

Parallel Multipatch Space-Time IGA Solvers for Parabloic Initial-Boundary Value Problems

Ulrich Langer Institute of Computational Mathematics (NuMa) Johannes Kepler University Linz

Johann Radon Institute for Computational and Applied Mathematics (RICAM) Austrian Academy of Sciences (ÖAW) Linz, Austria

AANMPDE12, Särkisaari, Finland, August 6-10, 2018

www.oeaw.ac.at	U. Langer, Parallel Space-Time	e IgA Solvers	

Joint work with my collaborators

Christoph Hofer (JKU, DK)

ÖAW RICAM **J⊻U**

- Martin Neumüller (JKU, NuMa)
- Ioannis Toulopoulos (RICAM, CM4PDE)

Main results have just been published in

- C. Hofer, U. Langer, M. Neumüller, I. Toulopoulos. Time-multipatch discontinuous Galerkin space-time isogeometric analysis of parabolic evolution problems. *ETNA*, 2018, v. 49, 126–150.
- [2] C. Hofer, U. Langer, M. Neumüller. Robust preconditioning for space-time isogeometric analysis of parabolic evolution problems. *[math.NA]*, 2018, arXiv:1802.09277, arXiv.org.

Introduction

Time Multi-Patch Space-Time IgA

pace-Time Solvers

Conclusions & Outlooks

Outline

1 Introduction

- 2 Time Multi-Patch Space-Time IgA
- 3 Space-Time Solvers
- 4 Conclusions & Outlooks

Introduction			
www.oeaw.ac.at	U. Langer. Parallel Space-Time	IgA Solvers	

Parabolic Initial-Boundary Value Model Problem

Let us consider the IBVP problem: Find $u: \overline{Q} \to \mathbb{R}$ such that

$$\partial_t u - \Delta u = f \quad \text{in} \quad Q := \Omega \times (0, T),$$

$$u = u_D := 0 \quad \text{on} \quad \Sigma := \partial \Omega \times (0, T),$$

$$u = u_0 \quad \text{on} \quad \overline{\Sigma}_0 := \overline{\Omega} \times \{0\},$$

(1)

as the typical model problem for a linear parabolic evolution equation posed in the space-time cylinder $\overline{Q} = \overline{\Omega} \times [0, T]$. Our space-time technology can be generalized to more general parabolic equations like

 $-\operatorname{div}_{\mathsf{x}}(A(x,t)\nabla_{\mathsf{x}}u)+b(x,t)\cdot\nabla_{\mathsf{x}}u+c(x,t)\partial_{t}u+a(x,t)u=f,$

eddy-current problems, non-linear problems etc.

Introduction			
www.oeaw.ac.at	U. Langer, Parallel Space-Time	IgA Solvers	

Parabolic Initial-Boundary Value Model Problem

Let us consider the IBVP problem: Find $u: \overline{Q} \to \mathbb{R}$ such that

$$\partial_t u - \Delta u = f \quad \text{in} \quad Q := \Omega \times (0, T),$$

$$u = u_D := 0 \quad \text{on} \quad \Sigma := \partial \Omega \times (0, T),$$

$$u = u_0 \quad \text{on} \quad \overline{\Sigma}_0 := \overline{\Omega} \times \{0\},$$
(1)

as the typical model problem for a linear parabolic evolution equation posed in the space-time cylinder $\overline{Q} = \overline{\Omega} \times [0, T]$. Our space-time technology can be generalized to more general parabolic equations like

$$-\operatorname{div}_{x}(A(x,t)\nabla_{x}u)+b(x,t)\cdot\nabla_{x}u+c(x,t)\partial_{t}u+a(x,t)u=f,$$

eddy-current problems, non-linear problems etc.

Introduction			
www.oeaw.ac.at	U. Langer, Parallel Space-Time I	gA Solvers	

Standard Weak Space-Time Variational Formulation

Find $u \in H_0^{1,0}(Q)$ such that

$$a(u,v) = \ell(v) \quad \forall v \in H^{1,1}_{0,\overline{0}}(Q),$$

$$(2)$$

with the bilinear form

$$a(u,v) = -\int_{Q} u(x,t)\partial_{t}v(x,t)dxdt + \int_{Q} \nabla_{x}u(x,t)\cdot\nabla_{x}v(x,t)dxdt$$

and the linear form

$$\ell(v) = \int_Q f(x,t)v(x,t)dxdt + \int_{\Omega} u_0(x)v(x,0)dx,$$

For solvability and regularity results, we refer to original papers by the Leningrad School of Mathematical Physics in the 50s, summerized in the monographs by Ladyzhenskaya, Solonnikov & Uralceva (1967) and Ladyzhenskaya (1973) !

Introduction			
www.oeaw.ac.at	U. Langer, Parallel Space-Time Ig	A Solvers	

Parabolic Solvability and Regularity Results

■ If $f \in L_{2,1}(Q_T) := \{v : \int_0^T ||v(\cdot, t)||_{L_2(\Omega)} dt < \infty\}$ and $u_0 \in L_2(\Omega)$, then there exists a unique generalized (weak) solution $u \in H_0^{1,0}(Q)$ of (2) that even belongs to $V_{2,0}^{1,0}(Q_T)$.

If $f \in L_2(Q_T)$ and $u_0 \in H_0^1(\Omega)$, then the generalized solution u of (2) belongs to space $H_0^{\Delta,1}(Q_T) = W_{2,0}^{\Delta,1}(Q_T)$, and ucontinuously depends on t in the norm of the space $H_0^1(\Omega)$, where $W_{2,0}^{\Delta,1}(Q_T) = \{v \in H_0^1(Q_T) : \Delta_x v \in L_2(Q_T)\}.$

• Maximal parabolic regularity: $\partial_t u - \operatorname{div}_{\times}(A(x, t)\nabla_{\times}u) = f$

 $\|\partial_t u\|_X + \|\operatorname{div}_{\mathsf{X}}(A(x,t)\nabla_{\mathsf{X}} u)\|_X \leq C \|f\|_X,$

where $X = L_p((0, T), L_q(\Omega)) = L_{p,q}(Q_T), 1 < p, q < \infty$, $u_0 = 0$, and a = 0, b = 0, c = 1.

Introduction			
www.oeaw.ac.at	U. Langer, Parallel Space-Time	IgA Solvers	

Parabolic Solvability and Regularity Results

- If $f \in L_{2,1}(Q_T) := \{v : \int_0^T ||v(\cdot, t)||_{L_2(\Omega)} dt < \infty\}$ and $u_0 \in L_2(\Omega)$, then there exists a unique generalized (weak) solution $u \in H_0^{1,0}(Q)$ of (2) that even belongs to $V_{2,0}^{1,0}(Q_T)$.
- If $f \in L_2(Q_T)$ and $u_0 \in H_0^1(\Omega)$, then the generalized solution u of (2) belongs to space $H_0^{\Delta,1}(Q_T) = W_{2,0}^{\Delta,1}(Q_T)$, and u continuously depends on t in the norm of the space $H_0^1(\Omega)$, where $W_{2,0}^{\Delta,1}(Q_T) = \{v \in H_0^1(Q_T) : \Delta_x v \in L_2(Q_T)\}.$
- Maximal parabolic regularity: $\partial_t u \operatorname{div}_{\times}(A(x, t)\nabla_{\times} u) = f$

$$\|\partial_t u\|_X + \|\operatorname{div}_{\mathsf{X}}(A(x,t)\nabla_{\mathsf{X}} u)\|_X \leq C \|f\|_X,$$

where $X = L_p((0, T), L_q(\Omega)) = L_{p,q}(Q_T)$, $1 < p, q < \infty$, $u_0 = 0$, and a = 0, b = 0, c = 1.

Some References to

ÖAW RICAM **JYU**

Time-parallel methods:

Gander (2015): Nice historical overview on 50 years time-parallel method Parareal introduced by Lions, Maday, Turinici (2001) Time-parallel multigrid: Hackbusch (1984),...,Vandewalle (1993),..., Gander & Neumüller (2014): smart time-parallel multigrid,..., Neumüller & Smears (2018), ...

Space-time methods for parabolic evolution problems: Babuška & Janik (1989,1990), Behr (2008), Schwab & Stevenson (2009), Neumüller & Steinbach (2011), Neumüller (2013), Andreev (2013), Bank & Metti (2013), Mollet (2014), Urban & Patera (2014), Schwab & Stevenson (2014), Bank & Vassilevski (2014), Karabelas & Neumüller (2015), Langer & Moore & Neumüller (2016), Bank & Vassilevski & Zikatanov (2016), Larsson & Molteni (2017), Steinbach & Yang (2017), Langer & Neumüller & Schafelner (2018)

Introduction

ime Multi-Patch Space-Time Ig

pace-Time Solvers

Some References to

ÖAW RICAM **J⊻U**

Time-parallel methods:

Gander (2015): Nice historical overview on 50 years time-parallel method Parareal introduced by Lions, Maday, Turinici (2001) Time-parallel multigrid: Hackbusch (1984),...,Vandewalle (1993),..., Gander & Neumüller (2014): smart time-parallel multigrid,..., Neumüller & Smears (2018), ...

Space-time methods for parabolic evolution problems: Babuška & Janik (1989,1990), Behr (2008), Schwab & Stevenson (2009), Neumüller & Steinbach (2011), Neumüller (2013), Andreev (2013), Bank & Metti (2013), Mollet (2014), Urban & Patera (2014), Schwab & Stevenson (2014), Bank & Vassilevski (2014), Karabelas & Neumüller (2015), Langer & Moore & Neumüller (2016), Bank & Vassilevski & Zikatanov (2016), Larsson & Molteni (2017), Steinbach & Yang (2017), Langer & Neumüller & Schafelner (2018), ...

Introduction

Time Multi-Patch Space-Time Ig

Space-Time Solver

References

Time-parallel methods:

Gander (2015): Nice historical overview on 50 years time-parallel methods

Space-time methods for parabolic evolution problems:

Steinbach & Yang (2018): Nice overview on space-time methods in the space-time book that will be published in RSCAM by de Gruyter

Introduction	Time Multi-Patch Space-Time IgA	Space-Time Solvers	Conclusions & Outlooks
www.oeaw.ac.at	U. Langer. Parallel Space-Time	e IgA Solvers	

Single-Patch Space-Time IgA: LMN'16

[3] U. Langer, S. Moore, M. Neumüller. Space-time isogeometric analysis of parabolic evolution equations. *Comput. Methods Appl. Mech. Engrg.*, v. 306, pp. 342–363, 2016.

Space-Time IgA paraphernalia: $Q \subset \mathbb{R}^{d+1}$; d = 1 (I) and d = 2 (r). In this talk: Generalization to the multipatch case + Solvers !

Introduction			
www.oeaw.ac.at	U. Langer, Parallel Space-Tim	e IgA Solvers	

Outline

1 Introduction

2 Time Multi-Patch Space-Time IgA

3 Space-Time Solvers

4 Conclusions & Outlooks

	Time Multi-Patch Space-Time IgA		
www.oeaw.ac.at	U. Langer, Parallel Space-Time I	zA Solvers	

Time Multi-Patch Decomposition of *Q*

We decompose the space-time cylinder $Q = \Omega \times (0, T)$ into Nnon-overlapping space-time subcylinder $Q_n = \Omega \times (t_{n-1}, t_n) = \Phi_n(\widehat{Q}), n = 1, 2, ..., N$, such that $\overline{Q} = \bigcup_{n=1}^N \overline{Q}_n$

with the time faces $\Sigma_n = \overline{Q}_{n+1} \cap \overline{Q}_n = \Omega \times \{t_n\}$, $\Sigma_N = \Sigma_T$:

oduction

Time Multi-Patch Space-Time IgA

Space-Time Solvers

Time Multipatch dG IgA spaces V_{0h}

ÖAW RICAM **J⊻U**

We look for an approximate solution u_h to the IBVP (2) in the globally discontinuous, but patch-wise smooth IgA (B-spline, NURBS) spaces

$$V_{0h} = \{ v_h \in H_0^{1,0}(Q) : v_h^n := v_h |_{Q_n} \in \mathbb{B}_{\Xi_n^{d+1}}(Q_n), n = 1, \dots, N \}$$

= $\{ v_h \in L_2(Q) : v_h^n \in V_{0h}^n, n = 1, \dots, N \}$ = span $\{ \varphi_i \}_{i \in \mathcal{I}},$
 $V_{0h}^n = \{ v_h^n \in \mathbb{B}_{\Xi_n^{d+1}}(Q_n) : v_h^n = 0 \text{ on } \Sigma \}$ = span $\{ \varphi_{n,i} \}_{i \in \mathcal{I}_n}$

where $\mathbb{B}_{\equiv_n^{d+1}}(Q_n)$ is the smooth (depending of the polynomial degrees and multiciplicity of the knots) lgA space corresponding to the knot vector

$$\Xi_n^{d+1} = \Xi_n^{d+1}(n_1^n, ..., n_{d+1}^n; p_1^n, ..., p_{d+1}^n) = ...$$

	Time Multi-Patch Space-Time IgA		
www.oeaw.ac.at	U. Langer, Parallel Space-Time	IgA Solvers	

Stable Time Multipatch dG IgA Scheme

Multiplying the PDE $\partial_t u - \Delta_x u = f$ by $v_h + \theta_n h_n \partial_t v_h$, integrating over Q_n , integrating by parts, suming over n, and using that the jumps [|u|] across Σ_n are 0 at the solution $u \in H_0^{\Delta,1}(Q)$, we get the consistency identity

$$a_h(u,v_h) = \ell_h(v_h) \quad \forall v_h \in V_{0h},$$

where

$$\begin{aligned} a_h(u, v_h) &= \sum_{n=1}^N \int_{Q_n} (\partial_t u v_h + \theta_n h_n \partial_t u \partial_t v_h + \nabla_x u \nabla_x v_h + \theta_n h_n \nabla_x u \cdot \nabla_x \partial_t v_h) \, dx dt \\ &+ \sum_{n=1}^N \int_{\Sigma_{n-1}} \left[u^{n-1} \right] v_{h,+}^{n-1} \, dx, \\ \ell_h(v_h) &= \sum_{n=1}^N \int_{Q_n} f\left[v_h + \theta_n h_n \partial_t v_h \right] \, dx dt + \int_{\Sigma_0} u_0 v_{h,+}^0 \, dx. \end{aligned}$$

Introduction

Time Multi-Patch Space-Time IgA

pace-Time Solvers

Stable Time Multipatch dG IgA Scheme

Multiplying the PDE $\partial_t u - \Delta_x u = f$ by $v_h + \theta_n h_n \partial_t v_h$, integrating over Q_n , integrating by parts, suming over n, and using that the jumps [|u|] across Σ_n are 0 at the solution $u \in H_0^{\Delta,1}(Q)$, we get the multi-patch space-time scheme: Find $u_h \in V_{0h}$ such that

$$a_h(u_h,v_h) = \ell_h(v_h) \quad \forall v_h \in V_{0h},$$

where

$$\begin{aligned} \mathsf{a}_{h}(u_{h},\mathsf{v}_{h}) &= \sum_{n=1}^{N} \int_{Q_{n}} (\partial_{t} u_{h} \mathsf{v}_{h} + \theta_{n} h_{n} \partial_{t} u_{h} \partial_{t} \mathsf{v}_{h} + \nabla_{\mathsf{x}} u_{h} \nabla_{\mathsf{x}} \mathsf{v}_{h} + \theta_{n} h_{n} \nabla_{\mathsf{x}} u_{h} \cdot \nabla_{\mathsf{x}} \partial_{t} \mathsf{v}_{h}) \, d\mathsf{x} dt \\ &+ \sum_{n=1}^{N} \int_{\Sigma_{n-1}} \llbracket u_{h}^{n-1} \rrbracket \, \mathsf{v}_{h,+}^{n-1} \, d\mathsf{x}, \\ \ell_{h}(\mathsf{v}_{h}) &= \sum_{n=1}^{N} \int_{Q_{n}} f \left[\mathsf{v}_{h} + \theta_{n} h_{n} \partial_{t} \mathsf{v}_{h} \right] \, d\mathsf{x} dt + \int_{\Sigma_{0}} u_{0} \mathsf{v}_{h,+}^{0} \, d\mathsf{x}. \end{aligned}$$

Introduction

Time Multi-Patch Space-Time IgA

pace-Time Solvers

Space-Time IgA Scheme and System of IgA Eqns

Hence, we look for the solution $u_h \in V_{0h}$ of the IgA scheme

$$a_h(u_h, v_h) = \ell_h(v_h) \quad \forall v_h \in V_{0h}$$
(3)

in the form of

$$u_h(x,t) = u_h(x_1,\ldots,x_d,x_{d+1}) = \sum_{i\in\mathcal{I}} u_i\varphi_i(x,t)$$

where $\mathbf{u}_h := [u_i]_{i \in \mathcal{I}} \in \mathbb{R}^{N_h = |\mathcal{I}|}$ is the unknown solution vector of control points defined by the solution of the linear system

$$\mathbf{L}_h \mathbf{u}_h = \mathbf{f}_h \tag{4}$$

with huge, non-symmetric, but **positive definite** system matrix L_h .

	Time Multi-Patch Space-Time IgA		
www.oeaw.ac.at	U. Langer, Parallel Space-Time Ig	A Solvers	

Road Map of the Numerical Analysis

$$\begin{split} \|v_{h}\|_{h}^{2} &= \sum_{n=1}^{N} \left(\|\nabla_{x}v_{h}\|_{L_{2}(Q_{n})}^{2} + \theta_{n} h_{n} \|\partial_{t}v_{h}\|_{L_{2}(Q_{n})}^{2} + \frac{1}{2} \|[v_{h}]]^{n-1}\|_{L_{2}(\Sigma_{n-1})}^{2} \right) + \frac{1}{2} \|v_{h}\|_{L_{2}(\Sigma_{N})}^{2} \\ \|v\|_{h,*}^{2} &= \|v\|_{h}^{2} + \sum_{n=1}^{N} (\theta_{n}h_{n})^{-1} \|v\|_{L_{2}(Q_{n})}^{2} + \sum_{n=2}^{N} \|v_{n}^{n-1}\|_{L_{2}(\Sigma_{n-1})}^{2} \end{split}$$

- Coercivity: $a_h(v_h, v_h) \ge \mu_c ||v_h||_h^2$, $\forall v_h \in V_{0h}$, $\Rightarrow ! \Rightarrow \exists u_h \leftrightarrow u_h$: (4)
- Boundedness: $|a_h(u, v_h)| \le \mu_b ||u||_{h,*} ||v_h||_h$, $\forall u \in V_{0h} + H_0^{\Delta,1}(Q), \forall v_h \in V_{0h}$,
- Consistency: $a_h(u, v_h) = \ell_h(v_h) \quad \forall v_h \in V_{0h}, \ u \in H_0^{1,0}(Q) \cap H^{\Delta,1}(Q)$: (2)
- GO: $a_h(u-u_h,v_h)=0 \quad \forall v_h \in V_{0h}$,
- Cea-like: $||u u_h||_h \le (1 + \mu_b/\mu_c) \inf_{v_h \in V_{0h}} ||u v_h||_{h,*} \le ...$
- Convergence rates: $||u u_h||_h \leq ch^p ||u||_{H^{p+1}(Q)}$

V_{0h} -Coercivity of the bilinear form $a_h(\cdot, \cdot)$

We now introduce the mesh-dependent norm

$$\|v_{h}\|_{h}^{2} = \sum_{n=1}^{N} \left(\|\nabla_{x}v_{h}\|_{L_{2}(Q_{n})}^{2} + \theta_{n}h_{n}\|\partial_{t}v_{h}\|_{L_{2}(Q_{n})}^{2} + \frac{1}{2} \|[v_{h}]^{n-1}\|_{L_{2}(\Sigma_{n-1})}^{2} \right) + \frac{1}{2} \|v_{h}\|_{L_{2}(\Sigma_{N})}^{2}.$$

Lemma (Coercivity / Ellipticity on V_{0h})

The bilinear form $a_h(\cdot, \cdot) : V_{0h} \times V_{0h} \to \mathbb{R}$ is V_{0h} -coercive wrt the norm $\|\cdot\|_h$, i.e., there exists a constant $\mu_c = 1/2$ such that

$$a_h(v_h, v_h) \ge \mu_c \|v_h\|_h^2, \quad \forall v_h \in V_{0h}.$$

$$(5)$$

provided that $\theta_n \leq c_{inv,0}^{-2}$, where $\|v_h\|_{L_2(\partial E)}^2 \leq c_{inv,0}h_n^{-1}\|v_h\|_{L_2(E)}^2$

This lemma immediately yields **uniqueness** and **existence** of the solution $u_h \in V_{0h}$ and $\mathbf{u}_h \in \mathbb{R}^{N_h}$ of (9) and (4), respectively.

	Time Multi-Patch Space-Time IgA		
www.oeaw.ac.at	U. Langer, Parallel Space-Time	e IgA Solvers	

ÖAW RICAM JYU

Uniform Boundedness of $a_h(\cdot, \cdot)$ on $V_{0h,*} \times V_{0h}$

Let us introduce the space $V_{0h,*} = V_{0h} + H_0^{\Delta,1}(Q)$ equipped with the norm

$$\|v\|_{h,*} = \left(\|v\|_{h}^{2} + \sum_{n=1}^{N} (\theta_{n}h_{n})^{-1} \|v\|_{L_{2}(Q_{n})}^{2} + \sum_{n=2}^{N} \|v_{-}^{n-1}\|_{L_{2}(\Sigma_{n-1})}^{2}\right)^{\frac{1}{2}}.$$
 (6)

Lemma (Boundedness)

The bilinear form $a_h(\cdot, \cdot)$ is uniformly bounded on $V_{0h,*} \times V_{0h}$:

$$|a_{h}(u, v_{h})| \leq \mu_{b} ||u||_{h,*} ||v_{h}||_{h}, \forall u \in V_{0h,*}, \forall v_{h} \in V_{0h},$$
(7)

with $\mu_b = \max(c_{inv,1} \theta_{max}, 2)$, where $\theta_{max} = \max_n \{\theta_n\} \le c_{inv,0}^{-2}$. and $c_{inv,k} = c_{inv,k}(p)$ are constants in the inverse inequalities $\|\partial_t \partial_{x_i} v_h\|_{L_2(E)}^2 \le c_{inv,1} h_n^{-2} \|\partial_{x_i} v_h\|_{L_2(E)}^2$ and $\|v_h\|_{L_2(\partial E)}^2 \le c_{inv,0} h_n^{-1} \|v_h\|_{L_2(E)}^2$.

Introduction Time Multi-Patch Space-Time IgA Space-Time Solvers Conclusions & Outlooks
www.oeaw.ac.at U. Langer, Parallel Space-Time IgA Solvers

Consistency and Galerkin orthogonality

Lemma (Consitency)

If the solution $u \in H_0^{1,0}(Q)$ of the variational problem (2) belongs to $H^{\Delta,1}(Q)$, then it satisfies the consistency identity

$$a_h(u, v_h) = \ell_h(v_h) \quad \forall \ v_h \in V_{0h}.$$
(8)

Lemma (Galerkin orthogonality)

If the solution $u \in H_0^{1,0}(Q)$ of the variational problem (2) belongs to $H^{\Delta,1}(Q)$, then the Galerkin orthogonality

$$a_h(u-u_h,v_h)=0 \quad \forall \ v_h \in V_{0h}. \tag{9}$$

holds, where $u_h \in V_{0h}$ is the space-time dG lgA solution.

	Time Multi-Patch Space-Time IgA		
www.oeaw.ac.at	U. Langer, Parallel Space-Tim	e IgA Solvers	

Cea-like Discretization Error Estimate

Theorem (Cea-like Estimate)

Let the exact solution u of (2) belong to $H_0^{1,0}(Q) \cap H^{\Delta,1}(Q)$, and let u_h be the solution of the space-time IgA scheme (9). Then we get

$$\|u - u_h\|_h \le (1 + \frac{\mu_b}{\mu_c}) \inf_{\mathbf{v}_h \in \mathbf{V}_{0h}} \|u - v_h\|_{h,*}, \tag{10}$$

where
$$\|v\|_{h,*} = \left(\|v\|_{h}^{2} + \sum_{n=1}^{N} (\theta_{n}h_{n})^{-1} \|v\|_{L_{2}(Q_{n})}^{2} + \sum_{n=2}^{N} \|v_{-}^{n-1}\|_{L_{2}(\Sigma_{n-1})}^{2}\right)^{\frac{1}{2}}$$
 and
 $\|v\|_{h} = \left(\sum_{n=1}^{N} \left(\frac{1}{2} \|\nabla_{x}v\|_{L^{2}(Q_{n})}^{2} + \theta_{n}h_{n} \|\partial_{t}v\|_{L^{2}(Q_{n})}^{2} + \frac{1}{2} \|\|v\|_{L^{2}(\Sigma_{n-1})}^{2}\right) + \frac{1}{2} \|v\|_{L^{2}(\Sigma_{N})}^{2}\right)^{\frac{1}{2}}.$

Proof: $||u - u_h||_h \le ||u - v_h||_h + ||v_h - u_h||_h$ $\mu_c ||v_h - u_h||_h^2 \le a_h(v_h - u_h, v_h - u_h) = a_h(v_h - u, v_h - u_h)$ $\le \mu_b ||u - v_h||_{h,*} ||v_h - u_h||_h \square$

	Time Multi-Patch Space-Time IgA		
www.oeaw.ac.at	U. Langer, Parallel Space-Tim	ie IgA Solvers	

Approximation Error Estimate

Theorem (Approximation Theorem)

Let $p_n + 1 \ge \ell_n \ge 2$ and $p_n + 1 \ge m_n \ge 1$ be integers, and let $u \in L_2(Q)$ such that the restriction $u^n := u|_{Q_n}$ belongs to $H^{\ell_n,m_n}(Q_n)$ for n = 1, ..., N. Then there exists a quasi-interpolant $\prod_{h} u \in V_{0h}$ such that

$$\begin{split} \|u - \Pi_{h}u\|_{h,*}^{2} &= \Big(\sum_{n=1}^{N} \Big(\|\nabla_{x}(u - \Pi_{h}^{n}u)\|_{L_{2}(Q_{n})}^{2} + \theta_{n} h_{n} \|\partial_{t}(u - \Pi_{h}^{n}u)\|_{L_{2}(Q_{n})}^{2} \\ &+ \frac{1}{2} \|[(u - \Pi_{h}u)^{n-1}]\|_{L_{2}(\Sigma_{n-1})}^{2}\Big) + \frac{1}{2} \|u - \Pi_{h}^{N}u\|_{L_{2}(\Sigma_{N})}^{2}\Big) \\ &+ \sum_{n=1}^{N} \frac{1}{\theta_{n}h_{n}} \|u - \Pi_{h}^{n}u\|_{L_{2}(Q_{n})}^{2} + \sum_{n=2}^{N} \|(u - \Pi_{h}^{n-1}u)_{-}^{n-1}\|_{L_{2}(\Sigma_{n-1})}^{2} \\ &\leq \sum_{n=1}^{N} \Big(C_{n} \left(h_{n}^{2(\ell_{n}-1)} + \theta_{n}h_{n}^{2\ell_{n}-1} + h_{n}^{2m_{n}-1} + \theta_{n}h_{n}^{2m_{n}-1}\right)\|u\|_{H^{\ell_{n},m_{n}(Q_{n})}}^{2} \\ &\leq \sum_{n=1}^{N} \Big(\tilde{C}_{n} \left(h_{n}^{2(\ell_{n}-1)} + h_{n}^{2(m_{n}-\frac{1}{2})}\right)\|u\|_{H^{\ell_{n},m_{n}(Q_{n})}}^{2} \\ &\leq \sum_{n=1}^{N} \Big(\tilde{C}_{n} \left(h_{n}^{2(\ell_{n}-1)} + h_{n}^{2m_{n}-\frac{1}{2}}\right)\|u\|_{H^{\ell_{n},m_{n}(Q_{n})}}^{2} \\ &\leq \sum_{n=1}^{N} \Big(\tilde{C}_{n} \left(h_{n}^{2(\ell_{n}-1)} + h_{n}^{2(m_{n}-\frac{1}{2})}\right)\|u\|_{H^{\ell_{n},m_{n}(Q_{n})}}^{2} \\ &\leq \sum_{n=1}^{N} \Big(\tilde{C}_{n} \left(h_{n}^{2(\ell_{n}-1)} + h_{n}^{2(m_{n}-\frac{1}{2})}\right)\|u\|_{H^{\ell_{n},m_{n}(Q_{n})}^{2} \\ &\leq \sum_{n=1}^{N} \Big(\tilde{C}_{n} \left(h_{n}^{2(\ell_{n}-1)} + h_{n}^{2(m_{n}-\frac{1}{2})}\right)\|u\|_{H^{\ell_{n},m_{n}(Q_{n})}^{2} \\ &\leq \sum_{n=1}^{N} \Big(\tilde{C}_{n} \left(h_{n}^{2(\ell_{n}-1)} + h_{n}^{2(m_{n}-\frac{1}{2})}\right)\|u\|_{H^{\ell_{n},m_{n}(Q_{n})}^{2} \\ &\leq \sum_{n=1}^{N} \Big(\tilde{C}_{n} \left(h_{n}^{2(\ell_{n}-1)} + h_{n}^{2(\ell_{n}-\frac{1}{2})}\right)\|u\|_{H^$$

A priori Discretization Error Estimate

Theorem (A priori Disscretization Error Estimate)

$$\|u-u_h\|_h \leq (1+\frac{\mu_b}{\mu_c}) \sum_{n=1}^N \left(\tilde{C}_n \left(h_n^{2(\ell_n-1)} + h_n^{2(m_n-\frac{1}{2})} \right) \|u\|_{H^{\ell_n,m_n}(Q_n)}^2$$

We remark that for the case of highly smooth solutions, i.e., $p+1 \leq \min(\ell_n, m_n)$, the above estimate takes the form

$$\begin{aligned} \|u - u_h\|_h &\leq C \sum_{n=1}^N h_n^p \|u\|_{H^{p+1,p+1}(Q_n)} \\ &\leq C h^p \|u\|_{H^{p+1,p+1}(Q)} \end{aligned}$$

where the last estimate holds if $u \in H^{p+1,p+1}(Q)$ and $h = \max\{h_n\}$ is assumed.

	Time Multi-Patch Space-Time IgA		
www.oeaw.ac.at	U. Langer, Parallel Space-Time	IgA Solvers	

(sp cG, mp dG) IgA for d = 1 and p = 2, 3, 4

www.oeaw.ac.at

(sp cG, mp dG) IgA for d = 1 and p = 2, 3, 4

Error in the dG-norm and convergence rate for the exact solution

$$u(x,t) = \sin(\pi x)\sin(\frac{\pi}{2}(t+1))$$

and for B-Spline degrees 2, 3 and 4

	p = 2		p = 3		<i>p</i> = 4	
refinement	error	eoc	error	eoc	error	eoc
0	2.85633E-02	-	3.85617E-02	-	9.18731E-03	-
1	5.68232E-02	2.33	7.15551E-03	2.43	7.87619E-04	3.54
2	1.34212E-02	2.08	8.11296E-04	3.14	4.62549E-05	4.09
3	3.30721E-03	2.02	9.84754E-05	3.04	2.90675E-06	3.99
4	8.23704E-04	2.01	1.22142E-05	3.01	1.84067E-07	3.98
5	2.05716E-04	2.00	1.52376E-06	3.00	1.16139E-08	3.99
6	5.14138E-05	2.00	1.90375E-07	3.00	7.29917E-10	3.99
7	1.28522E-05	2.00	2.37936E-08	3.00	4.85647E-11	3.91

	Time Multi-Patch Space-Time IgA		
www.oeaw.ac.at	U. Langer, Parallel Space-Ti	me IgA Solvers	

(mp cG, mp dG) IgA for d = 1 and p = 2, 3

www.oeaw.ac.at

Outline

- 2 Time Multi-Patch Space-Time IgA
- 3 Space-Time Solvers
- 4 Conclusions & Outlooks

Introduction Time Multi-Patch Space-Time IgA Space-Time Solvers Conclusions & Outlooks
www.oeaw.ac.at U. Langer, Parallel Space-Time IgA Solvers

One huge system of IgA equations

Once the basis is chosen, the IgA scheme (9) can be rewritten as a huge system of algebraic equations of the form

$$\mathbf{L}_h \mathbf{u}_h = \mathbf{f}_h \tag{11}$$

for determining the vector $\mathbf{u}_h = ((u_{1,i})_{i \in \mathcal{I}_1}, \dots, (u_{N,i})_{i \in \mathcal{I}_N}) \in \mathbb{R}^{N_h}$ of the control points of the IgA solution

$$u_h(x,t) = \sum_{i \in \mathcal{I}_n} u_{n,i} \varphi_{n,i}(x,t), \ (x,t) \in \overline{Q}_n, \ n = 1, \dots, N,$$

solving the IgA scheme (9). The system matrix L_h is the usual Galerkin (stiffness) matrix, and f_h is the rhs (load) vector. The matrix L_h is non-symmetric, but positive definite !

		Space-Time Solvers	
www.oeaw.ac.at	U. Langer, Parallel Space-Time	IgA Solvers	

System Matrix L_h

The Galerkin matrix L_h can be rewritten in the block form

$$\mathbf{L}_{h} = \begin{pmatrix} \mathbf{A}_{1} & & & \\ -\mathbf{B}_{2} & \mathbf{A}_{2} & & & \\ & -\mathbf{B}_{3} & \mathbf{A}_{3} & & \\ & & \ddots & \ddots & \\ & & & -\mathbf{B}_{N} & \mathbf{A}_{N} \end{pmatrix},$$

with the matrices $\mathbf{A}_{n} := \mathbf{M}_{n,x} \otimes \mathbf{K}_{n,t} + \mathbf{K}_{n,x} \otimes \mathbf{M}_{n,t} \text{ for } n = 1, \dots, N,$ $\mathbf{B}_{n} := \widetilde{\mathbf{M}}_{n,x} \otimes \mathbf{N}_{n,t} \text{ for } n = 2, \dots, N.$

		Space-Time Solvers	
www.oeaw.ac.at	U. Langer, Parallel Space-Time	IgA Solvers	

Parallel Space-Time Multigrid Solvers

Solve

$$\mathbf{L}_{h}\mathbf{u}_{h} = \mathbf{f}_{h}, \quad \text{with} \quad \mathbf{L}_{h} = \begin{pmatrix} \mathbf{A}_{1} & & \\ -\mathbf{B}_{2} & \mathbf{A}_{2} & & \\ & \ddots & \ddots & \\ & & -\mathbf{B}_{N} & \mathbf{A}_{N} \end{pmatrix}$$

by the time-parallel MGM proposed by Gander & Neumüller ('16): Ingredients:

- Time-Restriction and Prolongation
- Smoother

		Space-Time Solvers	
www.oeaw.ac.at	U. Langer, Parallel Space-Time	e IgA Solvers	

Time-Restriction

Two time-slabs are restricted to a single time-slab. Assumption: Same basis on each slab.

 Introduction
 Time Multi-Patch Space-Time IgA
 Space-Time Solvers
 Conclusions & Outlooks

 www.oeaw.ac.at
 U. Langer, Parallel Space-Time IgA Solvers
 Solvers

Smoother

Inexact damped block Jacobi smoother:

$$\mathbf{u}_{h}^{(k+1)} = \mathbf{u}_{h}^{(k)} + \omega_{t} \mathbf{D}_{h}^{-1} \left[\mathbf{f}_{h} - \mathbf{L}_{h} \mathbf{u}_{h}^{(k)} \right]$$
 for $k = 1, 2, ...$

with
$$\omega_t = \frac{1}{2}$$
 and $\omega_t = \frac{1}{2}\mathbf{D}_h := \text{diag}\{\mathbf{A}_n\}_{n=1,\dots,N}$

- Parallel w.r.t. time
- Replace \mathbf{D}_h^{-1} by multigrid $\widehat{\mathbf{D}}_h^{-1}$ w.r.t space \rightarrow parallel in space

 Introduction
 Time Multi-Patch Space-Time IgA
 Space-Time Solvers
 Conclusions & Outlooks

 www.oeaw.ac.at
 U. Langer, Parallel Space-Time IgA Solvers

Parallel Solver Studies for d = 3 and p = 1

Figure: Computational spatial domain Ω decomposed into 4096 elements (left) and distributed over 32 processors (right). The IgA solution

 $u_h(x,t) \approx u(x,t) = \sin(\pi x_1)\sin(\pi x_2)\sin(\pi x_3)\sin(\pi t)$ is plotted at t = 0.5.

Parallel Solver Studies for d = 3 and p = 1

Convergence results in the $\|\cdot\|_h$ - norm for the regular solution

 $u(x,t) = \sin(\pi x_1)\sin(\pi x_2)\sin(\pi x_3)\sin(\pi t)$

as well as iteration numbers and solving times for the parallel space-time multigrid preconditioned GMRES method on Vulcan

Ν	overall dof	$ u - u_h _h$	eoc	C _X	Ct	cores	iter	time [s]
1	1 125	3.56223E-01	-	1	1	1	1	0.03
2	13 122	1.77477E-01	1.01	1	2	2	13	1.87
4	176 868	8.86255E-02	1.00	1	4	4	15	21.47
8	2 587 464	4.42868E-02	1.00	4	8	32	15	100.48
16	39 546 000	2.21376E-02	1.00	32	16	512	17	94.32
32	618 246 432	1.10675E-02	1.00	256	32	8192	17	162.90
64	9 777 365 568	5.53340E-03	1.00	2048	64	131072	17	211.33

Introduction

ime Multi-Patch Space-Time Ig/

Space-Time Solvers

Conclusions & Outlooks

www.oeaw.ac.at

Parallel Solver Studies for d = 3 and p = 1

Convergence results in the norm $\|\cdot\|_h$ for the low regularity solution

 $u(x, t) = \cos(\beta x_1) \cos(\beta x_2) \cos(\beta x_3)(1-t)^{\alpha} \in H^{s,\alpha+\frac{1}{2}-\varepsilon}(Q)$, with $\alpha = 0.75$ and $\beta = 0.3$, for an arbitrary $s \ge 2$ and for an arbitrary small $\varepsilon > 0$, as well as iteration numbers and solving times for the parallel space-time multigrid preconditioned GMRES method on Vulcan BlueGene/Q at LLNL

Ν	overall dof	$ u - u_h _h$	eoc	C _X	Ct	cores	iter	time [s]
1	1 125	1.58022E-02	-	1	1	1	1	0.03
2	13 122	8.88627E-03	0.83	1	2	2	13	2.00
4	176 868	5.41668E-03	0.71	1	4	4	15	21.48
8	2 587 464	3.33881E-03	0.70	4	8	32	15	100.57
16	39 546 000	2.05545E-03	0.70	32	16	512	17	94.43
32	618 246 432	1.25859E-03	0.71	256	32	8192	17	171.83
64	9 777 365 568	7.65921E-04	0.72	2048	64	131072	17	211.49

Introduction

ime Multi-Patch Space-Time IgA

Space-Time Solvers

New Space-Time Multigrid Solver / Preconditioner

Utilizing the tensor product structure

$$\mathbf{A} = \mathbf{A}_{\mathbf{n}} = \mathbf{K}_t \otimes \mathbf{M}_x + \mathbf{M}_t \otimes \mathbf{K}_x,$$

to construct a cheap approximation $\widehat{\mathbf{A}}^{-1}$ to \mathbf{A}^{-1} , i.e., $\widehat{\mathbf{D}}^{-1}$ to \mathbf{D}^{-1} :

- $\blacksquare \mathbf{K}_t \neq \mathbf{K}_t^T, \, \mathbf{M}_t \neq \mathbf{M}_t^T$
- K_t and M_t are small ("1d" matrices) compared to
 K_x and M_x ("1d, 2d, 3d" SPD-matrices).

Idea: Perform decomposition of $M_t^{-1}K_t$

- **1** Fast Diagonalization: $M_t^{-1}K_t = XDX^{-1}$, $X, D \in \mathbb{C}^{n_t \times n_t}$
- **2** Complex-Schur: $\mathbf{M}_t^{-1}\mathbf{K}_t = \mathbf{QTQ}^*, \quad \mathbf{Q}, \mathbf{T} \in \mathbb{C}^{n_t \times n_t}$
- **3** Real-Schur: $\mathbf{M}_t^{-1}\mathbf{K}_t = \mathbf{Q}\mathbf{T}\mathbf{Q}^T, \quad \mathbf{Q}, \mathbf{T} \in \mathbb{R}^{n_t \times n_t}$
- 4 Ref.: Sangalli & Tani (2016), Tani (2017) for elliptic BVP

		Space-Time Solvers	
www.oeaw.ac.at	U. Langer, Parallel Space-Time	IgA Solvers	

New Space-Time Multigrid Solver / Preconditioner

Utilizing the tensor product structure

$$\mathbf{A} = \mathbf{A}_{\mathbf{n}} = \mathbf{K}_t \otimes \mathbf{M}_x + \mathbf{M}_t \otimes \mathbf{K}_x,$$

to construct a cheap approximation $\widehat{\mathbf{A}}^{-1}$ to \mathbf{A}^{-1} , i.e., $\widehat{\mathbf{D}}^{-1}$ to \mathbf{D}^{-1} :

- $\blacksquare \mathbf{K}_t \neq \mathbf{K}_t^T, \, \mathbf{M}_t \neq \mathbf{M}_t^T$
- K_t and M_t are small ("1d" matrices) compared to
 K_x and M_x ("1d, 2d, 3d" SPD-matrices).

Idea: Perform decomposition of $M_t^{-1}K_t$

- **1** Fast Diagonalization: $M_t^{-1}K_t = XDX^{-1}$, $X, D \in \mathbb{C}^{n_t \times n_t}$
- **2** Complex-Schur: $M_t^{-1}K_t = QTQ^*$, $Q, T \in \mathbb{C}^{n_t \times n_t}$
- **3** Real-Schur: $\mathbf{M}_t^{-1}\mathbf{K}_t = \mathbf{Q}\mathbf{T}\mathbf{Q}^T, \quad \mathbf{Q}, \mathbf{T} \in \mathbb{R}^{n_t \times n_t}$
- 4 Ref.: Sangalli & Tani (2016), Tani (2017) for elliptic BVP

		Space-Time Solvers	
www.oeaw.ac.at	U Langer Parallel Space-Time	e løA Solvers	

Fast Diagonalization

Eigenvalue decomposition $M_t^{-1}K_t = XDX^{-1}$, i.e. $K_tX = M_tXD$ **D** = diag(λ_i), $\lambda_i \in \mathbb{C}$ (Eigenvalues) **X** $\in \mathbb{C}^{n_t \times n_t}$ (Eigenvectors), $\mathbf{X}^{-1} \neq \mathbf{X}^*$! Defining $\mathbf{Y} := (\mathbf{M}_t \mathbf{X})^{-1}$ gives • $M_{+} = Y^{-1}X^{-1}$ • $K_t = Y^{-1}DX^{-1}$

diag $((\mathbf{K}_x + \lambda_i \mathbf{M}_x)^{-1})$

Introduction	Time Multi-Patch Space-Time IgA	Space-Time Solvers	Conclusions & Outlooks
www.oeaw.ac.at	U. Langer, Parallel Space-Time	IgA Solvers	

Fast Diagonalization

Eigenvalue decomposition $\mathbf{M}_t^{-1}\mathbf{K}_t = \mathbf{X}\mathbf{D}\mathbf{X}^{-1}$, i.e. $\mathbf{K}_t\mathbf{X} = \mathbf{M}_t\mathbf{X}\mathbf{D}$ **D** = diag (λ_i) , $\lambda_i \in \mathbb{C}$ (Eigenvalues) **X** $\in \mathbb{C}^{n_t \times n_t}$ (Eigenvectors), $\mathbf{X}^{-1} \neq \mathbf{X}^*$!

Defining $\mathbf{Y} := (\mathbf{M}_t \mathbf{X})^{-1}$ gives

$$\blacksquare \mathbf{M}_t = \mathbf{Y}^{-1} \mathbf{X}^{-1}$$

$$\mathbf{K}_t = \mathbf{Y}^{-1} \mathbf{D} \mathbf{X}^{-1}$$

Hence, we obtain

$$\mathbf{A}^{-1} = (\mathbf{K}_t \otimes \mathbf{M}_x + \mathbf{M}_t \otimes \mathbf{K}_x)^{-1}$$

= $((\mathbf{Y}^{-1} \otimes \mathbf{I}) \cdot (\mathbf{D} \otimes \mathbf{M}_x + \mathbf{I} \otimes \mathbf{K}_x) \cdot (\mathbf{X}^{-1} \otimes \mathbf{I}))^{-1}$
= $(\mathbf{X} \otimes \mathbf{I}) \cdot \underbrace{(\mathbf{D} \otimes \mathbf{M}_x + \mathbf{I} \otimes \mathbf{K}_x)^{-1}}_{\operatorname{diag}((\mathbf{K}_x + \lambda; \mathbf{M}_x)^{-1})} \cdot (\mathbf{Y} \otimes \mathbf{I})$

		Space-Time Solvers	
www.oeaw.ac.at	U. Langer, Parallel Space-Tim	ne IgA Solvers	

Solver for $\mathbf{K}_{x} + \lambda_{i} \mathbf{M}_{x}$

■ Case 1: $\lambda_i \in \mathbb{R}^+$: ■ K_x + λ_i M_x... SPD matrix \rightsquigarrow solvers available, e.g., DD, MG ■ Case 2: $\lambda_i = \alpha_i + \beta_i i \in \mathbb{C}, \ \alpha_i > 0$: ■ (K_x + λ_i M_x)^H ≠ K_x + λ_i M_x ■ Rewrite as symmetric, indefinite problem: $= (K_x + \alpha_i M_x)^H = M_x$

$$\overline{A}_{i} := \begin{pmatrix} \mathbf{K}_{\mathbf{x}} + \alpha_{i}\mathbf{M}_{\mathbf{x}} & \beta\mathbf{M}_{\mathbf{x}} \\ \beta\mathbf{M}_{\mathbf{x}} & -(\mathbf{K}_{\mathbf{x}} + \alpha_{i}\mathbf{M}_{\mathbf{x}}) \end{pmatrix}$$

Robust preconditioner¹ cond₂ $(P_i^{-1}\overline{A}_i) \leq \sqrt{2}$:

$$P_{i} := \begin{pmatrix} \mathsf{K}_{\mathsf{x}} + (\alpha_{i} + |\beta_{i}|)\mathsf{M}_{\mathsf{x}} & \mathsf{0} \\ 0 & \mathsf{K}_{\mathsf{x}} + (\alpha_{i} + |\beta_{i}|)\mathsf{M}_{\mathsf{x}} \end{pmatrix}$$

• $\mathbf{K}_{\mathbf{x}} + (\alpha_i + |\beta_i|)\mathbf{M}_{\mathbf{x}}$ is a SPD matrix \rightsquigarrow DD, MG

		Space-Time Solvers	
www.oeaw.ac.at	U. Langer, Parallel Space-Tir	ne IgA Solvers	

Solver for $\mathbf{K}_{x} + \lambda_{i} \mathbf{M}_{x}$

■ Case 1: $\lambda_i \in \mathbb{R}^+$: ■ $\mathbf{K}_x + \lambda_i \mathbf{M}_x \dots$ SPD matrix \rightsquigarrow solvers available, e.g., DD, MG ■ Case 2: $\lambda_i = \alpha_i + \beta_i \mathbf{i} \in \mathbb{C}, \ \alpha_i > 0$: ■ $(\mathbf{K}_x + \lambda_i \mathbf{M}_x)^H \neq \mathbf{K}_x + \lambda_i \mathbf{M}_x$ ■ Rewrite as symmetric, indefinite problem: $\overline{\alpha} \qquad (\mathbf{K}_x + \alpha_i \mathbf{M}_x \qquad \beta \mathbf{M}_x)$

$$\overline{A}_{i} := \begin{pmatrix} \mathbf{K}_{x} + \alpha_{i}\mathbf{M}_{x} & \beta\mathbf{M}_{x} \\ \beta\mathbf{M}_{x} & -(\mathbf{K}_{x} + \alpha_{i}\mathbf{M}_{x}) \end{pmatrix}$$

Robust preconditioner¹ cond₂($P_i^{-1}\overline{A}_i$) $\leq \sqrt{2}$:

$$P_i := \begin{pmatrix} \mathsf{K}_x + (\alpha_i + |\beta_i|)\mathsf{M}_x & 0\\ 0 & \mathsf{K}_x + (\alpha_i + |\beta_i|)\mathsf{M}_x \end{pmatrix}$$

• $\mathbf{K}_x + (\alpha_i + |\beta_i|)\mathbf{M}_x$ is a SPD matrix \rightsquigarrow DD, MG

¹ W. Zulehner, S	IAM J. Matrix	Anal. & Appl), 536–560, 2011
-----------------------------	---------------	--------------	--	------------------

		Space-Time Solvers	
www.oeaw.ac.at	U. Langer, Parallel Space-Tim	ne IgA Solvers	

Solver for $\mathbf{K}_{x} + \lambda_{i} \mathbf{M}_{x}$

■ Case 1: $\lambda_i \in \mathbb{R}^+$: ■ K_x + λ_i M_x... SPD matrix \rightsquigarrow solvers available, e.g., DD, MG ■ Case 2: $\lambda_i = \alpha_i + \beta_i i \in \mathbb{C}, \ \alpha_i > 0$: ■ (K_x + λ_i M_x)^H ≠ K_x + λ_i M_x ■ Rewrite as symmetric, indefinite problem: $\overline{A}_i := \begin{pmatrix} K_x + \alpha_i M_x & \beta M_x \\ \beta M_x & -(K_x + \alpha_i M_x) \end{pmatrix}$

Robust preconditioner¹ $cond_2(P_i^{-1}\overline{A}_i) \leq \sqrt{2}$:

$$P_i := \begin{pmatrix} \mathsf{K}_x + (\alpha_i + |\beta_i|)\mathsf{M}_x & 0\\ 0 & \mathsf{K}_x + (\alpha_i + |\beta_i|)\mathsf{M}_x \end{pmatrix}$$

• $\mathbf{K}_{x} + (\alpha_{i} + |\beta_{i}|)\mathbf{M}_{x}$ is a SPD matrix $\sim \rightarrow$ DD, MG

¹W. Zulehner, SIAM J. Matrix Anal. & Appl., 32(2), 536–560, 2011

		Space-Time Solvers	
www.oeaw.ac.at	U. Langer, Parallel Space-Time I	gA Solvers	

Numerical Tests

- Parallel application for each $i = 1, \ldots, n_t$
- Unfortunately, cond₂(X) >> 1 (Eigenvectors)
- Reliable approximation \overline{A} only for small n_t .

$n_t - p$	<i>p</i> = 2	<i>p</i> = 3	<i>p</i> = 4	<i>p</i> = 5	<i>p</i> = 6	<i>p</i> = 7	<i>p</i> = 8
2	64	309	362	766	1706	3907	9501
4	481	1036	3037	9419	41959	39323	73946
8	2869	16118	39693	74370	180054	472758	1e+06
16	34332	188263	463148	1e+06	6e+06	3e+07	1e+08
32	701306	2e+06	1e+07	6e+07	4e+08	7e+09	1e+10
64	5e+07	4e+07	3e+08	3e+09	6e+10	3e+11	1e+12
128	2e+08	1e+09	1e+10	3e+11	2e+13	5e+13	4e+14

Table: condition number of **X** : $\theta = 0.01$ and $|t_{i+1} - t_i| = 0.1$.

Introduction

Time Multi-Patch Space-Time Ig

Space-Time Solvers

Complex Schur decomposition

The complex Schur decomposition gives $M_t^{-1}K_t = QTQ^*$

- $\mathbf{T} = \text{upperTriag}(T_{ij}) \in \mathbb{C}, \ T_{ii} = \lambda_i \text{ (Eigenvalues)}$
- $\mathbf{Q} \in \mathbb{C}^{n_t \times n_t}$ with $\mathbf{Q}^{-1} = \mathbf{Q}^* \to cond_2(\mathbf{Q}) = 1$.

Again, by defining $\mathbf{Y} := (\mathbf{M}_t \mathbf{Q}^*)^{-1}$, we obtain

- $\blacksquare \mathsf{M}_t = \mathsf{Y}^{-1} \mathsf{Q}$
- $\mathbf{K}_t = \mathbf{Y}^{-1}\mathbf{T}\mathbf{Q}$.

Hence, we have

 $\mathbf{A}^{-1} = (\mathbf{M}_{\mathsf{X}} \otimes \mathbf{K}_{t} + \mathbf{K}_{\mathsf{X}} \otimes \mathbf{M}_{t})^{-1}$ = $(\mathbf{Q}^{*} \otimes \mathbf{I}) \cdot (\mathbf{T} \otimes \mathbf{M}_{\mathsf{X}} + \mathbf{I} \otimes \mathbf{K}_{\mathsf{X}})^{-1} \cdot (\mathbf{Y} \otimes \mathbf{I})$

		Space-Time Solvers	
www.oeaw.ac.at	U. Langer, Parallel Space-Time	e IgA Solvers	

Complex Schur decomposition

The complex Schur decomposition gives $M_t^{-1}K_t = QTQ^*$

- $\mathbf{T} = \text{upperTriag}(T_{ij}) \in \mathbb{C}, \ T_{ii} = \lambda_i \text{ (Eigenvalues)}$
- $\mathbf{Q} \in \mathbb{C}^{n_t \times n_t}$ with $\mathbf{Q}^{-1} = \mathbf{Q}^* \to cond_2(\mathbf{Q}) = 1$.

Again, by defining $\mathbf{Y} := (\mathbf{M}_t \mathbf{Q}^*)^{-1}$, we obtain

- $\blacksquare \mathbf{M}_t = \mathbf{Y}^{-1}\mathbf{Q}$
- $\blacksquare \mathbf{K}_t = \mathbf{Y}^{-1}\mathbf{T}\mathbf{Q}.$

Hence, we have

$$\begin{aligned} \mathbf{A}^{-1} &= (\mathbf{M}_{x} \otimes \mathbf{K}_{t} + \mathbf{K}_{x} \otimes \mathbf{M}_{t})^{-1} \\ &= (\mathbf{Q}^{*} \otimes \mathbf{I}) \cdot (\mathbf{T} \otimes \mathbf{M}_{x} + \mathbf{I} \otimes \mathbf{K}_{x})^{-1} \cdot (\mathbf{Y} \otimes \mathbf{I}) \end{aligned}$$

Introduction	Time Multi-Patch Space-Time IgA	Space-Time Solvers	Conclusions & Outlooks
www.oeaw.ac.at	U. Langer, Parallel Space-Time	IgA Solvers	

Complex Schur decomposition (cont.)

 $\textbf{T} \otimes \textbf{M}_{x} + \textbf{I} \otimes \textbf{K}_{x}$ has the following structure

 $\begin{pmatrix} \mathbf{K}_{x} + \lambda_{1}\mathbf{M}_{x} & T_{12}\mathbf{M}_{x} & \dots \\ 0 & \mathbf{K}_{x} + \lambda_{2}\mathbf{M}_{x} & T_{23}\mathbf{M}_{x} \\ \vdots & 0 & \ddots & T_{n_{t}-1n_{t}}\mathbf{M}_{x} \\ 0 & \dots & 0 & \mathbf{K}_{x} + \lambda_{n_{t}}\mathbf{M}_{x} \end{pmatrix}$

- Application is done staggered
- $\mathbf{K}_{x} + \lambda_{i} \mathbf{M}_{x}$ has the same structure as in the diagonal case.
- **Real Schur decomposition** works similar → only real arithmetic.

		Space-Time Solvers	
www.oeaw.ac.at	U. Langer, Parallel Space-Time	IgA Solvers	

YETI-footprint: Space mp cG & time mp dG lgA

Introduction	Time Mu	lti-Patch Space-Time IgA	Space-Time Solvers	Conclusions & Outlooks
www.oeaw.ac.at		U. Langer. Parallel Space-Tir	ne IgA Solvers	

Numerical Tests: Spatial Solver: $\mathbf{K}_{x} + \lambda_{i} \mathbf{M}_{x}$

$\bullet \ \lambda_i \in \mathbb{C}$

- MinRes method with tolerance $\varepsilon = 10^{-8}$
- $(\mathbf{K}_{\mathsf{x}} + (\alpha_i + |\beta_i|)\mathbf{M}_{\mathsf{x}})^{-1} \rightarrow \text{Direct solver}$

Maximum number of iterations for $i = 1, \ldots, n_t$.

ref. x and t	<i>p</i> = 2	<i>p</i> = 3	<i>p</i> = 4	<i>p</i> = 5	<i>p</i> = 6
1	18	22	22	22	22
2	20	22	22	22	21
3	22	22	22	21	21
4	22	22	22	21	21
5	22	22	22	20	22

Introduction

ime Multi-Patch Space-Time Ig

Space-Time Solvers

Numerical Tests: Sparse Direct Solver

- Degree $p_x, p_t = (3, 3);$ $\theta = 0.01 \text{ and } |t_i t_{i-1}| = 0.1$
- $\overline{A}_i \sim \text{MinRes}$ with $\varepsilon = 10^{-4}$ (It. ≤ 10).
- $(\mathbf{K}_{x} + (\alpha_{i} + |\beta_{i}|)\mathbf{M}_{x})^{-1} \rightarrow \text{Direct solver}$
- Direct Solver: PARDISO
- Tolerance Multigrid $\varepsilon = 10^{-8}$

#dofs	r	ef	#slabs	MG-It Direct Di		Direct		iag
	x	t			Setup	Solving	Setup	Solving
15950	2	3	2	7	1.9	0.7	0.04	2.3
97020	3	3	4	7	38.6	8.5	0.3	19.4
665720	4	3	8	7	1008	94.6	3.7	183.8
#dofs	r	ef	#slabs	MG-It	C-Schur		R-Schur	
15950	2	3	2	7	0.05	2.4	0.04	1.3
97020	3	3	4	7	0.5	19.9	0.3	11.1
665720	4	3	8	7	5.4	187.3	3.7	108.0

Introduction

ime Multi-Patch Space-Time IgA

Space-Time Solvers

Conclusions & Outlooks

www.oeaw.ac.at

Numerical Tests: Parallelization in time - Real Schur

- Degree $p_x, p_t = (3, 3)$, refinement $r_x, r_t = (2, 3)$
- $\theta = 0.01$ and $|t_i t_{i-1}| = 0.1$;
- $(\mathbf{K}_{x} + (\alpha_{i} + |\beta_{i}|)\mathbf{M}_{x})^{-1} \rightarrow \text{Direct solver}$
- Direct Solver: PARDISO
- Tolerance $\varepsilon = 10^{-8}$
- #slabs = #Processors.

#dofs	#slabs	MG-It.	Setup	Solving	4.5 Weak Scaling
48510	2	7	0.088	2.8	4 - Setup Solving
97020	4	7	0.092	3.1	3.5
194040	8	7	0.093	3.2	3-
388080	16	7	0.093	3.3	9,225 E 2
776160	32	7	0.094	3.4	1.5 -
1552320	64	7	0.096	3.5	
3104640	128	7	0.100	3.5	0.5 -
6209280	256	7	0.104	3.9	0 2 4 8 16 32 64 128 256 Procs

Introduction

ime Multi-Patch Space-Time IgA

Space-Time Solvers

Conclusions & Outlooks

www.oeaw.ac.at

Parallelization in Space & Time – Complex Schur

- Spatial domain YETI-Footprint (84 patches)
- Degree $p_x, p_t = (3,3), \theta = 0.01$ and $t \in [0,4]$
- Parallel MG as preconditioner/solver for spatial problems

#dofs	refs	#sI .	C _{total}	Cx	Ct	it	Setup	Solving
42028	1	4	2	1	2	6	0.37	431.4
84056	1	8	4	1	4	6	0.39	441.4
193368	2	8	16	4	4	6	0.90	292.5
386736	2	16	32	4	8	7	0.46	345.3
1092784	3	16	128	16	8	7	0.55	360.8
2185568	3	32	256	16	16	7	0.72	326.7
4371136	3	64	512	16	32	7	0.80	358.3

Introduction

ime Multi-Patch Space-Time Ig

Space-Time Solvers

Parallelization in Space & Time – Real Schur

- Spatial domain YETI-Footprint (84 patches)
- Degree $p_x, p_t = (3,3), \theta = 0.01$ and $t \in [0,4]$
- Parallel MG as preconditioner/solver for spatial problems

#dofs	refs	#sI .	C _{total}	Cx	Ct	it	Setup	Solving
42028	1	4	2	1	2	9	0.37	316.1
84056	1	8	4	1	4	9	0.39	322.2
193368	2	8	16	4	4	10	0.42	241.3
386736	2	16	32	4	8	10	0.44	245.7
1092784	3	16	128	16	8	11	0.53	267.2
2185568	3	32	256	16	16	11	0.54	270.6
4371136	3	64	512	16	32	11	0.76	296.9

Introduction

ime Multi-Patch Space-Time Ig

Space-Time Solvers

Parallelization in Space & Time – Real Schur

- Spatial domain YETI-Footprint (84 patches)
- Degree $p_x, p_t = (3, 3), \ \theta = 0.01 \ \text{and} \ t \in [0, 4]$
- Parallel MG as preconditioner/solver for spatial problems

#dofs	refs	#sl.	C _{total}	C_X	Ct	it	Setup	Solving	serial	$c_t = 1$
42028	1	4	2	1	2	9	0.37	316.1	0.59	36.1
84056	1	8	4	1	4	9	0.39	322.2	1.06	71.9
193368	2	8	16	4	4	10	0.42	241.3	1.02	45.7
386736	2	16	32	4	8	10	0.44	245.7	1.86	90.9
1092784	3	16	128	16	8	11	0.53	267.2	1.79	91.1
2185568	3	32	256	16	16	11	0.54	270.6	3.41	179.8
4371136	3	64	512	16	32	11	0.76	296.9	6.53	377.8

Introduction

ime Multi-Patch Space-Time Ig

Space-Time Solvers

Conclusions & Outlooks

www.oeaw.ac.at

Numerical Tests: Parallelization in Space & Time

- Alternative Version non-symmetric IETI-DP for A_n
- Spatial domain Ω : 4 × 4 square grid
- Degree $p_x, p_t = (3, 3), \theta = 0.01$ and $|t_i t_{i-1}| = 0.1$.
- GMRes-IETI-DP in the smoother (3 Iterations).
- Coarsening only in time!

#dofs	ref x	#sI .	C _{total}	C _X	Ct	lt.	Setup	Solving
23276	2	4	2	1	2	8	5.7	22.3
46552	2	8	4	1	4	8	6.9	29.5
93104	2	16	8	1	8	8	8.3	36.6
267696	3	16	32	4	8	8	9.7	44.5
535392	3	32	64	4	16	8	11.3	54.0
1774432	4	32	256	16	16	7	9.6	82.5
3548864	4	64	512	16	32	10	11.6	185.3

Introduction

ime Multi-Patch Space-Time IgA

Space-Time Solvers

Outline

1 Introduction

- 2 Time Multi-Patch Space-Time IgA
- 3 Space-Time Solvers
- 4 Conclusions & Outlooks

Introduction Time Multi-Patch Space-Time IgA Space-Time Solvers Conclusions & Outlooks
www.oeaw.ac.at U. Langer, Parallel Space-Time IgA Solvers

Conclusions & Ongoing Work & Outlook

- Space-time IgA: space singlepatch cG and time-multipatch dG
- Space-time IgA: space multipatch cG and time-multipatch dG
- Space-time IgA: Fast generation via tensor techniques
- Space-time IgA: Fast parallel solvers
- Functional a posteriori estimates and THB-Spline adaptivity
 ⇒ joint work with S. Matculevich and S. Repin
 ⇒ talk by Svetlana Matculevich on Thursday !
- space-time multipatch dG lgA + adaptivity + fast generation + efficient parallel solvers ???
- Adaptive Space-Time FEM
 - \Longrightarrow talk by Andreas Schafelner on Tuesday !

			Conclusions & Outlooks
www.oeaw.ac.at	U. Langer, Parallel Space-Time	IgA Solvers	

Conclusions & Ongoing Work & Outlook

- Space-time IgA: space singlepatch cG and time-multipatch dG
- Space-time IgA: space multipatch cG and time-multipatch dG
- Space-time IgA: Fast generation via tensor techniques
- Space-time IgA: Fast parallel solvers
- Functional a posteriori estimates and THB-Spline adaptivity
 - \implies joint work with S. Matculevich and S. Repin
 - \implies talk by Svetlana Matculevich on Thursday !
- space-time multipatch dG lgA + adaptivity + fast generation + efficient parallel solvers ???
- Adaptive Space-Time FEM
 - \implies talk by Andreas Schafelner on Tuesday !

			Conclusions & Outlooks
www.oeaw.ac.at	U. Langer, Parallel Space-Time	IgA Solvers	

Conclusions & Ongoing Work & Outlook

- Space-time IgA: space singlepatch cG and time-multipatch dG
- Space-time IgA: space multipatch cG and time-multipatch dG
- Space-time IgA: Fast generation via tensor techniques
- Space-time IgA: Fast parallel solvers
- Functional a posteriori estimates and THB-Spline adaptivity
 - \implies joint work with S. Matculevich and S. Repin
 - \implies talk by Svetlana Matculevich on Thursday !
- space-time multipatch dG lgA + adaptivity + fast generation + efficient parallel solvers ???
- Adaptive Space-Time FEM
 - \implies talk by Andreas Schafelner on Tuesday !

Numerical Results: Parallel Solution for p = 1

2d fixed spatial domain $\Omega = (0, 1)^2$ yielding $Q = \Omega \times (0, T) = (0, 1)^3$ Exact solution: $u(x, t) = \sin(\pi x_1) \sin(\pi x_2) \sin(\pi t)$

Figure shows space-time decomposition with 64 subdomains

Table shows parallel performance of the parallel AMG hypre preconditioned GMRES stopped after the relative residual error reduction by 10^{-10} !

	Dofs	$ u - u_h _{L_2(Q)}$	Rate	iter	time [s]	cores
	8	3.65528e-01	-	1	0.01	1
Stranger Barris Barris Contractor	27	9.39008e-02	1.961	2	0.01	1
Mar and a straight of the	125	2.32674e-02	2.013	6	0.01	1
	729	5.75635e-03	2.015	15	0.07	64
	4 913	1.43198e-03	2.007	16	0.14	64
	35 937	3.57217e-04	2.003	19	0.40	64
	274 625	8.92171e-05	2.001	24	1.04	1 024
	2 146 689	2.22941e-05	2.001	29	3.65	1 024
	16 974 593	5.57231e-06	2.000	36	21.40	1 024
	135 005 697	1.39293e-06	2.000	50	36.26	8 192
	1 076 890 625	3.48206e-07	2.000	63	156.50	16 384

This example was computed on the supercomputer Vulcan BlueGene/Q in Livermore by M. Neumüller.

			Conclusions & Outlooks
www.oeaw.ac.at	U. Langer, Parallel Space-T	Fime IgA Solvers	

Supercomputing Results on Vulcan: (3+1)D, p = 1

3d fixed spatial domain $\Omega = (0, 1)^3$ yielding $Q = \Omega \times (0, T) = (0, 1)^4$ Exact solution: $u(x, t) = \sin(\pi x_1) \sin(\pi x_2) \sin(\pi x_3) \sin(\pi t)$

Table shows parallel performance of the parallel AMG hypre preconditioned GMRES stopped after the relative residual error reduction by 10^{-6} !

dofs	$ u - u_h _{L_2(Q)}$	rate	iter	time [s]	cores
16	2.61353e-01	-	1	0.01	1
81	7.24784e-02	1.85	2	0.01	1
625	1.75301e-02	2.05	6	0.02	16
6 561	4.32537e-03	2.02	8	0.06	16
83 521	1.07679e-03	2.01	10	0.61	512
1 185 921	2.68823e-04	2.00	12	2.25	512
17 850 625	6.71720e-05	2.00	15	15.92	16 384
276 922 881	1.67895e-05	2.00	21	53.78	16 384
4 362 470 401	4.19714e-06	2.00	30	186.42	65 536

Introduction

ime Multi-Patch Space-Time IgA

pace-Time Solvers

THANK YOU VERY MUCH!

