A Poisson-Maxwell-Stefan model for isobaric isothermal electrically charged mixtures

Oliver Leingang,
Supervisor: Ansgar Jüngel.

Särkisaari, 8.8.2018
1 Introduction

- Motivation and application
- Macroscopic model and assumptions
Content

1 Introduction
 ▪ Motivation and application
 ▪ Macroscopic model and assumptions

2 The Poisson-Maxwell-Stefan System
 ▪ The model
 ▪ Existence of solutions
1 Introduction
 - Motivation and application
 - Macroscopic model and assumptions

2 The Poisson-Maxwell-Stefan System
 - The model
 - Existence of solutions

3 FEM in entropy variables
 - Finite element scheme
 - Numerical experiment
Content

1 Introduction
 - Motivation and application
 - Macroscopic model and assumptions

2 The Poisson-Maxwell-Stefan System
 - The model
 - Existence of solutions

3 FEM in entropy variables
 - Finite element scheme
 - Numerical experiment

4 Summary and open questions
Motivation and Application

Goal: Analyse reaction diffusion models for electrically charged mixtures.

Motivation and Application

Goal: Analyse reaction diffusion models for electrically charged mixtures.

Example: Electrolytes in electrochemical devices

Motivation and Application

Goal: Analyse reaction diffusion models for electrically charged mixtures.

Example: Electrolytes in electrochemical devices

Photo of (flexible) Dye-sensitized Solar Cells [14], cropped. Photographer: Armin Kübelbeck, CC-BY-SA, Wikimedia Commons

Motivation and Application

Goal: Analyse reaction diffusion models for electrically charged mixtures.

Example: Electrolytes in electrochemical devices

Electrolytes:

Photo of (flexible) Dye-sensitized Solar Cells [14], cropped. Photographer: Armin Kübelbeck, CC-BY-SA, Wikimedia Commons

Motivation and Application

Goal: Analyse reaction diffusion models for electrically charged mixtures.

Example: Electrolytes in electrochemical devices

Electrolytes:
- Solvent and dissolved positive and negative ions

Photo of (flexible) Dye-sensitized Solar Cells [14], cropped. Photographer: Armin Kübelbeck, CC-BY-SA, Wikimedia Commons

Motivation and Application

Goal: Analyse reaction diffusion models for electrically charged mixtures.

Example: Electrolytes in electrochemical devices

Electrolytes:

- Solvent and dissolved positive and negative ions
- Multicomponent mixture

Motivation and Application

Goal: Analyse reaction diffusion models for electrically charged mixtures.

Example: Electrolytes in electrochemical devices

Electrolytes:
- Solvent and dissolved positive and negative ions
- Multicomponent mixture
- Solvent-Solute interaction

Photo of (flexible) Dye-sensitized Solar Cells [14], cropped. Photographer: Armin Kübelbeck, CC-BY-SA, Wikimedia Commons

Motivation and Application

Goal: Analyse reaction diffusion models for electrically charged mixtures.

Example: Electrolytes in electrochemical devices

Electrolytes:
- Solvent and dissolved positive and negative ions
- Multicomponent mixture
- Solvent-Solute interaction
- Solute-Solute interactions

Physical quantities and assumptions

For $i = 1, \ldots, N$ components, $y \in \Omega \subset \mathbb{R}^d$ and $t > 0$ we define
Physical quantities and assumptions

For \(i = 1, \ldots, N \) components, \(y \in \Omega \subset \mathbb{R}^d \) and \(t > 0 \) we define
Physical quantities and assumptions

For $i = 1, \ldots, N$ components, $y \in \Omega \subset \mathbb{R}^d$ and $t > 0$ we define
Physical quantities and assumptions

For $i = 1, \ldots, N$ components, $y \in \Omega \subset \mathbb{R}^d$ and $t > 0$ we define

- $\rho_i(y, t)$... mass density,
- M_i ... molar mass,
- $c_i(y, t) = \rho_i(y, t)/M_i$... molar concentration,
- $x_i(y, t) = c_i(y, t)/|c|$... molar fraction.
For $i = 1, \ldots, N$ components, $y \in \Omega \subset \mathbb{R}^d$ and $t > 0$ we define

- $\rho_i(y, t)$... mass density,
- M_i ... molar mass,
- $c_i(y, t) = \rho_i(y, t)/M_i$... molar concentration,
- $x_i(y, t) = c_i(y, t)/|c|$... molar fraction,
- z_i ... formal charge,
- Φ ... Electrical potential,
- $r_i(y, t)$... reaction term,
- $J_i(y, t)$... partial flux,
Physical quantities and assumptions

For $i = 1, \ldots, N$ components, $y \in \Omega \subset \mathbb{R}^d$ and $t > 0$ we define

- $\rho_i(y, t)$... mass density,
- M_i ... molar mass,
- $c_i(y, t) = \rho_i(y, t)/M_i$... molar concentration,
- $x_i(y, t) = c_i(y, t)/|c|$... molar fraction.
- z_i ... formal charge,
- Φ ... Electrical potential,
- $r_i(y, t)$... reaction term,
- $J_i(y, t)$... partial flux,

Assume $\sum_{i=1}^{N} J_i = \sum_{i=1}^{N} r_i = 0$.
Physical quantities and assumptions

For \(i = 1, \ldots, N \) components, \(y \in \Omega \subset \mathbb{R}^d \) and \(t > 0 \) we define

- \(\rho_i(y, t) \) ... mass density,
- \(M_i \) ... molar mass,
- \(c_i(y, t) = \rho_i(y, t)/M_i \) ... molar concentration,
- \(x_i(y, t) = c_i(y, t)/|c| \) ... molar fraction.

- \(z_i \) ... formal charge,
- \(\Phi \) ... Electrical potential,
- \(r_i(y, t) \) ... reaction term,
- \(J_i(y, t) \) ... partial flux,

Assume \(\sum_{i=1}^{N} J_i = \sum_{i=1}^{N} r_i = 0 \). Continuity and Poisson equation:
Physical quantities and assumptions

For $i = 1, \ldots, N$ components, $y \in \Omega \subset \mathbb{R}^d$ and $t > 0$ we define

- $\rho_i(y, t)$... mass density,
- M_i ... molar mass,
- $c_i(y, t) = \rho_i(y, t)/M_i$... molar concentration,
- $x_i(y, t) = c_i(y, t)/|c|$... molar fraction.

- z_i ... formal charge,
- Φ ... Electrical potential,
- $r_i(y, t)$... reaction term,
- $J_i(y, t)$... partial flux,

Assume $\sum_{i=1}^{N} J_i = \sum_{i=1}^{N} r_i = 0$. Continuity and Poisson equation:

$$\partial_t \rho_i + \text{div}(J_i) = r_i$$
Physical quantities and assumptions

For $i = 1, \ldots, N$ components, $y \in \Omega \subset \mathbb{R}^d$ and $t > 0$ we define

- $\rho_i(y, t)$... mass density,
- M_i ... molar mass,
- $c_i(y, t) = \rho_i(y, t)/M_i$... molar concentration,
- $x_i(y, t) = c_i(y, t)/|c|$... molar fraction.
- z_i ... formal charge,
- Φ ... Electrical potential,
- $r_i(y, t)$... reaction term,
- $J_i(y, t)$... partial flux.

Assume $\sum_{i=1}^N J_i = \sum_{i=1}^N r_i = 0$. Continuity and Poisson equation:

$$\partial_t \rho_i + \text{div}(J_i) = r_i, \quad \sum_{i=1}^N \rho_i = \rho^*$$
Physical quantities and assumptions

For $i = 1, \ldots, N$ components, $y \in \Omega \subset \mathbb{R}^d$ and $t > 0$ we define

- $\rho_i(y, t)$... mass density,
- M_i ... molar mass,
- $c_i(y, t) = \rho_i(y, t)/M_i$... molar concentration,
- $x_i(y, t) = c_i(y, t)/|c|$... molar fraction.
- z_i ... formal charge,
- Φ ... Electrical potential,
- $r_i(y, t)$... reaction term,
- $J_i(y, t)$... partial flux.

Assume $\sum_{i=1}^{N} J_i = \sum_{i=1}^{N} r_i = 0$.

Continuity and Poisson equation:

$$\partial_t \rho_i + \text{div}(J_i) = r_i, \quad \sum_{i=1}^{N} \rho_i = \rho^* := 1.$$
Physical quantities and assumptions

For $i = 1, \ldots, N$ components, $y \in \Omega \subset \mathbb{R}^d$ and $t > 0$ we define

- $\rho_i(y, t)$... mass density,
- M_i ... molar mass,
- $c_i(y, t) = \rho_i(y, t)/M_i$... molar concentration,
- $x_i(y, t) = c_i(y, t)/|c|$... molar fraction,
- z_i ... formal charge,
- Φ ... Electrical potential,
- $r_i(y, t)$... reaction term,
- $J_i(y, t)$... partial flux.

Assume $\sum_{i=1}^{N} J_i = \sum_{i=1}^{N} r_i = 0$. Continuity and Poisson equation:

$$
\partial_t \rho_i + \text{div}(J_i) = r_i, \quad \sum_{i=1}^{N} \rho_i = \rho^* := 1.
$$

$$
- \lambda \Delta \Phi = \sum_{i=1}^{N} z_i c_i + f(y),
$$
Maxwell-Stefan equations

By assumption: \(\rho_N = 1 - \sum_{i=1}^{N-1} \rho_i \) and \(J_N = - \sum_{i=1}^{N-1} J_i \).
Maxwell-Stefan equations

By assumption: $\rho_N = 1 - \sum_{i=1}^{N-1} \rho_i$ and $J_N = - \sum_{i=1}^{N-1} J_i$.
Maxwell-Stefan equations

By assumption: \(\rho_N = 1 - \sum_{i=1}^{N-1} \rho_i \) and \(J_N = - \sum_{i=1}^{N-1} J_i \).
By assumption: $\rho_N = 1 - \sum_{i=1}^{N-1} \rho_i$ and $J_N = - \sum_{i=1}^{N-1} J_i$.
Maxwell-Stefan equations

By assumption: $\rho_N = 1 - \sum_{i=1}^{N-1} \rho_i$ and $J_N = -\sum_{i=1}^{N-1} J_i$.

$$\partial_t \rho_i + \text{div}(J_i) = r_i, \ i = 1, \ldots, N - 1.$$
Maxwell-Stefan equations

By assumption: $\rho_N = 1 - \sum_{i=1}^{N-1} \rho_i$ and $J_N = - \sum_{i=1}^{N-1} J_i$.

$$\partial_t \rho_i + \text{div}(J_i) = r_i, \ i = 1, \ldots, N - 1.$$
Maxwell-Stefan equations

By assumption: $\rho_N = 1 - \sum_{i=1}^{N-1} \rho_i$ and $J_N = - \sum_{i=1}^{N-1} J_i$.

$$\partial_t \rho_i + \text{div}(J_i) = r_i, \ i = 1, \ldots, N - 1.$$
Maxwell-Stefan equations

By assumption: \(\rho_N = 1 - \sum_{i=1}^{N-1} \rho_i \) and \(J_N = -\sum_{i=1}^{N-1} J_i \).

\[
\partial_t \rho_i + \text{div}(J_i) = r_i, \ i = 1, \ldots, N - 1.
\]

General solution - Maxwell-Stefan equations:

\[
D_i = -\sum_{j \neq i} d_{ij}(\rho_j J_i - \rho_i J_j),
\]

with \(d_{ij} = 1/(|c|^2 M_i M_j D_{ij}) \).
Maxwell-Stefan equations

By assumption: \(\rho_N = 1 - \sum_{i=1}^{N-1} \rho_i \) and \(J_N = -\sum_{i=1}^{N-1} J_i \).

\[
\partial_t \rho_i + \text{div}(J_i) = r_i, \; i = 1, \ldots, N - 1.
\]

General solution - Maxwell-Stefan equations:

\[
D_i = -\sum_{j \neq i} d_{ij} (\rho_j J_i - \rho_i J_j),
\]

with \(d_{ij} = 1/(|c|^2 M_i M_j D_{ij}) \).

For isobaric and isothermal process:

\[
D_i = \nabla x_i + \beta (z_i x_i - \rho_i (z \cdot x)) \nabla \Phi
\]
The Poisson-Maxwell-Stefan System

FEM in entropy variables

Summary and open questions

Maxwell-Stefan equations

By assumption: \(\rho_N = 1 - \sum_{i=1}^{N-1} \rho_i \) and \(J_N = - \sum_{i=1}^{N-1} J_i \).

\[
\partial_t \rho_i + \text{div}(J_i) = r_i, \ i = 1, \ldots, N - 1.
\]

General solution - Maxwell-Stefan equations:

\[
D_i = - \sum_{j \neq i} d_{ij}(\rho_j J_i - \rho_i J_j),
\]

with \(d_{ij} = 1/((c|^2 M_i M_j D_{ij})) \).

For isobaric and isothermal process:

\[
D_i = \nabla x_i + \beta(z_i x_i - \rho_i (z \cdot x)) \nabla \Phi
\]

In short, with \(D' := (D_1, \ldots, D_{N-1}) \):

\[
D' = AJ', \ A \in \mathbb{R}^{N-1 \times N-1}.
\]
The Poisson-Maxwell-Stefan system

Let \(\rho' := (\rho_1, \ldots, \rho_{N-1}) \), then for \(\rho \in \mathbb{R}^N \), \(t > 0 \), \(y \in \Omega \), we have

\[
\partial_t \rho' = \text{div}(A^{-1}(\rho)D'(\rho, \Phi)) + r' (\rho), \quad \rho_N = 1 - \sum_{i=1}^{N-1} \rho_i,
\]

\[
D'(\rho, \Phi) = \left(\nabla x_i + \beta (z_i x_i - \rho_i (z \cdot x)) \right) \nabla \Phi \right)_{i=1}^{N-1},
\]

\[
-\lambda \Delta \Phi = \sum_{i=1}^{N} z_i c_i + f(y),
\]

For \(N = 3 \):

\[
A^{-1}(\rho) = \delta(\rho) \left(d_{23} + (d_{12} - d_{23}) \rho_1 (d_{13} - d_{12}) \rho_1 (d_{23} - d_{12}) \rho_2 d_{13} + (d_{12} - d_{13}) \rho_2 \right),
\]

\[
d_{ij} = 1 / (|c|_2 M_i M_j D_{ij}),
\]

\[
D_{ij} = D_{ji} > 0.
\]
Let $\rho' := (\rho_1, \ldots, \rho_{N-1})$, then for $\rho \in \mathbb{R}^N$, $t > 0$, $y \in \Omega$, we have
Let $\rho' := (\rho_1, \ldots, \rho_{N-1})$, then for $\rho \in \mathbb{R}^N$, $t > 0$, $y \in \Omega$, we have

$$
\partial_t \rho' = \text{div}(A^{-1}(\rho)D'(\rho, \Phi)) + r'(\rho)
$$
Let \(\rho' := (\rho_1, \ldots, \rho_{N-1}) \), then for \(\rho \in \mathbb{R}^N \), \(t > 0 \), \(y \in \Omega \), we have

\[
\partial_t \rho' = \text{div}(A^{-1}(\rho)D'(\rho, \Phi)) + r'(\rho), \quad \rho_N = 1 - \sum_{i=1}^{N-1} \rho_i,
\]
Let $\rho' := (\rho_1, \ldots, \rho_{N-1})$, then for $\rho \in \mathbb{R}^N$, $t > 0$, $y \in \Omega$, we have

$$
\partial_t \rho' = \text{div}(A^{-1}(\rho)D'(\rho, \Phi)) + r'(\rho), \quad \rho_N = 1 - \sum_{i=1}^{N-1} \rho_i,
$$

$$
D'(\rho, \Phi) = (\nabla x_i + \beta(z_i x_i - \rho_i (z \cdot x)) \nabla \Phi)_{i=1}^{N-1},
$$
Let \(\rho' := (\rho_1, \ldots, \rho_{N-1}) \), then for \(\rho \in \mathbb{R}^N, \ t > 0, \ y \in \Omega \), we have

\[
\partial_t \rho' = \text{div}(A^{-1}(\rho)D'(\rho, \Phi)) + r'(\rho), \ \rho_N = 1 - \sum_{i=1}^{N-1} \rho_i,
\]

\[
D'(\rho, \Phi) = (\nabla x_i + \beta(z_i x_i - \rho_i (z \cdot x)) \nabla \Phi)_{i=1}^{N-1},
\]

\[
- \lambda \Delta \Phi = \sum_{i=1}^{N} z_i c_i + f(y),
\]
Let $\rho' := (\rho_1, \ldots, \rho_{N-1})$, then for $\rho \in \mathbb{R}^N$, $t > 0$, $y \in \Omega$, we have

$$\partial_t \rho' = \text{div}(A^{-1}(\rho)D'(\rho, \Phi)) + r'(\rho), \quad \rho_N = 1 - \sum_{i=1}^{N-1} \rho_i,$$

$$D'(\rho, \Phi) = (\nabla x_i + \beta(z_i x_i - \rho_i(z \cdot x))\nabla \Phi)_{i=1}^{N-1},$$

$$- \lambda \Delta \Phi = \sum_{i=1}^{N} z_i c_i + f(y),$$

For $N = 3$:

$$A^{-1}(\rho) = \frac{1}{\delta(\rho)} \begin{pmatrix} d_{23} + (d_{12} - d_{23})\rho_1 & (d_{13} - d_{12})\rho_1 \\ (d_{23} - d_{12})\rho_2 & \rho_2 \\ d_{13} + (d_{12} - d_{13})\rho_2 & \rho_2 \end{pmatrix},$$

and $d_{ij} = 1/(|c|^2M_i M_j D_{ij})$, $D_{ij} = D_{ji} > 0$.
Known analytic results without electrical potential

<table>
<thead>
<tr>
<th>Known Results</th>
<th>Authors/Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rigorous inversion of flux relation, $\mathbf{D} = \mathbf{AJ}$</td>
<td>Bothe '11</td>
</tr>
<tr>
<td>Local existence of solutions</td>
<td>Junge and Stelzer '13</td>
</tr>
<tr>
<td>Global existence for equal molar mass and $d \leq 3$</td>
<td>Chen and Junge '15, Marion and Temam '15</td>
</tr>
<tr>
<td>Exponential time decay with more involved reaction terms</td>
<td>Daus, Junge and Tang '18</td>
</tr>
</tbody>
</table>
Known analytic results without electrical potential

- Bothe '11: Rigorous inversion of flux relation, \(D = AJ \), and local existence of solutions [1].
Known analytic results without electrical potential

Known analytic results without electrical potential

- Chen and Jüngel ’15, Marion and Temam ’15: Global existence for different molar mass and $d \leq 3$ [6, 12].
Known analytic results without electrical potential

- Chen and Jüngel ’15, Marion and Temam ’15: Global existence for different molar mass and $d \leq 3$ [6, 12].
- Daus, Jüngel and Tang ’18: Exponential time decay with more involved reaction terms [7].
Assumptions:
Assumptions:

A1 Domain and BC: $\Omega \subset \mathbb{R}^d$ is bounded with $\partial \Omega = \Gamma_{Di} \cup \Gamma_{Ne} \in C^{0,1}$, $\Gamma_{Di} \cap \Gamma_{Ne} = \emptyset$ and $\text{meas}(\Gamma_{Di}) > 0$.
Assumptions:

A1 Domain and BC: $\Omega \subset \mathbb{R}^d$ is bounded with $\partial \Omega = \Gamma_{Di} \cup \Gamma_{Ne} \in C^{0,1}$, $\Gamma_{Di} \cap \Gamma_{Ne} = \emptyset$ and $\text{meas}(\Gamma_{Di}) > 0$.

$$J_i \cdot \nu = 0 \text{ on } \partial \Omega, \quad i = 1, \ldots, N,$$
Assumptions:

A1 Domain and BC: \(\Omega \subset \mathbb{R}^d \) is bounded with
\[\partial \Omega = \Gamma_{Di} \cup \Gamma_{Ne} \in C^{0,1}, \Gamma_{Di} \cap \Gamma_{Ne} = \emptyset \text{ and } \text{meas}(\Gamma_{Di}) > 0. \]

\[J_i \cdot \nu = 0 \text{ on } \partial \Omega, \quad i = 1, \ldots, N, \]
\[\nabla \Phi \cdot \nu = 0 \text{ on } \Gamma_{Ne}, \quad \Phi = \Phi^D \text{ on } \Gamma_{Di}, \]
Assumptions:

A1 Domain and BC: $\Omega \subset \mathbb{R}^d$ is bounded with
\[\partial \Omega = \Gamma_{Di} \cup \Gamma_{Ne} \in C^{0,1}, \Gamma_{Di} \cap \Gamma_{Ne} = \emptyset \text{ and } \text{meas}(\Gamma_{Di}) > 0. \]

\[J_i \cdot \nu = 0 \text{ on } \partial \Omega, \quad i = 1, \ldots, N, \]
\[\nabla \Phi \cdot \nu = 0 \text{ on } \Gamma_{Ne}, \quad \Phi = \Phi^D \text{ on } \Gamma_{Di}, \]

with $\Phi^D \in H^1(\Omega) \cap L^\infty(\Omega)$.
Assumptions:

A1 Domain and BC: \(\Omega \subset \mathbb{R}^d \) is bounded with
\[\partial \Omega = \Gamma_{Di} \cup \Gamma_{Ne} \in C^{0,1}, \Gamma_{Di} \cap \Gamma_{Ne} = \emptyset \text{ and } \text{meas}(\Gamma_{Di}) > 0. \]

\[J_i \cdot \nu = 0 \text{ on } \partial \Omega, \quad i = 1, \ldots, N, \]

\[\nabla \Phi \cdot \nu = 0 \text{ on } \Gamma_{Ne}, \quad \Phi = \Phi^D \text{ on } \Gamma_{Di}, \]

with \(\Phi^D \in H^1(\Omega) \cap L^\infty(\Omega). \)

A2 Initial data: \(\rho_1^0, \ldots, \rho_N^0 \geq 0 \text{ and } \sum_{i=1}^N \rho_i^0 = 1. \)
Assumptions:

A1 Domain and BC: $\Omega \subset \mathbb{R}^d$ is bounded with
\[
\partial \Omega = \Gamma_{Di} \cup \Gamma_{Ne} \in C^{0,1}, \Gamma_{Di} \cap \Gamma_{Ne} = \emptyset \text{ and } \text{meas}(\Gamma_{Di}) > 0.
\]
\[
J_i \cdot \nu = 0 \text{ on } \partial \Omega, \quad i = 1, \ldots, N,
\]
\[
\nabla \Phi \cdot \nu = 0 \text{ on } \Gamma_{Ne}, \quad \Phi = \Phi^D \text{ on } \Gamma_{Di},
\]
with $\Phi^D \in H^1(\Omega) \cap L^\infty(\Omega)$.

A2 Initial data: $\rho_1^0, \ldots, \rho_N^0 \geq 0$ and $\sum_{i=1}^N \rho_i^0 = 1$.

A3 Background charge: $f \in L^\infty(\Omega)$.
Assumptions:

A1 Domain and BC: \(\Omega \subset \mathbb{R}^d \) is bounded with \(\partial \Omega = \Gamma_{Di} \cup \Gamma_{Ne} \in C^{0,1}, \Gamma_{Di} \cap \Gamma_{Ne} = \emptyset \) and \(\text{meas}(\Gamma_{Di}) > 0 \).

\[
J_i \cdot \nu = 0 \text{ on } \partial \Omega, \quad i = 1, \ldots, N,
\]

\[
\nabla \Phi \cdot \nu = 0 \text{ on } \Gamma_{Ne}, \quad \Phi = \Phi^D \text{ on } \Gamma_{Di},
\]

with \(\Phi^D \in H^1(\Omega) \cap L^\infty(\Omega) \).

A2 Initial data: \(\rho_1^0, \ldots, \rho_N^0 \geq 0 \) and \(\sum_{i=1}^N \rho_i^0 = 1 \).

A3 Background charge: \(f \in L^\infty(\Omega) \).

A4 Production rates: \(r \in C([0, 1]^N; \mathbb{R}) \),

\[
\sum_{i=1}^N r_i(\rho) \log x_i \leq C_r \text{ for all } 0 < \rho_1, \ldots, \rho_N \leq 1.
\]
Global nonnegative weak solutions:

Theorem (O.L. and A. Jüngel, work in progress)

Let A_1-A_4 hold. There exist, for every $T > 0$, bounded weak solutions $\rho_1, \ldots, \rho_N \in [0,1]$ satisfying

$$\rho_i \in L^2(0,T;H^1(\Omega)), \quad \partial_t \rho_i \in L^2(0,T;(H^1(\Omega))'),$$

$$\Phi \in L^2(0,T;H^1(\Omega)), \quad i = 1, \ldots, N-1,$$

such that

$$\rho_N = 1 - \sum_{i=1}^{N-1} \rho_i.$$
Global nonnegative weak solutions:

Theorem (O.L. and A. Jüngel, work in progress)

Let A1-A4 hold. There exist, for every $T > 0$, bounded weak solutions $\rho_1, \ldots, \rho_N \in [0, 1]$.
Global nonnegative weak solutions:

Theorem (O.L. and A. Jüngel, work in progress)

Let A1-A4 hold. There exist, for every $T > 0$, bounded weak solutions $\rho_1, \ldots, \rho_N \in [0, 1]$ satisfying

$$
\rho_i \in L^2(0, T; H^1(\Omega)), \quad \partial_t \rho_i \in L^2(0, T; (H^1(\Omega))'), \\
\Phi \in L^2(0, T; H^1(\Omega)), \quad i = 1, \ldots, N - 1,
$$

such that $\rho_N = 1 - \sum_{i=1}^{N-1} \rho_i$.
Key idea: Entropy structure
Key idea: Entropy structure

Define entropy by

\[h(\rho) := |c| \sum_{i=1}^{N} x_i (\log x_i - 1) + |c| \]
Key idea: Entropy structure

Define entropy by

$$h(\rho) := |c| \sum_{i=1}^{N} x_i (\log x_i - 1) + |c| + \frac{\beta \lambda}{2} |\nabla(\Phi - \Phi^D)|^2.$$
Key idea: Entropy structure

Define entropy by

$$h(\rho) := |c| \sum_{i=1}^{N} x_i (\log x_i - 1) + |c| + \frac{\beta \lambda}{2} |\nabla(\Phi - \Phi_D)|^2.$$

Entropy inequality ($r = 0$ and Φ_D constant):
Key idea: Entropy structure

Define entropy by

\[h(\rho) := |c| \sum_{i=1}^{N} x_i (\log x_i - 1) + |c| + \frac{\beta \lambda}{2} |\nabla (\Phi - \Phi^D)|^2. \]

Entropy inequality ($r = 0$ and Φ_D constant):

\[\frac{d}{dt} \int_{\Omega} h(\rho) dy \]
Key idea: Entropy structure

Define entropy by

\[h(\rho) := |c| \sum_{i=1}^{N} x_i (\log x_i - 1) + |c| + \frac{\beta \lambda}{2} |\nabla (\Phi - \Phi^D)|^2. \]

Entropy inequality (\(r = 0 \) and \(\Phi^D \) constant):

\[\frac{d}{dt} \int_{\Omega} h(\rho) \, dy = - \sum_{i,j=1}^{N-1} \int_{\Omega} B_{ij}(\rho) |c|^2 \left(\frac{D_j}{\rho_j} - \frac{D_N}{\rho_N} \right) \left(\frac{D_i}{\rho_i} - \frac{D_N}{\rho_N} \right) \, dy \]
Key idea: Entropy structure

Define entropy by

\[h(\rho) := |c| \sum_{i=1}^{N} x_i(\log x_i - 1) + |c| + \frac{\beta \lambda}{2} |\nabla(\Phi - \Phi^D)|^2. \]

Entropy inequality \((r = 0 \text{ and } \Phi_D \text{ constant})\):

\[
\frac{d}{dt} \int_{\Omega} h(\rho) \, dy = - \sum_{i,j=1}^{N-1} \int_{\Omega} B_{ij}(\rho)|c|^2 \left(\frac{D_j}{\rho_j} - \frac{D_N}{\rho_N} \right) \left(\frac{D_i}{\rho_i} - \frac{D_N}{\rho_N} \right) \, dy \leq 0,
\]

with \(B(\rho) = (B_{ij}(\rho))_{i,j=1}^{N-1} \) symmetric, positive definite and bounded if \(\rho \in (0, 1]^N \).
Define entropy by

\[
h(\rho) := |c| \sum_{i=1}^{N} x_i (\log x_i - 1) + |c| + \frac{\beta \lambda}{2} |\nabla (\Phi - \Phi^D)|^2.
\]

Entropy inequality (\(r = 0\) and \(\Phi_D\) constant):

\[
\frac{d}{dt} \int_{\Omega} h(\rho) \, dy = - \sum_{i,j=1}^{N-1} \int_{\Omega} B_{ij}(\rho) |c|^2 \left(\frac{D_j}{\rho_j} - \frac{D_N}{\rho_N} \right) \left(\frac{D_i}{\rho_i} - \frac{D_N}{\rho_N} \right) \, dy \leq 0,
\]

with \(B(\rho) = (B_{ij}(\rho))_{i,j=1}^{N-1}\) symmetric, positive definite and bounded if \(\rho \in (0, 1]^N\). In this case:

\[
|c| \left(\frac{D_i}{\rho_i} - \frac{D_N}{\rho_N} \right)
\]
Key idea: Entropy structure

Define entropy by

\[h(\rho) := |c| \sum_{i=1}^{N} x_i(\log x_i - 1) + |c| + \frac{\beta \lambda}{2} |\nabla (\Phi - \Phi^D)|^2. \]

Entropy inequality \((r = 0\) and \(\Phi_D\) constant):\n
\[\frac{d}{dt} \int_{\Omega} h(\rho) \, dy = - \sum_{i,j=1}^{N-1} \int_{\Omega} B_{ij}(\rho) |c|^2 \left(\frac{D_j}{\rho_j} - \frac{D_N}{\rho_N} \right) \left(\frac{D_i}{\rho_i} - \frac{D_N}{\rho_N} \right) \, dy \leq 0, \]

with \(B(\rho) = (B_{ij}(\rho))_{i,j=1}^{N-1} \) symmetric, positive definite and bounded if \(\rho \in (0, 1]^N \). In this case:\n
\[|c| \left(\frac{D_i}{\rho_i} - \frac{D_N}{\rho_N} \right) = \nabla \left(\frac{\partial h}{\partial \rho_i} - \frac{\partial h}{\partial \rho_N} \right) \]
Key idea: Entropy structure

Define entropy by

$$h(\rho) := |c| \sum_{i=1}^{N} x_i (\log x_i - 1) + |c| + \frac{\beta \lambda}{2} |\nabla(\Phi - \Phi^D)|^2.$$

Entropy inequality ($r = 0$ and Φ_D constant):

$$\frac{d}{dt} \int_{\Omega} h(\rho) dy = - \sum_{i,j=1}^{N-1} \int_{\Omega} B_{ij}(\rho) |c|^2 \left(\frac{D_j}{\rho_j} - \frac{D_N}{\rho_N} \right) \left(\frac{D_i}{\rho_i} - \frac{D_N}{\rho_N} \right) dy \leq 0,$$

with $B(\rho) = (B_{ij}(\rho))_{i,j=1}^{N-1}$ symmetric, positive definite and bounded if $\rho \in (0, 1]^N$. In this case:

$$|c| \left(\frac{D_i}{\rho_i} - \frac{D_N}{\rho_N} \right) = \nabla \left(\frac{\partial h}{\partial \rho_i} - \frac{\partial h}{\partial \rho_N} \right)$$

$$= \nabla \left(\frac{\log(x_i)}{M_i} - \frac{\log(x_N)}{M_N} + \beta \left(\frac{z_i}{M_i} - \frac{z_N}{M_N} \right) \Phi \right)$$
Boundedness by entropy method:

Define entropy variables for $i = 1, \ldots, N-1$,
$$\omega_i := \log(x_iM_i) - \log(x_NM_N) + \beta(z_iM_i - z_NM_N)\Phi.$$
and show the inverse exists such that
$$\rho'(\omega, \Phi) \in (0,1).$$

Rewrite equation:
$$\partial_t \rho' = \text{div}(A^{-1}(\rho)D'(\rho, \Phi)) + r'\rho.$$
$$\partial_t \rho'(\omega, \Phi) = \text{div}(B(\rho'(\omega, \Phi))\nabla\omega) + r'(\rho(\omega, \Phi)).$$

Discretize with implicit Euler/Galerkin and regularize. Use discrete Entropy inequality to derive apriori estimate and pass to the limit \Rightarrow existence of global weak solutions.
Boundedness by entropy method:

- Define entropy variables for $i = 1, \ldots, N - 1$,

\[\omega_i := \frac{\log(x_i)}{M_i} - \frac{\log(x_N)}{M_N} + \beta \left(\frac{z_i}{M_i} - \frac{z_N}{M_N} \right) \Phi. \]
Boundedness by entropy method:

- Define entropy variables for $i = 1, \ldots, N - 1$,

$$\omega_i := \frac{\log(x_i)}{M_i} - \frac{\log(x_N)}{M_N} + \beta \left(\frac{z_i}{M_i} - \frac{z_N}{M_N} \right) \Phi.$$

and show the inverse exists such that $\rho'(\omega, \Phi) \in (0, 1)$.

.
Boundedness by entropy method:

- Define entropy variables for $i = 1, \ldots, N - 1$,
 \[\omega_i := \frac{\log(x_i)}{M_i} - \frac{\log(x_N)}{M_N} + \beta \left(\frac{z_i}{M_i} - \frac{z_N}{M_N} \right) \Phi. \]
 and show the inverse exists such that $\rho'(\omega, \Phi) \in (0, 1)$.
- Rewrite equation:
 \[\partial_t \rho' = \text{div}(A^{-1}(\rho)D'(\rho, \Phi)) + r'(\rho) \rightarrow \]
Boundedness by entropy method:

- Define entropy variables for \(i = 1, \ldots, N - 1, \)

\[
\omega_i := \frac{\log(x_i)}{M_i} - \frac{\log(x_N)}{M_N} + \beta \left(\frac{z_i}{M_i} - \frac{z_N}{M_N} \right) \Phi.
\]

and show the inverse exists such that \(\rho'(\omega, \Phi) \in (0, 1). \)

- Rewrite equation:

\[
\partial_t \rho' = \text{div}(A^{-1}(\rho)D'(\rho, \Phi)) + r'(\rho) \rightarrow \\
\partial_t \rho'(\omega, \Phi) = \text{div}(B(\rho'(\omega, \Phi))\nabla \omega) + r'(\rho(\omega, \Phi)).
\]
Boundedness by entropy method:

- Define entropy variables for $i = 1, \ldots, N - 1$,

$$\omega_i := \frac{\log(x_i)}{M_i} - \frac{\log(x_N)}{M_N} + \beta \left(\frac{z_i}{M_i} - \frac{z_N}{M_N} \right) \Phi.$$

and show the inverse exists such that $\rho'(\omega, \Phi) \in (0, 1)$.

- Rewrite equation:

$$\partial_t \rho' = \text{div}(A^{-1}(\rho) D'(\rho, \Phi)) + r'(\rho) \rightarrow$$

$$\partial_t \rho'(\omega, \Phi) = \text{div}(B(\rho'(\omega, \Phi)) \nabla \omega) + r'(\rho(\omega, \Phi)).$$

- Discretize with implicit Euler/Galerkin and regularize.
Boundedness by entropy method:

- Define entropy variables for $i = 1, \ldots, N - 1$,

$$\omega_i := \frac{\log(x_i)}{M_i} - \frac{\log(x_N)}{M_N} + \beta \left(\frac{z_i}{M_i} - \frac{z_N}{M_N} \right) \Phi.$$

and show the inverse exists such that $\rho'(\omega, \Phi) \in (0, 1)$.

- Rewrite equation:

$$\partial_t \rho' = \text{div}(A^{-1}(\rho) D'(\rho, \Phi)) + r'(\rho) \rightarrow \partial_t \rho'(\omega, \Phi) = \text{div}(B(\rho'(\omega, \Phi)) \nabla \omega) + r'(\rho(\omega, \Phi)).$$

- Discretize with implicit Euler/Galerkin and regularize.
- Use discrete Entropy inequality to derive apriori estimate.
Boundedness by entropy method:

- Define entropy variables for $i = 1, \ldots, N - 1$,

 $$\omega_i := \frac{\log(x_i)}{M_i} - \frac{\log(x_N)}{M_N} + \beta \left(\frac{z_i}{M_i} - \frac{z_N}{M_N} \right) \Phi.$$

 and show the inverse exists such that $\rho'(\omega, \Phi) \in (0, 1)$.

- Rewrite equation:

 $$\partial_t \rho' = \text{div}(A^{-1}(\rho) D'(\rho, \Phi)) + r'(\rho) \rightarrow$$

 $$\partial_t \rho'(\omega, \Phi) = \text{div}(B(\rho'(\omega, \Phi)) \nabla \omega) + r'(\rho(\omega, \Phi)).$$

- Discretize with implicit Euler/Galerkin and regularize.

- Use discrete Entropy inequality to derive apriori estimate and pass to the limit \Rightarrow existence of global weak solutions.
FEM in entropy variables: Implementation

Galerkin-scheme in the proof allows for standard linear finite element spaces.

Nonlinearity and regularization:
\[
\frac{\partial}{\partial t} \rho'(\omega, \Phi) = \text{div} \left(B(\rho'(\omega, \Phi)) \nabla \omega \right) - \varepsilon \left(\omega - \omega^D \right)
\]

Recovering original variables:
\[
\rho_i = |c|M_i \left(1 - s_0 \right) \frac{M_i}{M_N} e^{M_i \left(\omega_i - \beta \left(z_i M_i - z_N M_N \right) \Phi \right)}
\]

whereby \(s_0 \in [0, 1] \) is the solution of the fixed point problem
\[
F(s, \omega_i, \Phi) = \left(1 - s \right) \sum_{i=1}^{N-1} \frac{M_i}{M_N} e^{M_i \left(\omega_i - \beta \left(z_i M_i - z_N M_N \right) \Phi \right)} - s = 0
\]

for \(i = 1, \ldots, N - 1 \).
FEM in entropy variables: Implementation

- Galerkin-scheme in the proof allows for standard linear finite element spaces.
FEM in entropy variables: Implementation

- Galerkin-scheme in the proof allows for standard linear finite element spaces.
- Nonlinearity and regularization:

\[\partial_t \rho'(\omega, \Phi) = \text{div}(B(\rho'(\omega, \Phi))\nabla \omega) - \varepsilon(\omega - \omega^D) \]
FEM in entropy variables: Implementation

- Galerkin-scheme in the proof allows for standard linear finite element spaces.
- Nonlinearity and regularization:
 \[\partial_t \rho'(\omega, \Phi) = \text{div}(B(\rho'(\omega, \Phi)) \nabla \omega) - \varepsilon(\omega - \omega^D) \]
- Recovering original variables:
 \[\rho_i = |c| M_i (1 - s_0) M_i / M_N e^{M_i \left(\omega_i - \beta \left(\frac{z_i}{M_i} - \frac{z_N}{M_N}\right) \Phi\right)} \]
FEM in entropy variables: Implementation

- Galerkin-scheme in the proof allows for standard linear finite element spaces.
- Nonlinearity and regularization:

\[\partial_t \rho'(\omega, \Phi) = \text{div}(B(\rho'(\omega, \Phi))\nabla \omega) - \varepsilon(\omega - \omega^D) \]

- Recovering original variables:

\[\rho_i = |c| M_i (1 - s_0)^{M_i/M_N} e^{M_i(\omega_i - \beta\left(\frac{z_i}{M_i} - \frac{z_N}{M_N}\right)\Phi)}, \]

whereby \(s_0 \in [0, 1] \) is the solution of the fixed point problem

\[F(s, \omega_i, \Phi) = \sum_{i=1}^{N-1} (1 - s)^{M_i/M_N} e^{M_i(\omega_i - \beta\left(\frac{z_i}{M_i} - \frac{z_N}{M_N}\right)\Phi)} - s = 0, \]

for \(i = 1, \ldots, N - 1. \)
Plot with equal molar mass and $N = 3$, $\beta = M_i = D_{ij} = 1$ for $i, j = 1, \ldots, 3$, $z_1 = z_2 = 1$, $z_3 = 0$, $\lambda = 0.01$.

Equal molar mass
Different molar mass

Plot with different molar mass M_1 at time $t = 4$.
Summary and open questions:

Summary

Global existence for the Poisson-Maxwell-Stefan system

New finite element scheme:
- "Convergence" of approximation follows by analytic proof
- Diffusion matrix is symmetric and positive definite
- Preserves lower and upper bounds
- Preserves a discrete version of the Entropy inequality

Open questions and challenges:
- Longtime behavior and decay rate
- Numerical analysis of the scheme
- Efficient implementation of the scheme for $d > 1$
Summary

- Global existence for the Poisson-Maxwell-Stefan system
Summary and open questions:

Summary

- Global existence for the Poisson-Maxwell-Stefan system
- New finite element scheme:
Summary

- Global existence for the Poisson-Maxwell-Stefan system
- New finite element scheme:
 - “Convergence” of approximation follows by analytic proof
Summary

- Global existence for the Poisson-Maxwell-Stefan system
- New finite element scheme:
 - "Convergence" of approximation follows by analytic proof
 - Diffusion matrix is symmetric and positive definite

Open questions and challenges:

- Longtime behavior and decay rate
- Numerical analysis of the scheme
- Efficient implementation of the scheme for $d > 1$
Summary and open questions:

Summary

- Global existence for the Poisson-Maxwell-Stefan system
- New finite element scheme:
 - "Convergence" of approximation follows by analytic proof
 - Diffusion matrix is symmetric and positive definite
 - Preserves lower and upper bounds

Open questions and challenges:

- Longtime behavior and decay rate
- Numerical analysis of the scheme
- Efficient implementation of the scheme for $d > 1$
Summary and open questions:

Summary

- Global existence for the Poisson-Maxwell-Stefan system
- New finite element scheme:
 - "Convergence" of approximation follows by analytic proof
 - Diffusion matrix is symmetric and positive definite
 - Preserves lower and upper bounds
 - Preserves a discrete version of the Entropy inequality

Open questions and challenges:

- Longtime behavior and decay rate
- Numerical analysis of the scheme
- Efficient implementation of the scheme for $d > 1$
Summary and open questions:

Summary

- Global existence for the Poisson-Maxwell-Stefan system
- New finite element scheme:
 - "Convergence" of approximation follows by analytic proof
 - Diffusion matrix is symmetric and positive definite
 - Preserves lower and upper bounds
 - Preserves a discrete version of the Entropy inequality

Open questions and challenges:
Summary and open questions:

Summary

- Global existence for the Poisson-Maxwell-Stefan system
- New finite element scheme:
 - "Convergence" of approximation follows by analytic proof
 - Diffusion matrix is symmetric and positive definite
 - Preserves lower and upper bounds
 - Preserves a discrete version of the Entropy inequality

Open questions and challenges:

- Longtime behavior and decay rate
Summary and open questions:

Summary
- Global existence for the Poisson-Maxwell-Stefan system
- New finite element scheme:
 - "Convergence" of approximation follows by analytic proof
 - Diffusion matrix is symmetric and positive definite
 - Preserves lower and upper bounds
 - Preserves a discrete version of the Entropy inequality

Open questions and challenges:
- Longtime behavior and decay rate
- Numerical analysis of the scheme
Summary and open questions:

Summary

- Global existence for the Poisson-Maxwell-Stefan system
- New finite element scheme:
 - "Convergence" of approximation follows by analytic proof
 - Diffusion matrix is symmetric and positive definite
 - Preserves lower and upper bounds
 - Preserves a discrete version of the Entropy inequality

Open questions and challenges:

- Longtime behavior and decay rate
- Numerical analysis of the scheme
- Efficient implementation of the scheme for $d > 1$
Thank you for your attention.

