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Introduction

Introduction

Maxwell's equations (Maxwell 1861, Gibbs, Heaviside, Hertz 1881).

atﬂH+CUr|E :l’(7 (1)
0t€E+0CE —curlH = —J,

Compact form nowadays standard 6-vector form (Minkowski 1908,
G. Schmidt 1967, R. Leis 1968):

€0 c0 0 —curl
MO_(O,LL)’MI_<O0>’AM&X_<chI 0 )»
E —J
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Introduction

Observer in motion (with velocity field v), which leads to a Maxwell
system with drift term

OeH+ L uH+curl E =K, )
07t8E+ W&‘E—Curl H = —J,

sometimes referred to as Maxwell-Hertz-Cohn system (Cohn 1901,
Hertz 1908). We shall discuss this and related systems in a unified
functional-analytical framework (Evo-Systems), which facilitates
comparison.

d E —J
(st A 2 (£) = ()

with My = (S Z) M, = (g 8) as before.

The Maxwell-Hertz-Cohn model has been superseded by a
relativistic approach: Maxwell-Minkowski model, Minkowski 1908.
Survey: Sommerfeld, Electrodynamics Lectures Vol. 3, 1952
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Preliminaries

The Linear Solution Theory.

Solve the linear equation:
Au=f,

A:D(A)C H— H, H a complete, real inner product space, i.e. a
Hilbert space with inner product (-|-), and norm |-|.

Adjoint operator A*: D(A*) C H — H:
(Axly)y = (x|A"y)y, x € D(A), y € D(AY).

By the projection theorem we have with

R(A) ={yly = Ax,x € D(A)}, N(A) = {x|Ax =0},

H =R(A)&R(A)* H = R(A) @ R(A*)*

=R(A)@e N(AY) =R(A)®N(A).
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Preliminaries

For every f € H there is a unique u € D(A) such that
Au=f
if and only if (Hadamard’s requirements)
e N(A)={0} (uniqueness),
o N(A*)={0} (approximate solvability),

e R(A)= R(A) (continuous dependence on data).



Good Case: “Positivity”.

If A and A*, with A= A**, are strictly positive definite, i.e. for
some positive ¢
2
x|y |Ax]y > (x| Ax) = co (x|x) 1y = co|x] 1y,

* * 2
I IA Yy = VA YY) y= o lyly)y = alyli,

then we have unique existence of solution u for every f € H, in
other words u=A"1f.

Moreover,

_ 1 B 1
MHZMIHHSEVMOWMlHSE

(continuous dependence on the data; Hadamard's requirements for
well-posedness).
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Three Key Ideas for Evo-Systems

The framework in which we discuss dynamic problems rests on the
previous discussion and the following three key concepts:

© The time derivative operator o, is a strictly positive definite
linear operator.
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Three Key Ideas for Evo-Systems

The framework in which we discuss dynamic problems rests on the
previous discussion and the following three key concepts:

© The time derivative operator o, is a strictly positive definite
linear operator.

@ Evo-systems are strictly positive definite (yielding Hadamard
well-posedness!).
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Preliminaries

Three Key Ideas for Evo-Systems

The framework in which we discuss dynamic problems rests on the
previous discussion and the following three key concepts:

© The time derivative operator o, is a strictly positive definite
linear operator.

@ Evo-systems are strictly positive definite (yielding Hadamard
well-posedness!).

© Evo-systems are — beyond Hadamard well-posedness —
characterized by causality (/).
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Preliminaries

What are Evo-Systems?

General Form (7 2009):
oV +AU="f on ]0,00,
V(0+) =9,

where A is skew-selfadjoint, i.e. A= —A*, in which case
(x|Ax)y =0 for x € D(A), in an underlying Hilbert space H.
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where A is skew-selfadjoint, i.e. A= —A*, in which case
(x|Ax)y =0 for x € D(A), in an underlying Hilbert space H.

Without much loss of generality: ¢ = 0.

Thus
odV+AU="f onR. (3)
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Preliminaries

What are Evo-Systems?

General Form (7 2009):
oV +AU="f on ]0,00,
V(0+) =9,

where A is skew-selfadjoint, i.e. A= —A*, in which case
(x|Ax)y =0 for x € D(A), in an underlying Hilbert space H.
Without much loss of generality: ® =0.
Thus
odV+AU="f onR. (3)

Material Law:
V=U. (4)
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The Shape of Evo-Systems

General Form of Evolutionary Problems:

dV+AU=f onR,V=7U.
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Preliminaries

The Shape of Evo-Systems

General Form of Evolutionary Problems:
dV+AU=f onR,V=7U.
Evo-Systems:
(tt +A)U=TF.
Solution Theory: Does the operator
(Ot + A) 7

exist as a continuous linear mapping on a suitable real Hilbert
space?
Which “suitable” real Hilbert space?

Rainer Picard Moving Media
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The Time Derivative as a Normal Operator

Exponential weight function t +— exp(—pt), p € R, generates a
weighted L2-space H, o (R, H) (inner product (- |*)p.00 » NOrm:

‘ ' ‘p,0,0)

(0.9) > [ (0(8) w(£)) s exp(~2p1) .
Time-differentiation d; as a closed operator in Hy o (R, H) induced
by

o

€1 (R, H) C Hp o (R, H) — Hyo (R, H),
Q— ¢
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The Time Derivative as a Normal Operator

Time-differentiation d; is a normal operator in Hp o (R, H)

1 1
o, = sym(d,) + stero(d) = > (0 +97)+ 5 (d—9)

with sym(d;) self-adjoint and steto(d;) skew-selfadjoint with
commuting resolvents:

sym(d,) = p.



The Time Derivative as a Normal Operator

Time-differentiation d; is a normal operator in Hp o (R, H)

1 1
o, = sym(d,) + stero(d) = > (0 +97)+ 5 (d—9)

with sym(d;) self-adjoint and steto(d;) skew-selfadjoint with
commuting resolvents:

sym(d,) = p.

For p € R\ {0}: continuous invertibility of d.
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Basics of the Solution Theory H, o (R, H)

Simple Evo-Systems: .# = M (8{1) = M —1—8(1 My
(a[Mo+M1+A) U=F

Normal Form: When is (d;My+ My + A) (and its adjoint) strictly

positive definite in H, o (R, H) (for all sufficiently large p €]0,00[)?
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Basics of the Solution Theory H, o (R, H)

Simple Evo-Systems: .# = M (8{1) = Mo+ 1My
(a[Mo+M1+A)U: F

Normal Form: When is (d;My+ My + A) (and its adjoint) strictly
positive definite in H, o (R, H) (for all sufficiently large p €]0,00[)?
Assumptions (E):

o A skew-selfadjoint in H (lifted to H, o (R, H)),

o My selfadjoint! and (u|(pMp +sym (M) u)y > co (ulu), for

all u € H and all sufficiently large p €]0,09[ .

The latter is for example the case if
e My selfadjoint, strictly positive definite on its range,

e shm (M) strictly positive definite on null space of M.

L Mo = sym (Mo)



Basics of the Solution Theory H, o (R, H)

Assumptions (E) imply

(%w (o) V| @eMo + sym (M) U) =

= (2w (M0) Ul (mo) (WMo + My AU

2

> mo) U
- Q ’X]fmﬁa[ ( 0) p,0,0



Basics of the Solution Theory H, o (R, H)

Assumptions (E) imply

(%w (o) V| @eMo + sym (M) U) =

= (2w (M0) Ul (mo) (WMo + My AU

2
= @ ’XI*“[ (mo) U‘p,O,O
and so also (M* =(sym (M) + stero (M))" = sym (M) — stero (M))

(Ul(p Mo +sym (M) U)p o0 =
= (U[(aMo+ My +A) U)o > o |U[5 g0

uniformly for U € D (d)ND(A) and all a€ R, p € ]pg,oe[, where
pPo is sufficiently large).



Basics of the Solution Theory
Solution Theory The Solution Theorem

The Solution Theorem

Theorem

Let My, My and A satisfy Assumptions (E). Then we have for all
sufficiently large p € ]0,c0[ that for every f € Hp o (R, H) there is a
unique solution U € Hp o (R, H) of the problem

(atMo—l—Ml—l-A)U:f.

The solution operator (Mo + M —I—A)_1 is continuous and causal
on Hp o (R, H).
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The Maxwell-Gibbs-Heaviside Equations

Three-dimensional Maxwell equations (G = curl, G* = curl)

(8) e (5)-~

0 —curl
AMax ‘= .
Ma <cur| 0 >

D\ (€0 ~1(00
(8)-(u) 2 (30)
where pe +symo, u selfadjoint, strictly positive definite (for all

sufficiently large p €]0,00[ ).

with

material law
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Maswell's Equations The Maxwell-Minkowski Model

The Maxwell-Hertz-Cohn Model

By vector analysis calculations we may re-write Maxwell’s equations
with a drift term in normal form as

(aoMo+AMaX)<g> _ <—KJ>, (5)

with E\ (1 —vxu\(E
H)] \vxe 1 H )’
as new unknovxing and . L
o (€0 2 —4x\ (€0 /_ € evxp),
o= \ou Yx 1 ou S\ —uvxe u
which is strictly positive definite if and only if

MSO'()<1.
C
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The Maxwell-Gibbs-Heaviside Equations
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The Maxwell-Minkowski Model

Minkowski derived the constitutive laws of the electromagnetic field
in moving media via a Lorentz transformation approach and so has
the speed of light as a threshold built in. In normal form

(aoMo +Avax) U=F

My =

(e0\"? (I-a)(1-P) — % g0\
_(0u> <1_ﬁ< R (I-a)(1-Py) <0u) ’
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The Maxwell-Minkowski Model

Condition for positive definiteness

12 Iv]
G . : 1y __c
lZ:.Ot>[3.:(N—N ) —>—

1 v 1 Vo
c? c?

with the refractive index N := €. This yields

M_oicw
c

We can now assume variable coefficients again, if we assume that
€, are scalar multipliers (isotropic media).

Panofsky & Phillips 1962, Epstein 1963, Tai 1964, van Bladel
1973-1984, Cooper & Strauss 1985, Georgiev 1989, Ivezic
2001-today, Rousseau 2006-today, Ferencz 2011

'instantaneous rest-frame hypothesis' (van Bladel) .

Same 'magic trick’ used earlier in the Maxwell-Hertz-Cohn model!
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The Maxwell-Hertz-Cohn Model — revisited

A more subtle approach avoids the speed constraint:

If we do not transform the drift term, we are led to a different
perspective of electromagnetic fields with drift, indeed without
resorting to 'magic tricks'. For this, however, we restrict +v to have
a fixed direction. in order to avoid more involved considerations.
By appropriate rotation of the Euclidean coordinates, we may then
indeed assume without loss of generality that

0
v=oaes=o| 0
1
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The Maxwell-Hertz-Cohn Model — revisited

Main tool: the following elementary abstract lemma on operator
sums.

Lemma

Let A, B be closed densely defined linear operators in a Hilbert
space X such that D(A+ B) = D(A)ND(B) is dense in X.
Assume there is a family of continuous linear operators (Cﬂ)ne]o,l[
such that Cy [D(A)] € D(A), G, [D(B)] < D(B),

G > 1,[A G]" >0,[B,Gy]" >0 as n tends to zero. Moreover,
let ACy, be a continuous linear operator in X. Then

A*+B*=(A+B)".




The Maxwell-Hertz-Cohn Model — revisited

We make the general choice that Q C R? is a non-empty open set
such that
[Q] +[[R] es] < €2,

i.e. Qis a cylindrical domain Q = Q x R with cross section Q. In
this situation, it is an easy exercise to show that ds is
skew-selfadjoint in L2(§2). The role of G, will here be played by
resolvent terms of the form (1+nds) .



The Maxwell-Hertz-Cohn Model — revisited

For the case that motivated our considerations we record the
following result.

Theorem

Let a, dza € L~ (R x Q,R) and €, u selfadjoint, strictly positive
definite, commuting with d3 in L* (Q,R3). Then

((60)+(70) (5 (50))*
w5 ) oo (5 (5 0)) (878 (9)=(%)

v=| 0|,
o

describes a class of well-posed problems with a causal solution
operator if p €]0,eo[ is chosen sufficiently large.

where




The End

THE END
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