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Introduction

Maxwell's equations (Maxwell 1861, Gibbs, Heaviside, Hertz 1881).

∂tµH+ curlE = K ,
∂tεE +σE − curlH =−J,

(1)

Compact form nowadays standard 6-vector form (Minkowski 1908,

G. Schmidt 1967, R. Leis 1968):

M0 =

(
ε 0

0 µ

)
,M1 =

(
σ 0

0 0

)
, AMax =

(
0 −curl
˚curl 0

)
,

(∂tM0+M1+AMax)

(
E
H

)
=

(
−J
K

)
.
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Introduction

Observer in motion (with velocity �eld v), which leads to a Maxwell

system with drift term

∂tµH+ ∂

∂v µH+ curlE = K ,

∂tεE + ∂

∂v εE − curlH =−J,
(2)

sometimes referred to as Maxwell-Hertz-Cohn system (Cohn 1901,

Hertz 1908). We shall discuss this and related systems in a uni�ed

functional-analytical framework (Evo-Systems), which facilitates

comparison.(
∂tM0+M1+AMax +

∂

∂v
M0

)(
E
H

)
=

(
−J
K

)

with M0 =

(
ε 0

0 µ

)
M1 =

(
σ 0

0 0

)
as before.

The Maxwell-Hertz-Cohn model has been superseded by a

relativistic approach: Maxwell-Minkowski model, Minkowski 1908.

Survey: Sommerfeld, Electrodynamics Lectures Vol. 3, 1952
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Preliminaries

The Linear Solution Theory.

Solve the linear equation:

Au = f ,

A : D (A)⊆ H → H, H a complete, real inner product space, i.e. a

Hilbert space with inner product 〈 · | · 〉H and norm | · |H .
Adjoint operator A∗ : D (A∗)⊆ H → H:

〈Ax |y〉H = 〈x |A∗y〉H , x ∈ D (A) , y ∈ D (A∗) .

By the projection theorem we have with

R (A) := {y |y = Ax , x ∈ D (A)} , N (A) := {x |Ax = 0} ,

H = R (A)⊕R (A)⊥

= R (A)⊕N (A∗)

H = R (A∗)⊕R (A∗)⊥

= R (A∗)⊕N (A) .
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Preliminaries

For every f ∈ H there is a unique u ∈ D (A) such that
Au = f

if and only if (Hadamard's requirements)

N (A) = {0} (uniqueness),

N (A∗) = {0} (approximate solvability),

R (A) = R (A) (continuous dependence on data).
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Good Case: �Positivity�.

If A and A∗, with A= A∗∗, are strictly positive de�nite, i.e. for

some positive c0

|x |H |Ax |H ≥ 〈x |Ax〉H≥ c0 〈x |x〉H = c0 |x |2H ,

|y |H |A∗y |H ≥ 〈y |A∗y〉H≥ c0 〈y |y〉H = c0 |y |2H ,

then we have unique existence of solution u for every f ∈ H, in

other words u = A−1f .

Moreover,

|u|H =
∣∣A−1f

∣∣
H
≤ 1

c0
|f |H or

∥∥A−1∥∥≤ 1

c0

(continuous dependence on the data; Hadamard's requirements for

well-posedness).
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Three Key Ideas for Evo-Systems

The framework in which we discuss dynamic problems rests on the

previous discussion and the following three key concepts:

1 The time derivative operator ∂t is a strictly positive de�nite

linear operator.

2 Evo-systems are strictly positive de�nite (yielding Hadamard

well-posedness!).

3 Evo-systems are � beyond Hadamard well-posedness �

characterized by causality (!).

Rainer Picard Moving Media
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What are Evo-Systems?

General Form (π 2009):

∂tV +AU = f on ]0,∞[ ,

V (0+) = Φ,

where A is skew-selfadjoint, i.e. A=−A∗, in which case

〈x |Ax〉H = 0 for x ∈ D (A), in an underlying Hilbert space H.

Without much loss of generality: Φ= 0.

Thus

∂tV +AU = f on R. (3)

Material Law:

V = MU. (4)

Rainer Picard Moving Media
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The Shape of Evo-Systems

General Form of Evolutionary Problems:

∂tV +AU = f on R, V = MU.

Evo-Systems:

(∂tM +A)U = f .

Solution Theory: Does the operator

(∂tM +A)−1

exist as a continuous linear mapping on a suitable real Hilbert

space?

Which�suitable� real Hilbert space?
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The Time Derivative as a Normal Operator

Exponential weight function t 7→ exp(−ρ t), ρ ∈ R, generates a
weighted L2-space Hρ,0 (R,H) (inner product 〈 · | · 〉

ρ,0,0 , norm:

| · |
ρ,0,0)

(ϕ,ψ) 7→
∫
R
〈ϕ (t) |ψ (t)〉H exp(−2ρt)dt.

Time-di�erentiation ∂t as a closed operator in Hρ,0 (R,H) induced
by

C̊1 (R,H)⊆ Hρ,0 (R,H)→ Hρ,0 (R,H) ,

ϕ 7→ ϕ
′.

Rainer Picard Moving Media



The Time Derivative as a Normal Operator

Time-di�erentiation ∂t is a normal operator in Hρ,0 (R,H)

∂t = sym(∂t)+ skew(∂t) =
1

2
(∂t +∂

∗
t )+

1

2
(∂t −∂

∗
t )

with sym(∂t) self-adjoint and skew(∂t) skew-selfadjoint with
commuting resolvents:

sym(∂t) = ρ.

For ρ ∈ R\{0}: continuous invertibility of ∂t.

11/23



The Time Derivative as a Normal Operator

Time-di�erentiation ∂t is a normal operator in Hρ,0 (R,H)

∂t = sym(∂t)+ skew(∂t) =
1

2
(∂t +∂

∗
t )+

1

2
(∂t −∂

∗
t )

with sym(∂t) self-adjoint and skew(∂t) skew-selfadjoint with
commuting resolvents:

sym(∂t) = ρ.

For ρ ∈ R\{0}: continuous invertibility of ∂t.

11/23



12/23

Introduction
Preliminaries

Solution Theory
Maxwell's Equations

Basics of the Solution Theory
The Solution Theorem

Basics of the Solution Theory Hρ,0 (R,H)

Simple Evo-Systems: M =M
(
∂
−1
t
)
=M0+∂

−1
t M1

(∂tM0+M1+A)U = F
Normal Form: When is (∂tM0+M1+A) (and its adjoint) strictly

positive de�nite in Hρ,0 (R,H) (for all su�ciently large ρ ∈ ]0,∞[)?

Assumptions (E):

A skew-selfadjoint in H (lifted to Hρ,0 (R,H)),

M0 selfadjoint1 and 〈u|(ρM0+ sym(M1))u〉H ≥ c0 〈u|u〉H for

all u ∈ H and all su�ciently large ρ ∈ ]0,∞[ .

The latter is for example the case if
M0 selfadjoint, strictly positive de�nite on its range,

sym (M1) strictly positive de�nite on null space of M0.

1M0 = sym(M0)
Rainer Picard Moving Media
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Basics of the Solution Theory Hρ,0 (R,H)

Assumptions (E) imply

〈
χ

]−∞,a[
(m0)U|(∂tM0+ sym(M1))U

〉
ρ,0,0

=

=
〈

χ
]−∞,a[

(m0)U|χ
]−∞,a[

(m0)(∂tM0+M1+A)U
〉

ρ,0,0

≥ c0

∣∣∣χ]−∞,a[
(m0)U

∣∣∣2
ρ,0,0

and so also (M∗ =(sym(M)+ skew(M))∗ = sym(M)− skew(M))

〈U|(ρM0+ sym(M1))U〉
ρ,0,0 =

=
〈
U|(∂tM0+M1+A)∗U

〉
ρ,0,0

≥ c0 |U|2
ρ,0,0

uniformly for U ∈ D (∂t)∩D (A) and all a ∈ R, ρ ∈ ]ρ0,∞[, where
ρ0 is su�ciently large).

13/23



Basics of the Solution Theory Hρ,0 (R,H)

Assumptions (E) imply

〈
χ

]−∞,a[
(m0)U|(∂tM0+ sym(M1))U

〉
ρ,0,0

=

=
〈

χ
]−∞,a[

(m0)U|χ
]−∞,a[

(m0)(∂tM0+M1+A)U
〉

ρ,0,0

≥ c0

∣∣∣χ]−∞,a[
(m0)U

∣∣∣2
ρ,0,0

and so also (M∗ =(sym(M)+ skew(M))∗ = sym(M)− skew(M))

〈U|(ρM0+ sym(M1))U〉
ρ,0,0 =

=
〈
U|(∂tM0+M1+A)∗U

〉
ρ,0,0

≥ c0 |U|2
ρ,0,0

uniformly for U ∈ D (∂t)∩D (A) and all a ∈ R, ρ ∈ ]ρ0,∞[, where
ρ0 is su�ciently large).

13/23



14/23

Introduction
Preliminaries

Solution Theory
Maxwell's Equations

Basics of the Solution Theory
The Solution Theorem

The Solution Theorem

Theorem

Let M0,M1 and A satisfy Assumptions (E). Then we have for all

su�ciently large ρ ∈ ]0,∞[ that for every f ∈ Hρ,0 (R,H) there is a

unique solution U ∈ Hρ,0 (R,H) of the problem

(∂tM0+M1+A)U = f .

The solution operator (∂tM0+M1+A)−1 is continuous and causal

on Hρ,0 (R,H).

Rainer Picard Moving Media



15/23

Introduction
Preliminaries

Solution Theory
Maxwell's Equations

The Maxwell-Gibbs-Heaviside Equations
The Maxwell-Hertz-Cohn Model
The Maxwell-Minkowski Model

The Maxwell-Gibbs-Heaviside Equations

Three-dimensional Maxwell equations (G = ˚curl, G ∗ = curl)

∂t

(
D
B

)
+AMax

(
E
H

)
= J ,

with

AMax :=

(
0 −curl
˚curl 0

)
material law (

D
B

)
=

(
ε 0

0 µ

)
+∂

−1
t

(
σ 0

0 0

)
,

where ρε + symσ , µ selfadjoint, strictly positive de�nite (for all

su�ciently large ρ ∈ ]0,∞[ ).

Rainer Picard Moving Media
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The Maxwell-Hertz-Cohn Model

By vector analysis calculations we may re-write Maxwell's equations

with a drift term in normal form as

(∂0M0+AMax)

(
Ẽ

H̃

)
=

(
−J
K

)
, (5)

with
(

Ẽ

H̃

)
=

(
1 −v ×µ

v × ε 1

)(
E
H

)
,

as new unknowns and

M0 :=

(
ε 0

0 µ

)1/2(
1 − v

c×
v
c× 1

)−1(
ε 0

0 µ

)1/2

=

(
ε εv ×µ

−µv × ε µ

)
+· · · ,

which is strictly positive de�nite if and only if

|v |
c

≤ d0 < 1.

Rainer Picard Moving Media
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The Maxwell-Minkowski Model

Minkowski derived the constitutive laws of the electromagnetic �eld

in moving media via a Lorentz transformation approach and so has

the speed of light as a threshold built in. In normal form

(∂0M0+AMax)U = F

M0 =

=

(
ε 0

0 µ

)1/2
(
1−β

(
(1−α)(1−Pv ) − v

|v |×
v
|v |× (1−α)(1−Pv )

))(
ε 0

0 µ

)1/2

,

where Pvx =
〈

v
|v | |x

〉
v
|v | .
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The Maxwell-Minkowski Model

Condition for positive de�niteness

1− |v |2
c20

1− |v |2
c2

=: α > β :=
(
N−N−1) |v |

c0

1− |v |2
c2

with the refractive index N := c0
c . This yields

|v |
c

< 1≤ N.

We can now assume variable coe�cients again, if we assume that

ε,µ are scalar multipliers (isotropic media).

Panofsky & Phillips 1962, Epstein 1963, Tai 1964, van Bladel

1973-1984, Cooper & Strauss 1985, Georgiev 1989, Ivezic

2001-today, Rousseau 2006-today, Ferencz 2011

'instantaneous rest-frame hypothesis' (van Bladel) .

Same 'magic trick' used earlier in the Maxwell-Hertz-Cohn model!
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The Maxwell-Hertz-Cohn Model � revisited

A more subtle approach avoids the speed constraint:

If we do not transform the drift term, we are led to a di�erent

perspective of electromagnetic �elds with drift, indeed without

resorting to 'magic tricks'. For this, however, we restrict ±v to have

a �xed direction. in order to avoid more involved considerations.

By appropriate rotation of the Euclidean coordinates, we may then

indeed assume without loss of generality that

v = αe3 := α

 0

0

1

 .

Rainer Picard Moving Media



The Maxwell-Hertz-Cohn Model � revisited

Main tool: the following elementary abstract lemma on operator

sums.

Lemma

Let A,B be closed densely de�ned linear operators in a Hilbert

space X such that D (A+B) = D (A)∩D (B) is dense in X .

Assume there is a family of continuous linear operators (Cη)η∈]0,1[
such that Cη [D (A)]⊆ D (A) , Cη [D (B)]⊆ D (B),

C ∗
η

s→ 1, [A,Cη ]
∗ s→ 0, [B,Cη ]

∗ s→ 0 as η tends to zero. Moreover,

let ACη be a continuous linear operator in X . Then

A∗+B∗ = (A+B)∗ .
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The Maxwell-Hertz-Cohn Model � revisited

We make the general choice that Ω⊆ R3 is a non-empty open set

such that

[Ω]+ [[R]e3]⊆ Ω,

i.e. Ω is a cylindrical domain Ω= Q×R with cross section Q. In

this situation, it is an easy exercise to show that ∂3 is

skew-selfadjoint in L2 (Ω). The role of Cη will here be played by

resolvent terms of the form (1±η∂3)
−1.
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The Maxwell-Hertz-Cohn Model � revisited

For the case that motivated our considerations we record the

following result.

Theorem

Let α, ∂3α ∈ L∞ (R×Ω,R) and ε,µ selfadjoint, strictly positive
de�nite, commuting with ∂3 in L2

(
Ω,R3

)
. Then(

ρ

(
ε 0

0 µ

)
+

(
σ 0

0 0

)
+ sym

(
∂

∂v

(
ε 0

0 µ

))
+

+ (∂t −ρ)

(
ε 0

0 µ

)
+ skew

(
∂

∂v

(
ε 0

0 µ

))
+

(
0 −curl

˚curl 0

)( E
H

)
=

(
−J
K

)

where v =

 0

0

α

 ,

describes a class of well-posed problems with a causal solution

operator if ρ ∈]0,∞[ is chosen su�ciently large.

22/23



The End

THE END

23/23


	Introduction
	Preliminaries
	Basic Underlying Functional Analysis Concepts
	Three Key Ideas for Evo-Systems
	What are Time-Shift Invariant Evo-Systems?

	Solution Theory
	Basics of the Solution Theory
	The Solution Theorem

	Maxwell's Equations
	The Maxwell-Gibbs-Heaviside Equations
	The Maxwell-Hertz-Cohn Model
	The Maxwell-Minkowski Model


