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By assumption: py =1 — E,N:_ll piand Jy = — Z’V L.

Opi +div(J))=r, i=1,...,N—1.

General solution - Maxwell-Stefan equations:

Di = Zdu pjdi — piJ )

J#i
with d;j = 1/(|c|*M;M;Dy).

For isobaric and isothermal process:
D; = Vx; + B(zixi — pi(z - x))VP
In short, with D’ := (Dy, ..., Dy_1):

D/ — AJ/, A c RN_1><N_1.
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Let p' := (p1,...,pn_1), then for p € RN t >0, y € Q, we have

N—1
0ep' = div(A™(p)D(p, ®)) +r'(p), pn =1= > pi,

i=1
D'(p, ®) = (Vx; + B(zixi — pi(z - x)) V)L,

N
—AAD = "z + f(y),
i=1

Al(p) = — <d23 +(diz—ds)p1 (di3 — di2)p )
i(p) (doz — di2)p2 di3 + (di2 — di3)p2

and dij = 1/(‘C‘2MiMjDU)' D,'j = Dj,‘ > 0.
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o Bothe "11: Rigorous inversion of flux relation, D = AJ, and
local existence of solutions [1].

o Jiingel and Stelzer '13: Global existence for equal molar mass
and d < 3 [11].

@ Chen and Jiingel '15, Marion and Temam '15: Global
existence for different molar mass and d < 3 [6, 12].

o Daus, Jingel and Tang '18: Exponential time decay with
more involved reaction terms [7].
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Domain and BC: Q ¢ R is bounded with
o = FD,- U r/\/e c Co’l, FD,- N FNe = and meas(FD,-) > 0.

Ji-rv=00n09Q, i=1,...,N,
Vod-v=00n Ty, &= onlp;,

with &P € H1(Q) N L>=(Q).
Initial data: p9,...,p% >0 and Z,N:l P =1
Background charge: f € L*=(Q).

Production rates: r € C([0,1]V; R),
vazl ri(p)logx; < C, for all 0 < p1,...,pny < 1.
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Global nonnegative weak solutions:

Theorem (O.L. and A. Jiingel, work in progress)
Let AI-A4 hold. There exist, for every T > 0, bounded weak

solutions p1, ..., pn € [0, 1] satisfying
pi € L2(0, T; HX(Q)), d:pi € L2(0, T; (HY(Q))),
®el?0, T;HY(Q), i=1,...,N—1,

such that py =1 — SN .
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Define entropy by

N
=|c| > xi(logxi — 1) +|c|+—|V(d> D)2,

i=1
Entropy inequality (r = 0 and ®p constant):

N—-1
d Dj D D; D
it o == 3 [ (G- 0) (5= ) =0
dt e pPj PN pPi PN
with B(p) = (B;j(p))N._} symmetric, positive definite and

ij=1
bounded if p € (0, 1]N. In this case:
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log(x;)  log(xn) z; ZN
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©

Rewrite equation:

dep' = div(A~(p)D'(p, ®)) + r'(p) —
Oep (w, @) = div(B(p'(w, ))Vw) + r'(p(w, D).

o Discretize with implicit Euler/Galerkin and regularize.

©

Use discrete Entropy inequality to derive apriori estimate and
pass to the limit = existence of global weak solutions.
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o Galerkin-scheme in the proof allows for standard linear finite
element spaces.

o Nonlinearity and regularization:
Bep/ (w, @) = div(B(p'(w, ®))Vew) — e(w — wP)

o Recovering original variables:

Zj ZN

pi = |c|Mi(1 - SO)M'/MNeMi<wi_B(W’—M7’V>¢>

)

whereby sp € [0, 1] is the solution of the fixed point problem

N_l Z, ZN
F(s,wi, ®) = Z(l — s)Mf/MNeMi((w)’_ﬁ( ,'_"Tlv)d)> —s5=0,
i=1

fori=1,...,N—1.

N
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t=0
G L o /t::(]4l ||
o d| ]
O 05 1

Plot with equal molar massand N =3, 8=M; =D =1fori,j=1,...,3,
Z1 222:1, Z3:0,A:0.01.
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% 0.5 1
y
! M =1 ! M =1
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S04/ |
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0 '

Plot with different molar mass M; at time t = 4.
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Open questions and challenges:

o Longtime behavior and decay rate

o Numerical analysis of the scheme

o Efficient implementation of the scheme for d > 1
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Thank you for your attention.
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