FEM in entropy variables

Summary and open questions

A Poisson-Maxwell-Stefan model for isobaric isothermal electrically charged mixtures

Oliver Leingang, Supervisor: Ansgar Jüngel.

TECHNISCHE UNIVERSITÄT WIEN Vienna | Austria

Särkisaari, 8.8.2018

Introduction 000	The Poisson-Maxwell-Stefan System	FEM in entropy variables	Summary and open questions
Content			

- Motivation and application
- Macroscopic model and assumptions

Introduction 000	The Poisson-Maxwell-Stefan System	FEM in entropy variables	Summary and open questions
Content			

- Motivation and application
- Macroscopic model and assumptions
- 2 The Poisson-Maxwell-Stefan System
 - The model
 - Existence of solutions

Introduction 000	The Poisson-Maxwell-Stefan System	FEM in entropy variables	Summary and open questions
Content			

- Motivation and application
- Macroscopic model and assumptions

2 The Poisson-Maxwell-Stefan System

- The model
- Existence of solutions
- 3 FEM in entropy variables
 - Finite element scheme
 - Numerical experiment

Introduction 000	The Poisson-Maxwell-Stefan System	FEM in entropy variables	Summary and open questions
Content			

- Motivation and application
- Macroscopic model and assumptions

2 The Poisson-Maxwell-Stefan System

- The model
- Existence of solutions
- 3 FEM in entropy variables
 - Finite element scheme
 - Numerical experiment
- 4 Summary and open questions

Introduction $\bullet \circ \circ$

The Poisson-Maxwell-Stefan System

FEM in entropy variables 000

Summary and open questions

Motivation and Application

¹S. Psaltis and T. Farrell. Comparing charge transport predictions for a ternary electrolyte using the Maxwell-Stefan and Nernst-Planck equations. *Journal of The Electrochemical Society* 158.1 (2011), A33-A42.

•00	000000	000	000000

Motivation and Application

Goal: Analyse reaction diffusion models for electrically charged mixtures.

¹S. Psaltis and T. Farrell. Comparing charge transport predictions for a ternary electrolyte using the Maxwell-Stefan and Nernst-Planck equations. *Journal of The Electrochemical Society* 158.1 (2011), A33-A42.

FEM in entropy variables

Summary and open questions

Motivation and Application

Goal: Analyse reaction diffusion models for electrically charged mixtures.

Example: Electrolytes in electrochemical devices

¹S. Psaltis and T. Farrell. Comparing charge transport predictions for a ternary electrolyte using the Maxwell-Stefan and Nernst-Planck equations. *Journal of The Electrochemical Society* 158.1 (2011), A33-A42.

FEM in entropy variables

Summary and open questions

Motivation and Application

Goal: Analyse reaction diffusion models for electrically charged mixtures.

Example: Electrolytes in electrochemical devices

¹S. Psaltis and T. Farrell. Comparing charge transport predictions for a ternary electrolyte using the Maxwell-Stefan and Nernst-Planck equations. *Journal of The Electrochemical Society* 158.1 (2011), A33-A42.

FEM in entropy variables

Summary and open questions

Motivation and Application

Goal: Analyse reaction diffusion models for electrically charged mixtures.

Example: Electrolytes in electrochemical devices

Electrolytes:

¹S. Psaltis and T. Farrell. Comparing charge transport predictions for a ternary electrolyte using the Maxwell-Stefan and Nernst-Planck equations. *Journal of The Electrochemical Society* 158.1 (2011), A33-A42.

FEM in entropy variables 000

Summary and open questions

Motivation and Application

Goal: Analyse reaction diffusion models for electrically charged mixtures.

Example: Electrolytes in electrochemical devices

Electrolytes:

 Solvent and dissolved positive and negative ions

¹S. Psaltis and T. Farrell. Comparing charge transport predictions for a ternary electrolyte using the Maxwell-Stefan and Nernst-Planck equations. *Journal of The Electrochemical Society* 158.1 (2011), A33-A42.

FEM in entropy variables 000

Summary and open questions

Motivation and Application

Goal: Analyse reaction diffusion models for electrically charged mixtures.

Example: Electrolytes in electrochemical devices

Electrolytes:

- Solvent and dissolved positive and negative ions
- Multicomponent mixture

¹S. Psaltis and T. Farrell. Comparing charge transport predictions for a ternary electrolyte using the Maxwell-Stefan and Nernst-Planck equations. *Journal of The Electrochemical Society* 158.1 (2011), A33-A42.

FEM in entropy variables 000

Summary and open questions

Motivation and Application

Goal: Analyse reaction diffusion models for electrically charged mixtures.

Example: Electrolytes in electrochemical devices

Photo of (flexible) Dye-sensitized Solar Cells [14], cropped. Photographer: Armin Kübelbeck, CC-BY-SA, Wikimedia Commons Electrolytes:

- Solvent and dissolved positive and negative ions
- Multicomponent mixture
- Solvent-Solute interaction

¹S. Psaltis and T. Farrell. Comparing charge transport predictions for a ternary electrolyte using the Maxwell-Stefan and Nernst-Planck equations. *Journal of The Electrochemical Society* 158.1 (2011), A33-A42.

FEM in entropy variables

Summary and open questions

Motivation and Application

Goal: Analyse reaction diffusion models for electrically charged mixtures.

Example: Electrolytes in electrochemical devices

Photo of (flexible) Dye-sensitized Solar Cells [14], cropped. Photographer: Armin Kübelbeck, CC-BY-SA, Wikimedia Commons Electrolytes:

- Solvent and dissolved positive and negative ions
- Multicomponent mixture
- Solvent-Solute interaction
- Solute-Solute interactions

¹S. Psaltis and T. Farrell. Comparing charge transport predictions for a ternary electrolyte using the Maxwell-Stefan and Nernst-Planck equations. *Journal of The Electrochemical Society* 158.1 (2011), A33-A42.

Introduction The Poisson-Maxwell-Stefan S

FEM in entropy variables

Summary and open questions

Physical quantities and assumptions

Introduction The Poisson-Maxwell-Stefan S

FEM in entropy variables

Summary and open questions

Physical quantities and assumptions

Introduction The Poisson-Maxwell-Stefan S

FEM in entropy variables

Summary and open questions

Physical quantities and assumptions

FEM in entropy variables

Summary and open questions

Physical quantities and assumptions

- $\rho_i(y, t)$... mass density,
- M_i... molar mass,
- $c_i(y,t) = \rho_i(y,t)/M_i \dots$ molar concentration,
- $x_i(y,t) = c_i(y,t)/|c| \dots$ molar fraction.

Introduction The Poisson-Maxwell-Stefan Sy o●o 00000 FEM in entropy variables

Summary and open questions

Physical quantities and assumptions

- $\rho_i(y, t)$... mass density,
- M_i... molar mass,
- $c_i(y,t) = \rho_i(y,t)/M_i \dots$ molar concentration,
- $x_i(y,t) = c_i(y,t)/|c| \dots$ molar fraction.

- z_i ... formal charge,
- Φ ... Electrical potential,
- $r_i(y, t)$... reaction term,
- $J_i(y, t)$... partial flux,

FEM in entropy variables

Summary and open questions

Physical quantities and assumptions

For $i=1,\ldots,N$ components, $y\in\Omega\subset\mathbb{R}^d$ and t>0 we define

- $\rho_i(y, t)$... mass density,
- *M_i*... molar mass,
- $c_i(y,t) = \rho_i(y,t)/M_i \dots$ molar concentration,
- $x_i(y,t) = c_i(y,t)/|c| \dots$ molar fraction.

- z_i ... formal charge,
- Φ ... Electrical potential,
- $r_i(y, t)$... reaction term,
- $J_i(y, t)$... partial flux,

Assume $\sum_{i=1}^{N} J_i = \sum_{i=1}^{N} r_i = 0.$

FEM in entropy variables

Summary and open questions

Physical quantities and assumptions

For $i=1,\ldots,N$ components, $y\in\Omega\subset\mathbb{R}^d$ and t>0 we define

- $\rho_i(y, t)$... mass density,
- *M_i*... molar mass,
- $c_i(y,t) = \rho_i(y,t)/M_i \dots$ molar concentration,
- $x_i(y,t) = c_i(y,t)/|c| \dots$ molar fraction.

- z_i ... formal charge,
- Φ ... Electrical potential,
- $r_i(y, t)$... reaction term,
- $J_i(y, t)$... partial flux,

FEM in entropy variables

Summary and open questions

Physical quantities and assumptions

For $i=1,\ldots,N$ components, $y\in\Omega\subset\mathbb{R}^d$ and t>0 we define

- $\rho_i(y, t)$... mass density,
- M_i... molar mass,
- $c_i(y,t) = \rho_i(y,t)/M_i \dots$ molar concentration,
- $x_i(y,t) = c_i(y,t)/|c| \dots$ molar fraction.

- z_i ... formal charge,
- Φ ... Electrical potential,
- $r_i(y, t)$... reaction term,
- $J_i(y, t)$... partial flux,

$$\partial_t \rho_i + \operatorname{div}(J_i) = r_i$$

FEM in entropy variables

Summary and open questions

Physical quantities and assumptions

For $i=1,\ldots,N$ components, $y\in\Omega\subset\mathbb{R}^d$ and t>0 we define

- $\rho_i(y, t)$... mass density,
- *M_i*... molar mass,
- $c_i(y,t) = \rho_i(y,t)/M_i \dots$ molar concentration,
- $x_i(y,t) = c_i(y,t)/|c| \dots$ molar fraction.

- z_i ... formal charge,
- Φ ... Electrical potential,
- $r_i(y, t)$... reaction term,
- $J_i(y, t)$... partial flux,

$$\partial_t \rho_i + \operatorname{div}(J_i) = r_i, \ \sum_{i=1}^N \rho_i = \rho^*$$

FEM in entropy variables

Summary and open questions

Physical quantities and assumptions

For $i=1,\ldots,N$ components, $y\in\Omega\subset\mathbb{R}^d$ and t>0 we define

- $\rho_i(y, t)$... mass density,
- M_i... molar mass,
- $c_i(y,t) = \rho_i(y,t)/M_i \dots$ molar concentration,
- $x_i(y,t) = c_i(y,t)/|c| \dots$ molar fraction.

- z_i ... formal charge,
- Φ ... Electrical potential,
- $r_i(y, t)$... reaction term,
- $J_i(y, t)$... partial flux,

$$\partial_t \rho_i + \operatorname{div}(J_i) = r_i, \ \sum_{i=1}^N \rho_i = \rho^* := 1.$$

FEM in entropy variables

Summary and open questions

Physical quantities and assumptions

For $i=1,\ldots,N$ components, $y\in\Omega\subset\mathbb{R}^d$ and t>0 we define

- $\rho_i(y, t)$... mass density,
- M_i... molar mass,
- $c_i(y,t) = \rho_i(y,t)/M_i \dots$ molar concentration,
- $x_i(y,t) = c_i(y,t)/|c| \dots$ molar fraction.

- z_i ... formal charge,
- Φ ... Electrical potential,
- $r_i(y, t)$... reaction term,
- $J_i(y, t)$... partial flux,

$$\partial_t \rho_i + \operatorname{div}(J_i) = r_i, \quad \sum_{i=1}^N \rho_i = \rho^* := 1.$$

 $-\lambda \Delta \Phi = \sum_{i=1}^N z_i c_i + f(y),$

The Poisson-Maxwell-Stefan System

FEM in entropy variables

Summary and open questions

By assumption:
$$\rho_N = 1 - \sum_{i=1}^{N-1} \rho_i$$
 and $J_N = - \sum_{i=1}^{N-1} J_i$.

The Poisson-Maxwell-Stefan System

FEM in entropy variables

Summary and open questions

By assumption:
$$\rho_N = 1 - \sum_{i=1}^{N-1} \rho_i$$
 and $J_N = - \sum_{i=1}^{N-1} J_i$.

The Poisson-Maxwell-Stefan System

FEM in entropy variables

Summary and open questions

By assumption:
$$\rho_N = 1 - \sum_{i=1}^{N-1} \rho_i$$
 and $J_N = - \sum_{i=1}^{N-1} J_i$.

The Poisson-Maxwell-Stefan System

FEM in entropy variables

Summary and open questions

By assumption:
$$\rho_N = 1 - \sum_{i=1}^{N-1} \rho_i$$
 and $J_N = - \sum_{i=1}^{N-1} J_i$.

The Poisson-Maxwell-Stefan System

FEM in entropy variables

Summary and open questions

By assumption:
$$\rho_N = 1 - \sum_{i=1}^{N-1} \rho_i$$
 and $J_N = - \sum_{i=1}^{N-1} J_i$.

$$\partial_t \rho_i + \operatorname{div}(J_i) = r_i, \ i = 1, \dots, N-1.$$

The Poisson-Maxwell-Stefan System

FEM in entropy variables

Summary and open questions

By assumption:
$$\rho_N = 1 - \sum_{i=1}^{N-1} \rho_i$$
 and $J_N = - \sum_{i=1}^{N-1} J_i$.

$$\partial_t \rho_i + \operatorname{div}(J_i) = r_i, \ i = 1, \dots, N-1.$$

The Poisson-Maxwell-Stefan System

FEM in entropy variables

Summary and open questions

By assumption:
$$\rho_N = 1 - \sum_{i=1}^{N-1} \rho_i$$
 and $J_N = - \sum_{i=1}^{N-1} J_i$.

$$\partial_t \rho_i + \operatorname{div}(J_i) = r_i, \ i = 1, \dots, N-1.$$

Introduction The Poisson-N 00● 000000

he Poisson-Maxwell-Stefan System

FEM in entropy variables

Summary and open questions

Maxwell-Stefan equations

By assumption:
$$ho_N = 1 - \sum_{i=1}^{N-1}
ho_i$$
 and $J_N = - \sum_{i=1}^{N-1} J_i$.

$$\partial_t \rho_i + \operatorname{div}(J_i) = r_i, \ i = 1, \dots, N-1.$$

General solution - Maxwell-Stefan equations:

$$D_i = -\sum_{j\neq i} d_{ij}(\rho_j J_i - \rho_i J_j),$$

with $d_{ij} = 1/(|c|^2 M_i M_j D_{ij})$.

Introduction The F ○○● ○○○

he Poisson-Maxwell-Stefan System

FEM in entropy variables

Summary and open questions

Maxwell-Stefan equations

By assumption:
$$ho_N = 1 - \sum_{i=1}^{N-1}
ho_i$$
 and $J_N = - \sum_{i=1}^{N-1} J_i$.

$$\partial_t \rho_i + \operatorname{div}(J_i) = r_i, \ i = 1, \dots, N-1.$$

General solution - Maxwell-Stefan equations:

$$D_i = -\sum_{j\neq i} d_{ij}(\rho_j J_i - \rho_i J_j),$$

with $d_{ij} = 1/(|c|^2 M_i M_j D_{ij})$.

For isobaric and isothermal process:

$$D_i = \nabla x_i + \beta (z_i x_i - \rho_i (z \cdot x)) \nabla \Phi$$

Introduction The Po 00● 00000

he Poisson-Maxwell-Stefan System

FEM in entropy variables

Summary and open questions

Maxwell-Stefan equations

By assumption:
$$ho_N = 1 - \sum_{i=1}^{N-1}
ho_i$$
 and $J_N = - \sum_{i=1}^{N-1} J_i$.

$$\partial_t \rho_i + \operatorname{div}(J_i) = r_i, \ i = 1, \dots, N-1.$$

General solution - Maxwell-Stefan equations:

$$\mathcal{D}_i = -\sum_{j \neq i} d_{ij} (
ho_j J_i -
ho_i J_j),$$

with $d_{ij} = 1/(|c|^2 M_i M_j D_{ij}).$

For isobaric and isothermal process:

$$D_i =
abla x_i + eta(z_i x_i -
ho_i(z \cdot x))
abla \Phi$$

In short, with $D' := (D_1, ..., D_{N-1})$:

$$D' = AJ', A \in \mathbb{R}^{N-1 \times N-1}$$

The Poisson-Maxwell-Stefan System

FEM in entropy variables

Summary and open questions

The Poisson-Maxwell-Stefan system
The Poisson-Maxwell-Stefan System

FEM in entropy variables

Summary and open questions

The Poisson-Maxwell-Stefan system

Let $\rho' := (\rho_1, \ldots, \rho_{N-1})$, then for $\rho \in \mathbb{R}^N$, t > 0, $y \in \Omega$, we have

The Poisson-Maxwell-Stefan System

FEM in entropy variables

Summary and open questions

The Poisson-Maxwell-Stefan system

Let
$$ho':=(
ho_1,\ldots,
ho_{N-1})$$
, then for $ho\in\mathbb{R}^N$, $t>0$, $y\in\Omega$, we have

 $\partial_t \rho' = \operatorname{div}(A^{-1}(\rho)D'(\rho, \Phi)) + r'(\rho)$

The Poisson-Maxwell-Stefan System

FEM in entropy variables

Summary and open questions

The Poisson-Maxwell-Stefan system

Let
$$ho':=(
ho_1,\ldots,
ho_{{\sf N}-1})$$
, then for $ho\in\mathbb{R}^{{\sf N}}$, $t>$ 0, $y\in\Omega$, we have

$$\partial_t \rho' = \operatorname{div}(A^{-1}(\rho)D'(\rho, \Phi)) + r'(\rho), \ \rho_N = 1 - \sum_{i=1}^{N-1} \rho_i,$$

The Poisson-Maxwell-Stefan System

FEM in entropy variables

Summary and open questions

The Poisson-Maxwell-Stefan system

Let
$$ho':=(
ho_1,\ldots,
ho_{{\sf N}-1})$$
, then for $ho\in\mathbb{R}^{{\sf N}}$, $t>$ 0, $y\in\Omega$, we have

$$\partial_t \rho' = \operatorname{div}(A^{-1}(\rho)D'(\rho, \Phi)) + r'(\rho), \ \rho_N = 1 - \sum_{i=1}^{N-1} \rho_i,$$
$$D'(\rho, \Phi) = (\nabla x_i + \beta(z_i x_i - \rho_i(z \cdot x))\nabla \Phi)_{i=1}^{N-1},$$

The Poisson-Maxwell-Stefan System

FEM in entropy variables

Summary and open questions

The Poisson-Maxwell-Stefan system

Let
$$ho':=(
ho_1,\ldots,
ho_{{\sf N}-1})$$
, then for $ho\in\mathbb{R}^{{\sf N}}$, $t>$ 0, $y\in\Omega$, we have

$$\partial_t \rho' = \operatorname{div}(A^{-1}(\rho)D'(\rho, \Phi)) + r'(\rho), \ \rho_N = 1 - \sum_{i=1}^{N-1} \rho_i,$$
$$D'(\rho, \Phi) = (\nabla x_i + \beta(z_i x_i - \rho_i(z \cdot x))\nabla \Phi)_{i=1}^{N-1},$$
$$-\lambda \Delta \Phi = \sum_{i=1}^N z_i c_i + f(y),$$

The Poisson-Maxwell-Stefan System

FEM in entropy variables

Summary and open questions

The Poisson-Maxwell-Stefan system

Let
$$ho':=(
ho_1,\ldots,
ho_{{\sf N}-1})$$
, then for $ho\in\mathbb{R}^{{\sf N}}$, $t>$ 0, $y\in\Omega$, we have

$$\partial_t \rho' = \operatorname{div}(A^{-1}(\rho)D'(\rho, \Phi)) + r'(\rho), \ \rho_N = 1 - \sum_{i=1}^{N-1} \rho_i,$$
$$D'(\rho, \Phi) = (\nabla x_i + \beta(z_i x_i - \rho_i(z \cdot x))\nabla \Phi)_{i=1}^{N-1},$$
$$-\lambda \Delta \Phi = \sum_{i=1}^N z_i c_i + f(y),$$

For N = 3:

$$A^{-1}(\rho) = \frac{1}{\delta(\rho)} \begin{pmatrix} d_{23} + (d_{12} - d_{23})\rho_1 & (d_{13} - d_{12})\rho_1 \\ (d_{23} - d_{12})\rho_2 & d_{13} + (d_{12} - d_{13})\rho_2 \end{pmatrix}$$

and $d_{ij} = 1/(|c|^2 M_i M_j D_{ij}), D_{ij} = D_{ji} > 0.$

Introduction The Poisson-M 000 000000

The Poisson-Maxwell-Stefan System ○●○○○○ FEM in entropy variables

Summary and open questions

Known analytic results without electrical potential

• Bothe '11: Rigorous inversion of flux relation, D = AJ, and local existence of solutions [1].

Introduction 000	The Poisson-Maxwell-Stefar ○●0000	n System FEM in en 000	tropy variables	Summary and open questions
Known	analytic resu	Its without	electrica	potential

- Bothe '11: Rigorous inversion of flux relation, D = AJ, and local existence of solutions [1].
- Jüngel and Stelzer '13: Global existence for equal molar mass and d ≤ 3 [11].

Introduction 000	The Poisson-Maxwell-Stefan S ○●0000	ystem FEM in entropy variables	Summary and open questions
Known	analytic resul	ts without electrica	al potential

- Bothe '11: Rigorous inversion of flux relation, D = AJ, and local existence of solutions [1].
- Jüngel and Stelzer '13: Global existence for equal molar mass and d ≤ 3 [11].
- Chen and Jüngel '15, Marion and Temam '15: Global existence for different molar mass and $d \leq 3$ [6, 12].

Introduction 000	The Poisson-Maxwell-Stefan Syste ○●0000	m FEM in entropy variables	Summary and open que
Known	analytic results	without electrica	al potential

lestions

- Bothe '11: Rigorous inversion of flux relation, D = AJ, and local existence of solutions [1].
- Jüngel and Stelzer '13: Global existence for equal molar mass and d ≤ 3 [11].
- Chen and Jüngel '15, Marion and Temam '15: Global existence for different molar mass and $d \leq 3$ [6, 12].
- Daus, Jüngel and Tang '18: Exponential time decay with more involved reaction terms [7].

Introduction 000	The Poisson-Maxwell-Stefan System	FEM in entropy variables	Summary and open questions
Assumpt	tions:		

Introduction 000	The Poisson-Maxwell-Stefan System ००●०००	FEM in entropy variables	Summary and open questions
Assump	tions:		

Introduction 000	The Poisson-Maxwell-Stefan System	FEM in entropy variables	Summary and open questions
Assump	tions:		

 $J_i \cdot \nu = 0 \text{ on } \partial \Omega, \quad i = 1, \dots, N,$

Introduction 000	The Poisson-Maxwell-Stefan System ○0●000	FEM in entropy variables	Summary and open questions
Assump	tions:		

$$J_i \cdot \nu = 0 \text{ on } \partial\Omega, \quad i = 1, \dots, N,$$

$$\nabla \Phi \cdot \nu = 0 \text{ on } \Gamma_{Ne}, \quad \Phi = \Phi^D \text{ on } \Gamma_{Di},$$

Introduction 000	The Poisson-Maxwell-Stefan System ○○●○○○	FEM in entropy variables	Summary and open questions
Assump	tions:		

> $J_i \cdot \nu = 0 \text{ on } \partial \Omega, \quad i = 1, \dots, N,$ $\nabla \Phi \cdot \nu = 0 \text{ on } \Gamma_{Ne}, \quad \Phi = \Phi^D \text{ on } \Gamma_{Di},$

with $\Phi^D \in H^1(\Omega) \cap L^{\infty}(\Omega)$.

Introduction 000	The Poisson-Maxwell-Stefan System ○○●○○○	FEM in entropy variables	Summary and open questions
Assump	tions:		

> $J_i \cdot \nu = 0 \text{ on } \partial \Omega, \quad i = 1, \dots, N,$ $\nabla \Phi \cdot \nu = 0 \text{ on } \Gamma_{Ne}, \quad \Phi = \Phi^D \text{ on } \Gamma_{Di},$

with $\Phi^D \in H^1(\Omega) \cap L^{\infty}(\Omega)$. A2 Initial data: $\rho_1^0, \dots, \rho_N^0 \ge 0$ and $\sum_{i=1}^N \rho_i^0 = 1$.

Introduction 000	The Poisson-Maxwell-Stefan System ○0●000	FEM in entropy variables	Summary and open questions
Assump	tions:		

$$J_i \cdot \nu = 0 \text{ on } \partial\Omega, \quad i = 1, \dots, N,$$

$$\nabla \Phi \cdot \nu = 0 \text{ on } \Gamma_{Ne}, \quad \Phi = \Phi^D \text{ on } \Gamma_{Di},$$

with $\Phi^D \in H^1(\Omega) \cap L^{\infty}(\Omega)$. A2 Initial data: $\rho_1^0, \ldots, \rho_N^0 \ge 0$ and $\sum_{i=1}^N \rho_i^0 = 1$. A3 Background charge: $f \in L^{\infty}(\Omega)$.

Introduction 000	The Poisson-Maxwell-Stefan System ○0●000	FEM in entropy variables	Summary and open questions
Assump	tions:		

$$J_i \cdot \nu = 0 \text{ on } \partial\Omega, \quad i = 1, \dots, N,$$
$$\nabla \Phi \cdot \nu = 0 \text{ on } \Gamma_{Ne}, \quad \Phi = \Phi^D \text{ on } \Gamma_{Di},$$

with $\Phi^D \in H^1(\Omega) \cap L^{\infty}(\Omega)$.

- A2 Initial data: $\rho_1^0, \ldots, \rho_N^0 \ge 0$ and $\sum_{i=1}^N \rho_i^0 = 1$.
- A3 Background charge: $f \in L^{\infty}(\Omega)$.
- A4 Production rates: $r \in C([0, 1]^N; \mathbb{R})$, $\sum_{i=1}^{N} r_i(\rho) \log x_i \leq C_r$ for all $0 < \rho_1, \dots, \rho_N \leq 1$.

The Poisson-Maxwell-Stefan System

FEM in entropy variables

Summary and open questions

Global nonnegative weak solutions:

Theorem (O.L. and A. Jüngel, work in progress)

The Poisson-Maxwell-Stefan System

FEM in entropy variables

Summary and open questions

Global nonnegative weak solutions:

Theorem (O.L. and A. Jüngel, work in progress)

Let A1-A4 hold. There exist, for every T > 0, bounded weak solutions $\rho_1, \ldots, \rho_N \in [0, 1]$

The Poisson-Maxwell-Stefan System

FEM in entropy variables

Summary and open questions

Global nonnegative weak solutions:

Theorem (O.L. and A. Jüngel, work in progress)

Let A1-A4 hold. There exist, for every T > 0, bounded weak solutions $\rho_1, \ldots, \rho_N \in [0, 1]$ satisfying

$$\rho_i \in L^2(0, T; H^1(\Omega)), \quad \partial_t \rho_i \in L^2(0, T; (H^1(\Omega))'),
 \Phi \in L^2(0, T; H^1(\Omega)), \quad i = 1, ..., N - 1,$$

such that $\rho_N = 1 - \sum_{i=1}^{N-1} \rho_i$.

Introduction The Poisson-Maxwell-Stefan System FEM in entropy variables Summary and open questi 000 00000

Key idea: Entropy structure

Introduction The Poisson-Max 000 000000

The Poisson-Maxwell-Stefan System

FEM in entropy variables

Summary and open questions

Key idea: Entropy structure

Define entropy by

$$h(
ho) := |c| \sum_{i=1}^N x_i (\log x_i - 1) + |c|$$

Introduction 000	The Poisson-Maxwell-Stefan System ००००●०	FEM in entropy variables	Summary and open questions
Key idea	a: Entropy structu	ire	

Define entropy by

$$h(
ho):=|c|\sum_{i=1}^N x_i(\log x_i-1)+|c|+rac{eta\lambda}{2}|
abla(\Phi-\Phi^D)|^2.$$

Introduction 000	The Poisson-Maxwell-Stefan System ○○○○●○	FEM in entropy variables	Summary and open questions
Key idea	a: Entropy structu	re	

Define entropy by

$$h(
ho):=|c|\sum_{i=1}^N x_i(\log x_i-1)+|c|+rac{eta\lambda}{2}|
abla(\Phi-\Phi^D)|^2.$$

Entropy inequality (r = 0 and Φ_D constant):

Introduction 000	The Poisson-Maxwell-Stefan System ○000●0	FEM in entropy variables	Summary and open questions
Kev idea	a: Entropy structu	re	

Define entropy by

$$h(
ho):=|c|\sum_{i=1}^N x_i(\log x_i-1)+|c|+rac{eta\lambda}{2}|
abla(\Phi-\Phi^D)|^2.$$

Entropy inequality (r = 0 and Φ_D constant):

$$\frac{d}{dt}\int_{\Omega}h(\rho)dy$$

Introduction 000	The Poisson-Maxwell-Stefan System ○○○○●○	FEM in entropy variables	Summary and open questions
Kau idaa			

Define entropy by

$$h(\rho):=|c|\sum_{i=1}^N x_i(\log x_i-1)+|c|+rac{eta\lambda}{2}|
abla(\Phi-\Phi^D)|^2.$$

Entropy inequality (r = 0 and Φ_D constant):

$$\frac{d}{dt}\int_{\Omega}h(\rho)dy = -\sum_{i,j=1}^{N-1}\int_{\Omega}B_{ij}(\rho)|c|^{2}\left(\frac{D_{j}}{\rho_{j}} - \frac{D_{N}}{\rho_{N}}\right)\left(\frac{D_{i}}{\rho_{i}} - \frac{D_{N}}{\rho_{N}}\right)dy$$

Introduction	The Poisson-Maxwell-Stefan System	FEM in entropy variables	Summary and open questions
000	○000●0	000	
Kou idea			

Define entropy by

$$h(
ho):=|c|\sum_{i=1}^N x_i(\log x_i-1)+|c|+rac{eta\lambda}{2}|
abla(\Phi-\Phi^D)|^2.$$

Entropy inequality (r = 0 and Φ_D constant):

$$\frac{d}{dt}\int_{\Omega}h(\rho)dy=-\sum_{i,j=1}^{N-1}\int_{\Omega}B_{ij}(\rho)|c|^{2}\left(\frac{D_{j}}{\rho_{j}}-\frac{D_{N}}{\rho_{N}}\right)\left(\frac{D_{i}}{\rho_{i}}-\frac{D_{N}}{\rho_{N}}\right)dy\leq0,$$

with $B(\rho) = (B_{ij}(\rho))_{i,j=1}^{N-1}$ symmetric, positive definite and bounded if $\rho \in (0, 1]^N$.

introduction in the rousion maxwell steran system in entropy variables summary and open questions	000	000000	000	000000
	000	000000	000	000000

Define entropy by

$$h(
ho):=|c|\sum_{i=1}^N x_i(\log x_i-1)+|c|+rac{eta\lambda}{2}|
abla(\Phi-\Phi^D)|^2.$$

Entropy inequality (r = 0 and Φ_D constant):

$$\frac{d}{dt}\int_{\Omega}h(\rho)dy=-\sum_{i,j=1}^{N-1}\int_{\Omega}B_{ij}(\rho)|c|^{2}\left(\frac{D_{j}}{\rho_{j}}-\frac{D_{N}}{\rho_{N}}\right)\left(\frac{D_{i}}{\rho_{i}}-\frac{D_{N}}{\rho_{N}}\right)dy\leq0,$$

with $B(\rho) = (B_{ij}(\rho))_{i,j=1}^{N-1}$ symmetric, positive definite and bounded if $\rho \in (0, 1]^N$. In this case:

$$|c|\left(\frac{D_i}{\rho_i}-\frac{D_N}{\rho_N}\right)$$

introduction in the rousion maxwell steran system in entropy variables summary and open questions	000	000000	000	000000
	000	000000	000	000000

Define entropy by

$$h(
ho):=|c|\sum_{i=1}^N x_i(\log x_i-1)+|c|+rac{eta\lambda}{2}|
abla(\Phi-\Phi^D)|^2.$$

Entropy inequality (r = 0 and Φ_D constant):

$$\frac{d}{dt}\int_{\Omega}h(\rho)dy=-\sum_{i,j=1}^{N-1}\int_{\Omega}B_{ij}(\rho)|c|^{2}\left(\frac{D_{j}}{\rho_{j}}-\frac{D_{N}}{\rho_{N}}\right)\left(\frac{D_{i}}{\rho_{i}}-\frac{D_{N}}{\rho_{N}}\right)dy\leq0,$$

with $B(\rho) = (B_{ij}(\rho))_{i,j=1}^{N-1}$ symmetric, positive definite and bounded if $\rho \in (0, 1]^N$. In this case:

$$|c|\left(\frac{D_i}{\rho_i}-\frac{D_N}{\rho_N}\right) = \nabla\left(\frac{\partial h}{\partial \rho_i}-\frac{\partial h}{\partial \rho_N}\right)$$

	— • • • •		
000	000000	000	000000
Introduction	The Poisson-Maxwell-Stefan System	FEM in entropy variables	Summary and open questions

Define entropy by

$$h(
ho):=|c|\sum_{i=1}^N x_i(\log x_i-1)+|c|+rac{eta\lambda}{2}|
abla(\Phi-\Phi^D)|^2.$$

Entropy inequality (r = 0 and Φ_D constant):

$$\frac{d}{dt}\int_{\Omega}h(\rho)dy=-\sum_{i,j=1}^{N-1}\int_{\Omega}B_{ij}(\rho)|c|^{2}\left(\frac{D_{j}}{\rho_{j}}-\frac{D_{N}}{\rho_{N}}\right)\left(\frac{D_{i}}{\rho_{i}}-\frac{D_{N}}{\rho_{N}}\right)dy\leq0,$$

with $B(\rho) = (B_{ij}(\rho))_{i,j=1}^{N-1}$ symmetric, positive definite and bounded if $\rho \in (0, 1]^N$. In this case:

$$\begin{aligned} |c| \left(\frac{D_i}{\rho_i} - \frac{D_N}{\rho_N} \right) &= \nabla \left(\frac{\partial h}{\partial \rho_i} - \frac{\partial h}{\partial \rho_N} \right) \\ \left(= \nabla \left(\frac{\log(x_i)}{M_i} - \frac{\log(x_N)}{M_N} + \beta \left(\frac{z_i}{M_i} - \frac{z_N}{M_N} \right) \Phi \right) \right) \end{aligned}$$

The Poisson-Maxwell-Stefan System $\circ \circ \circ \circ \circ \bullet$

FEM in entropy variables

Summary and open questions

Boundedness by entropy method:

Introduction	The Poisson-Maxwell-Stefan System	FEM in entropy variables	Summary and open questions
000	○○○○○●	000	
Bounde	dness by entropy i	method:	

• Define entropy variables for $i = 1, \ldots, N - 1$,

$$\omega_i := \frac{\log(x_i)}{M_i} - \frac{\log(x_N)}{M_N} + \beta \left(\frac{z_i}{M_i} - \frac{z_N}{M_N}\right) \Phi.$$

Introduction 000	The Poisson-Maxwell-Stefan System ○○○○○●	FEM in entropy variables	Summary and open questions
Bounde	dness by entropy	method:	

• Define entropy variables for $i = 1, \ldots, N - 1$,

$$\omega_i := \frac{\log(x_i)}{M_i} - \frac{\log(x_N)}{M_N} + \beta \left(\frac{z_i}{M_i} - \frac{z_N}{M_N}\right) \Phi.$$

and show the inverse exists such that $\rho'(\omega, \Phi) \in (0, 1)$.

Introduction 000	The Poisson-Maxwell-Stefan System ○○○○○●	FEM in entropy variables	Summary and open questions
Bounde	dness by entropy i	method:	

• Define entropy variables for $i = 1, \ldots, N - 1$,

$$\omega_i := \frac{\log(x_i)}{M_i} - \frac{\log(x_N)}{M_N} + \beta \left(\frac{z_i}{M_i} - \frac{z_N}{M_N}\right) \Phi.$$

and show the inverse exists such that $\rho'(\omega, \Phi) \in (0, 1)$. • Rewrite equation:

$$\partial_t \rho' = \operatorname{div}(A^{-1}(\rho)D'(\rho,\Phi)) + r'(\rho) \rightarrow$$
Introduction 000	The Poisson-Maxwell-Stefan System ○○○○○●	FEM in entropy variables	Summary and open questions
Bounde	dness by entropy i	method:	

$$\omega_i := \frac{\log(x_i)}{M_i} - \frac{\log(x_N)}{M_N} + \beta \left(\frac{z_i}{M_i} - \frac{z_N}{M_N}\right) \Phi.$$

and show the inverse exists such that $\rho'(\omega, \Phi) \in (0, 1)$. • Rewrite equation:

$$\partial_t \rho' = \operatorname{div}(A^{-1}(\rho)D'(\rho,\Phi)) + r'(\rho) \rightarrow \\ \partial_t \rho'(\omega,\Phi) = \operatorname{div}(B(\rho'(\omega,\Phi))\nabla\omega) + r'(\rho(\omega,\Phi)).$$

Introduction	The Poisson-Maxwell-Stefan System	FEM in entropy variables	Summary and open questions
000	○○○○○●	000	
Bounde	dness by entropy n	nethod:	

$$\omega_i := \frac{\log(x_i)}{M_i} - \frac{\log(x_N)}{M_N} + \beta \left(\frac{z_i}{M_i} - \frac{z_N}{M_N}\right) \Phi.$$

and show the inverse exists such that $\rho'(\omega, \Phi) \in (0, 1)$. • Rewrite equation:

$$\partial_t \rho' = \operatorname{div}(A^{-1}(\rho)D'(\rho, \Phi)) + r'(\rho) \rightarrow \\ \partial_t \rho'(\omega, \Phi) = \operatorname{div}(B(\rho'(\omega, \Phi))\nabla\omega) + r'(\rho(\omega, \Phi)).$$

• Discretize with implicit Euler/Galerkin and regularize.

Introduction	The Poisson-Maxwell-Stefan System	FEM in entropy variables	Summary and open questions
000	○○○○○●	000	
Bounde	dness by entropy n	nethod:	

$$\omega_i := \frac{\log(x_i)}{M_i} - \frac{\log(x_N)}{M_N} + \beta \left(\frac{z_i}{M_i} - \frac{z_N}{M_N}\right) \Phi.$$

and show the inverse exists such that $\rho'(\omega, \Phi) \in (0, 1)$. • Rewrite equation:

$$\partial_t \rho' = \operatorname{div}(A^{-1}(\rho)D'(\rho, \Phi)) + r'(\rho) \rightarrow \\ \partial_t \rho'(\omega, \Phi) = \operatorname{div}(B(\rho'(\omega, \Phi))\nabla\omega) + r'(\rho(\omega, \Phi)).$$

- Discretize with implicit Euler/Galerkin and regularize.
- Use discrete Entropy inequality to derive apriori estimate

Introduction	The Poisson-Maxwell-Stefan System	FEM in entropy variables	Summary and open questions
000	○○○○○●	000	
Bounde	dness by entropy n	nethod:	

$$\omega_i := \frac{\log(x_i)}{M_i} - \frac{\log(x_N)}{M_N} + \beta \left(\frac{z_i}{M_i} - \frac{z_N}{M_N}\right) \Phi.$$

and show the inverse exists such that $\rho'(\omega, \Phi) \in (0, 1)$. • Rewrite equation:

$$\partial_t \rho' = \operatorname{div}(A^{-1}(\rho)D'(\rho,\Phi)) + r'(\rho) \to \\ \partial_t \rho'(\omega,\Phi) = \operatorname{div}(B(\rho'(\omega,\Phi))\nabla\omega) + r'(\rho(\omega,\Phi)).$$

- Discretize with implicit Euler/Galerkin and regularize.
- Use discrete Entropy inequality to derive apriori estimate and pass to the limit ⇒ existence of global weak solutions.

Introduction 000 The Poisson-Maxwell-Stefan System

FEM in entropy variables

Summary and open questions

FEM in entropy variables: Implementation

oductionThe Poisson-Maxwell-Stefan Systemo000000

FEM in entropy variables

Summary and open questions

FEM in entropy variables: Implementation

• Galerkin-scheme in the proof allows for standard linear finite element spaces.

Introduction 000	The Poisson-Maxwell-Stefan System	FEM in entropy variables ●○○	Summary and open questions
FEM in	entropy variables:	Implementati	on

- Galerkin-scheme in the proof allows for standard linear finite element spaces.
- Nonlinearity and regularization:

$$\partial_t \rho'(\omega, \Phi) = \operatorname{div}(B(\rho'(\omega, \Phi))\nabla \omega) - \varepsilon(\omega - \omega^D)$$

Introduction 000	The Poisson-Ma	he Poisson-Maxwell-Stefan System		1 entropy	variables	Summary and ope	n questions

FEM in entropy variables: Implementation

- Galerkin-scheme in the proof allows for standard linear finite element spaces.
- Nonlinearity and regularization:

$$\partial_t \rho'(\omega, \Phi) = \operatorname{div}(B(\rho'(\omega, \Phi))\nabla \omega) - \varepsilon(\omega - \omega^D)$$

• Recovering original variables:

$$\rho_i = |c| M_i (1-s_0)^{M_i/M_N} e^{M_i \left(\omega_i - \beta \left(\frac{z_i}{M_i} - \frac{z_N}{M_N}\right) \Phi\right)},$$

Introduction 000	The Poisson-Maxwe	ell-Stefan System	FEM in entropy va ●○○	riables Summar	y and open question:

FEM in entropy variables: Implementation

- Galerkin-scheme in the proof allows for standard linear finite element spaces.
- Nonlinearity and regularization:

$$\partial_t \rho'(\omega, \Phi) = \operatorname{div}(B(\rho'(\omega, \Phi))\nabla \omega) - \varepsilon(\omega - \omega^D)$$

• Recovering original variables:

$$\rho_i = |c| M_i (1 - s_0)^{M_i/M_N} e^{M_i \left(\omega_i - \beta \left(\frac{z_i}{M_i} - \frac{z_N}{M_N}\right) \Phi\right)},$$

whereby $\textit{s}_{0} \in [0,1]$ is the solution of the fixed point problem

$$F(s,\omega_i,\Phi)=\sum_{i=1}^{N-1}(1-s)^{M_i/M_N}e^{M_i\left((\omega)_i-\beta\left(\frac{z_i}{M_i}-\frac{z_N}{M_N}\right)\Phi\right)}-s=0,$$

for i = 1, ..., N - 1.

Introduction 000

FEM in entropy variables

Summary and open questions

Equal molar mass

Plot with equal molar mass and N = 3, $\beta = M_i = D_{ij} = 1$ for i, j = 1, ..., 3, $z_1 = z_2 = 1$, $z_3 = 0, \lambda = 0.01$.

Introduction 000 The Poisson-Maxwell-Stefan System

FEM in entropy variables ○○●

Summary and open questions

Different molar mass

Plot with different molar mass M_1 at time t = 4.

Introduction 000 The Poisson-Maxwell-Stefan System

FEM in entropy variables 000

Summary and open questions

Summary and open questions:

Introduction	

FEM in entropy variables

Summary and open questions

Summary and open questions:

Summary

• Global existence for the Poisson-Maxwell-Stefan system

Introduction	

FEM in entropy variables

Summary and open questions

Summary and open questions:

- Global existence for the Poisson-Maxwell-Stefan system
- New finite element scheme:

FEM in entropy variables

Summary and open questions

Summary and open questions:

- Global existence for the Poisson-Maxwell-Stefan system
- New finite element scheme:
 - "Convergence" of approximation follows by analytic proof

FEM in entropy variables

Summary and open questions

Summary and open questions:

- Global existence for the Poisson-Maxwell-Stefan system
- New finite element scheme:
 - "Convergence" of approximation follows by analytic proof
 - Diffusion matrix is symmetric and positive definite

FEM in entropy variables

Summary and open questions

Summary and open questions:

- Global existence for the Poisson-Maxwell-Stefan system
- New finite element scheme:
 - "Convergence" of approximation follows by analytic proof
 - Diffusion matrix is symmetric and positive definite
 - Preserves lower and upper bounds

FEM in entropy variables

Summary and open questions

Summary and open questions:

- Global existence for the Poisson-Maxwell-Stefan system
- New finite element scheme:
 - "Convergence" of approximation follows by analytic proof
 - Diffusion matrix is symmetric and positive definite
 - Preserves lower and upper bounds
 - Preserves a discrete version of the Entropy inequality

FEM in entropy variables

Summary and open questions

Summary and open questions:

Summary

- Global existence for the Poisson-Maxwell-Stefan system
- New finite element scheme:
 - "Convergence" of approximation follows by analytic proof
 - Diffusion matrix is symmetric and positive definite
 - Preserves lower and upper bounds
 - Preserves a discrete version of the Entropy inequality

Open questions and challenges:

FEM in entropy variables

Summary and open questions

Summary and open questions:

Summary

- Global existence for the Poisson-Maxwell-Stefan system
- New finite element scheme:
 - "Convergence" of approximation follows by analytic proof
 - Diffusion matrix is symmetric and positive definite
 - Preserves lower and upper bounds
 - Preserves a discrete version of the Entropy inequality

Open questions and challenges:

Longtime behavior and decay rate

FEM in entropy variables

Summary and open questions

Summary and open questions:

Summary

- Global existence for the Poisson-Maxwell-Stefan system
- New finite element scheme:
 - "Convergence" of approximation follows by analytic proof
 - Diffusion matrix is symmetric and positive definite
 - Preserves lower and upper bounds
 - Preserves a discrete version of the Entropy inequality

Open questions and challenges:

- Longtime behavior and decay rate
- Numerical analysis of the scheme

FEM in entropy variables

Summary and open questions

Summary and open questions:

Summary

- Global existence for the Poisson-Maxwell-Stefan system
- New finite element scheme:
 - "Convergence" of approximation follows by analytic proof
 - Diffusion matrix is symmetric and positive definite
 - Preserves lower and upper bounds
 - Preserves a discrete version of the Entropy inequality

Open questions and challenges:

- Longtime behavior and decay rate
- Numerical analysis of the scheme
- Efficient implementation of the scheme for d > 1

ntroduction	The Poisson-Maxwell-Stefan S	5ys
000		

FEM in entropy variables

Summary and open questions 00000

Thank you for your attention.

Bibliography: I

- D. Bothe. On the Maxwell-Stefan equations to multicomponent diffusion. *Progr. Nonlinear Differential Equations Appl.*, Springer, Basel, 2011, 81-93.
- D. Bothe and W. Dreyer. Continuum thermodynamics of chemically reacting fluid mixtures. Acta Mechanica 226 no. 6 (2015), 1757-1805.
- D. Bothe, A. Fischer and J. Saal. Global Well-Posedness and Stability of Electrokinetic Flows. *SIAM Journal on Mathematical Analysis* 46(2) (2014), 1263-1316.
- L. Boudin , D. Götz, B. Grec. Diffusion models of multicomponent mixtures in the lung. *InESAIM: Proceedings* Vol. 30 (2010), 90-103.

Bibliography: II

- L. Boudin, B. Grec and F. Salvarani. A mathematical and numerical analysis of the Maxwell-Stefan diffusion equations. *Discrete and Continuous Dynamical Systems-Series B* 17.5 (2012), 1427-1440.
- A. Chen and A. Jüngel. Analysis of an Incompressible Navier–Stokes–Maxwell–Stefan System. Communications in Mathematical Physics 340(2) (2015), 471-497.
- E. Daus, A. Jüngel, and B. Q. Tang. Exponential time decay of solutions to reaction-cross-diffusion systems of Maxwell-Stefan type. Submitted for publication, 2018.
- J. Duncan and H. Toor. An experimental study of three component gas diffusion. *AIChE Journal* 8 (1962), 38-41.
- A. Jüngel. The boundedness-by-entropy method for cross-diffusion systems. *Nonlinearity* 28 (2015), 1963-2001.

Bibliography: III

- A. Jüngel. Entropy Methods for Diffusive Partial Differential Equations. BCAM SpringerBriefs, 2016.
- A. Jüngel and I.V. Stelzer. Existence Analysis of Maxwell–Stefan Systems for Multicomponent Mixtures. SIAM Journal on Mathematical Analysis 45, no. 4 (2013), 2421-2440.
- M. Marion and R. Temam. Global existence for fully nonlinear reaction diffusion systems describing multicomponent reactive flows. *Journal de Mathmatiques Pures et Appliques* 104.1 (2015), 102-138.
- C. Maxwell. On the dynamical theory of gases. *Phil. Trans. Roy. Soc. London* 157 (1866), 49-88.

Bibliography: IV

- S. Psaltis and T. Farrell. Comparing charge transport predictions for a ternary electrolyte using the MaxwellStefan and NernstPlanck equations. *Journal of The Electrochemical Society* 158.1 (2011), A33-A42.
- S. Psaltis Multicomponent charge transport in electrolyte solutions. Diss. Queensland University of Technology, 2012.
- J. Stefan. Über das Gleichgewicht und Bewegung, insbesondere die Diffusion von Gemischen. *Sitzungsberichte Kaiserl. Akad. Wiss. Wien* 63 (1871), 63-124. Math. Anal. 46, 12631316 (2014)
- M. Marion and R. Temam. Global existence for fully nonlinear reaction diffusion systems describing multicomponent reactive flows. *J. Math. Pures Appl.* 104(1), 102138 (2015)