Due to the coercivity

∫
Ω

1
(det∇y)s dx , det∇y > 0.
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Beyond polyconvexity

Sketch of proof I

Take a minimizing sequence {yk} with yk ⇀ y in W 1,p(Ω; IR3)
Based on coercivity we have that

cof∇yk ⇀ H in W 1,q(Ω; IR3×3) and det∇yk ⇀ δ in W 1,r (Ω).

⇓

Due to the weak continuity of minors:
H = cof∇y and δ = det∇y
Due to the coercivity

∫
Ω

1
(det∇y)s dx , det∇y > 0.

The weak limit is in A.
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Sketch of proof II

To pass to the limit in∫
Ω

Ŵ (∇y(x),∇cof∇y(x),∇det∇y(x)) dx

≤ lim inf
k→∞

∫
Ω

Ŵ (∇yk(x),∇cof∇yk(x),∇det∇yk(x)) dx

exploit convexity in ∇det (·) and ∇cof (·)
need at least pointwise convergence in the first term (or convergence
in measure)
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Sketch of proof II

To pass to the limit in∫
Ω

Ŵ (∇y(x),∇cof∇y(x),∇det∇y(x)) dx

≤ lim inf
k→∞

∫
Ω

Ŵ (∇yk(x),∇cof∇yk(x),∇det∇yk(x)) dx

exploit convexity in ∇det (·) and ∇cof (·)
need at least pointwise convergence in the first term (or convergence
in measure)

⇓

Use the information on cofactor and determinant!
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Sketch of proof III

We know that the determinant and the cofactor converge pointwise
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Sketch of proof III

We know that the determinant and the cofactor converge pointwise
By Cramer’s rule we have

(∇yk(x))−1 = (cof∇yk(x))>
det∇yk(x)

and thus,

(∇yk(x))−1 −→ (∇y(x))−1.

Consequently,

∇yk(x) = (cof∇yk(x))−>det∇yk(x)
−→ (cof∇y(x))−>det∇y(x) = ∇y(x),

Apply Fatou lemma
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What we have proved...

Theorem (BB, MK, AS)
Let be W gradient polyconvex on Ω and Ŵ coercive as above. Let p > 2,

q ≥ p
p−1 , r > 1, s > 0 and assume that for some given measurable function

y0 : Γ0 → IR3 the following set

A : = {y ∈W 1,p(Ω; IR3) :
cof∇y ∈W 1,q(Ω; IR3×3), det∇y ∈W 1,r (Ω),
(det∇y)−s ∈ L1(Ω), det∇y > 0 a.e. in Ω, y = y0 on Γ0}

is nonempty. If infA J <∞ then the functional

J =
∫

Ω
Ŵ (∇y(x),∇cof∇y(x),∇det∇y(x)) dx

has a minimizer on A.
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Remark: Ciarlet-Nečas condition

We can additionally impose Ciarlet-Nečas condition∫
Ω

det∇y(x) dx ≤ L3(y(Ω)) (1)

; Injectivity almost everywhere in the deformed configuration

[Ciarlet, Nečas, 1985], [Hencl, Koskela, 2014]
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Remark: Ciarlet-Nečas condition

We can additionally impose Ciarlet-Nečas condition∫
Ω

det∇y(x) dx ≤ L3(y(Ω)) (1)

; Injectivity almost everywhere in the deformed configuration

; can be improved to injectivity everywhere if

|∇y |3/det∇y ∈ L2+δ(Ω)

for some δ > 0

[Ciarlet, Nečas, 1985], [Hencl, Koskela, 2014]
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Remark: Ciarlet-Nečas condition

We can additionally impose Ciarlet-Nečas condition∫
Ω

det∇y(x) dx ≤ L3(y(Ω)) (1)

; Injectivity almost everywhere in the deformed configuration

; can be improved to injectivity everywhere if

|∇y |3/det∇y ∈ L2+δ(Ω)

for some δ > 0
m

the distortion is in Ln−1+δ which implies that y is an open map

[Ciarlet, Nečas, 1985], [Hencl, Koskela, 2014]
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Remark: Lower bound on the determinant
We can strengthen the coercivity as

Ŵ (F ,∆1,∆2) ≥
{

c
(
|F |p + (det F )−s + |∆1|q + |∆2|r

)
if det F > 0,

∞ otherwise.

Proposition (BB, MK, AS)
Take a gradient polyconvex energy with a coercivity according to r > 3
and s > 3r

r−3 . (And have the same assumptions as above.) Then, for every y ∈ A, there is

ε > 0 such that det∇y ≥ ε on Ω

This ε depends just on the bound on the energy. In this case
y ∈W 2,1(Ω; IR3).

[Healey, Krömer, 2009]
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Remark: Lower bound on the determinant
We can strengthen the coercivity as

Ŵ (F ,∆1,∆2) ≥
{

c
(
|F |p + (det F )−s + |∆1|q + |∆2|r

)
if det F > 0,

∞ otherwise.

Proposition (BB, MK, AS)
Take a gradient polyconvex energy with a coercivity according to r > 3
and s > 3r

r−3 . (And have the same assumptions as above.) Then, for every y ∈ A, there is

ε > 0 such that det∇y ≥ ε on Ω

This ε depends just on the bound on the energy. In this case
y ∈W 2,1(Ω; IR3).

; because under these assumptions the Jacobian is positive up to the
boundary!

[Healey, Krömer, 2009]
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Remark: Lower bound on the determinant

Proposition (BB, MK, AS)
Take a gradient polyconvex energy with a coercivity according to r > 3
and s > 3r

r−3 . (And have the same assumptions as above.) Then, for every y ∈ A, there is

ε > 0 such that det∇y ≥ ε on Ω

This ε depends just on the bound on the energy.

If there is a lower bound on the determinant one may derive a
Euler-Lagrange equation.

[Healey, Krömer, 2009]
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Strong compactness

Proposition (B.B., M.K., A.S.)
Let Ω ⊂ IRn, n ≥ 2, be a Lipschitz bounded domain and let
{yk}k∈N ⊂W 1,p(Ω; IRn) for p > n be such that for some s > 0

sup
k∈N

(‖yk‖W 1,p(Ω;IRn) + ‖cof∇yk‖BV(Ω;IRn×n)

+ ‖det∇yk‖BV(Ω) + ‖|det∇yk |−s‖L1(Ω)) <∞ .

Then there is a (nonrelabeled) subsequence and y ∈W 1,p(Ω; IRn) such
that for k →∞ we have the following convergence results: yk → y in
W 1,d (Ω; IRn) for every 1 ≤ d < p, det∇yk → det∇y in Lr (Ω) for every
1 ≤ r < p/n, cof∇yk → cof∇y in Lq(Ω; IRn×n) for every
1 ≤ q < p/(n − 1), and |det∇yk |−t → |det∇y |−t in L1(Ω) for every
0 ≤ t < s.
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Take-home message

Many requirements of mechanics cannot be fulfilled by CoV
New variational principle for elasticity (non-standard elliptic
regularization)
We exploit weak continuity of subdeterminants (but in Sobolev
spaces), control of 1/det∇y
If n = 2, gradient polyconvexity is the same like adding the full 2nd
gradient
Immediate applications to plasticity, SMA modeling (Mielke’s
energetic solution)
Locking/strain-limiting materials (L(∇y(x)) ≤ 0)
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Mechanical background
Beyond polyconvexity

Take-home message

Many requirements of mechanics cannot be fulfilled by CoV
New variational principle for elasticity (non-standard elliptic
regularization)
We exploit weak continuity of subdeterminants (but in Sobolev
spaces), control of 1/det∇y
If n = 2, gradient polyconvexity is the same like adding the full 2nd
gradient
Immediate applications to plasticity, SMA modeling (Mielke’s
energetic solution)
Locking/strain-limiting materials (L(∇y(x)) ≤ 0)
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