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Interacting Particle Systems

(a) ion channels (b) chemotaxis (c) fish school

(d) pedestrian dynamics

microscopic vs. macroscopic models
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Microscopic Models

Lattice Based Models
example for two groups of particles (red and blue) going in opposite
direction
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Microscopic Models

Off-Lattice Based Models

Newton’s laws of motion
Langevin/Brownian dynamics
optimal control approaches
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Macroscopic Models

Macroscopic models are often based on mass and/or momentum principles or
derived from a microscopic model by taking an appropriate limit.

⇒ Nonlinear PDE models with a ’full’, perturbed or asymptotic gradient flow
structure, i.e.

∂tρ = ∇ ·
(
m(ρ)∇∂E

∂ρ

)
.

ρ = ρ(x , t) ... particle density depending on space and time
m(ρ) ... mobility matrix
E(ρ) ... entropy functional
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Macroscopic Models

Macroscopic models are often based on mass and/or momentum principles or
derived from a microscopic model by taking an appropriate limit.

⇒ Nonlinear PDE models with a ’full’, perturbed or asymptotic gradient flow
structure, i.e.

∂tρ = ∇ ·
(
m(ρ)∇∂E

∂ρ

)
+f (ρ).

ρ = ρ(x , t) ... particle density depending on space and time
m(ρ) ... mobility matrix
E(ρ) ... entropy functional
f (ρ) ... perturbation term
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Macroscopic Models

Macroscopic models are often based on mass and/or momentum principles or
derived from a microscopic model by taking an appropriate limit.

⇒ Nonlinear PDE models with a ’full’, perturbed or asymptotic gradient flow
structure, i.e.

∂tρ = ∇ ·
(
m(ρ)∇∂E

∂ρ

)
+f (ρ; ε).

ρ = ρ(x , t) ... particle density depending on space and time
m(ρ) ... mobility matrix
E(ρ) ... entropy functional
f (ρ; ε) ... perturbation term of order O(ε) with 0 < ε� 1
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Microscopic Particle Model

We consider a system of two types of particles r , b in dimension d = 2, 3 with
different diameter εr , εb. Each particle evolves according to the overdamped
Langevin stochastic differential equation

dXi (t) =
√

2Dr dWi (t)−∇Vr (Xi ) dt 1 ≤ i ≤ Nr ,

dXi (t) =
√

2Db dWi (t)−∇Vb(Xi ) dt Nr + 1 ≤ i ≤ N.

Particles interact via hard core collisions ⇒ they cannot get closer as the
sum of their radii, i.e. ‖Xi − Xj‖ ≥ (εi + εj)/2
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Macroscopic Model

Continuum-level model derived by M. Bruna and J. Chapman using
methods of matched asymptotics.

∂t r = Dr∇ ·
{

(1 + εdr αr)∇r +∇Vr r + εdbr
[
βr r∇b − γrb∇r +∇(γbVb − γrVr )rb

]}
,

∂tb = Db∇ ·
{

(1 + εdbαb)∇b +∇Vbb + εdbr
[
βb b∇r − γbr∇b +∇

(
γrVr − γbVb

)
rb
]}
,

where α, βi and γi depend on the dimension and diffusion coefficients and
εbr = (εb + εr )/2.

Only valid if εd � 1 and in the case of low volume fraction, i.e.

Φ = Nrvd(εr ) + Nbvd(εb)� 1,

φ = vd(εr )r + vd(εb)b � 1.

Question

Does the system have a gradient flow structure?
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Gradient Flow Structure

∂t r = Dr∇ ·
{

(1 + εdr αr)∇r +∇Vr r + εdbr
[
βr r∇b − γrb∇r +∇(γbVb − γrVr )rb

]}
∂tb = Db∇ ·

{
(1 + εdbαb)∇b +∇Vbb + εdbr

[
βb b∇r − γbr∇b +∇

(
γrVr − γbVb

)
rb
]}

(1)

The entropy functional

E(r , b; ε) =

∫
Ω
r log r + b log b + rVr + bVb +

α

2

(
εdr r2 + 2εdbr rb + εdb b2

)
dx,

and the mobility matrix

m(r , b; ε) =

(
Dr r 0

0 Dbb

)
+ εdbr rb

(
−Drγr Drγb
Dbγr −Dbγb

)
.

gives (
∂t r
∂tb

)
= ∇ ·

[
m∇

( ∂E
∂r
∂E
∂b

)
+ f

]
= ∇ ·

[
m∇

(
u
v

)
+ f

]
,

where f := f (r , b; ε) = O(ε2).

f = 0 ⇐⇒ Dr = Db and εr = εb
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Asymptotic gradient flow structure

Let ε > 0 be a small parameter. Consider a gradient flow structure of the form

∂tρ = ∇ · (m(ρ, ε)∇E ′(ρ, ε)),

where

m(ρ, ε) =
∞∑
j=0

εjmj(ρ), E ′(ρ, ε) =
∞∑
j=0

εjE ′j (ρ),

we find

∂tρ =
∞∑
k=0

εk∇ ·

(
k∑

j=0

mj(ρ)∇E ′k−j(ρ)

)
.

Truncating the expansion at a finite k does not yield a gradient flow structure
in general, but up to terms of order εk it coincides with the gradient flow
structure with mobility

∑k
j=0 ε

jmk(ρ) and entropy
∑k

j=0 ε
jEk(ρ).
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How can we use it?

Asymptotic gradient flow structure of first order:(
∂tr
∂tb

)
= ∇ ·

[
m(r , b)∇

(
u
v

)
+ ε2d f (r , b)

]
.

existence of stationary solutions (u∗, v∗): compute equilibrium solution
(u∞, v∞) of full gradient flow system (energy minimization) and use a
perturbation argument.

−∇ ·
(
m(r∞, b∞)

(
∇u
∇v

))
= ∇ ·

(
ε

2d f (r , b) + (m(r , b)− m(r∞, b∞))

(
∇(u − u∞)
∇(v − v∞)

))
=: G(u, v)

We have as a consequence that

‖u∗ − u∞‖X + ‖v∗ − v∞‖X ≤ Cε2d .
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How can we use it?

behavior of transient solutions locally around stationary solutions

∂t(r , b)−∇ ·
(
m(r∞, b∞)

(
∇u
∇v

))
= ∇ ·

(
ε

2d f (r , b)

+ (m(r , b)− m(r∞, b∞))

(
∇(u − u∞)
∇(v − v∞)

))

We were able to show linear stability close to stationary solution (u∗, v∗) and
ε > 0 sufficiently small.

How to use asymptotic gradient flow structure for proving global existence?
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Numerics

Figure: (r̂∗, b̂∗) = (r∗/Nr , b∗/Nb) denote the stationary solutions from solving the
long-time limit of the asymptotic gradient flow structure and

(r̂∞ = r∞/Nr , b̂∞ = b∞/Nb) denote the equilibrium solutions obtained from
minimizing the entropy. The right Figure illustrates the error between the stationary

solution (r̂∗, b̂∗) and the equilibrium solution (r̂∞, b̂∞) as a function of θr . The
parameters are d = 2, Db = 1, εr = εb = 0.01, Nb = Nr = 200, Vr = 2x , Vb = x and
θr = 8 · 10−5 and Dr = 0.2 (in the left Figure).
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Example: Scalar diffusion equation

∂tr = ∇ · [(1 + ε1r − ε2b)∇r + ε3r∇b] , t > 0, x ∈ Ω,

where x ∈ Ω ⊂ Rd , d = 2, 3.

describes the density of interacting particles diffusing through a porous
medium represented by a fixed porosity density b(x)

diffusing (Brownian) red and immobile (obstacle) blue particles using the
asymptotic method in the limit of low volume fraction

nonlinear Fokker-Planck equation lacking a full GF structure

use AGF to understand properties of its solutions such as existence,
uniqueness, or long-time behavior
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Asymptotic gradient flow structures

∂t r = ∇ · [(1 + ε1r − ε2b)∇r + ε3r∇b]

∂tr = ∇ ·
[
m(r , ε)∇δE

δr
(r , ε) + f (r , ε)

]
, f = O(ε2).

(1) – E1(r) =
∫

Ω

[
r(log r − 1) + 1

2
ε1r2 + ε3rb

]
dx

– m1(r) = r(1− ε2b)
– f1(r) = rb(ε1ε2∇r + ε2ε3∇b)

(2) – E2(r) =
∫

Ω r
[
log
(

r
1−ε1r−ε3b

)
− 1
]
dx

– m2(r) = r(1− ε1r − ε2b)
– f2(r) = −ε1r2 (ε1∇r + ε3∇b) + (ε2 − ε3)rb (2ε1∇r + ε3∇b) + O(ε3)

(3) – E3(r) =
∫

Ω r
[
log
(

r
1−αε1r−ε3b

)
− 1
]
dx

– m3(r) = r(1− βε1r − ε2b)
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Properties

Definition

Two AGF structures defined by a entropy-mobility pair (Ei ,mi ) and entropy
variables ui = δEi/δr are equal up to order εk , if

(i) the asymptotic expansions mi∇ui are equal up to order εk .

(ii) the asymptotic expansions of their corresponding stationary solutions,
found setting ui = χi constant, are equal up to order εk .

(E1(r),m1(r)), (E2(r),m2(r)) and (E3(r),m3(r)) are equivalent up to
order ε.

Questions: Which entropy-mobility pair should you choose? What is the
’right’ one?
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Comparison of Entropy-Mobility Pair (1) and (2)

E1(r) =
∫

Ω

[
r(log r − 1) + 1

2
ε1r

2 + ε3rb
]
dx and m1(r) = r(1− ε2b)

global existence of the corresponding AGF with modification of the flux term
exponential convergence to equilibrium

E2(r) =
∫

Ω
r
[
log
(

r
1−ε1r−ε3b

)
− 1
]
dx and m2(r) = r(1− ε1r − ε2b)

global existence of the corresponding full GF without modification of the
flux term
not clear how to control the higher order terms in order to pass to the AGF
model
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Global Existence of ∂tr = ∇ · [(1 + ε1r − ε2b)∇r + ε3r∇b]

E1(r) =

∫
Ω

[
r(log r − 1) +

1

2
ε1r

2 + ε3rb

]
dx

m1(r) = r(1− ε2b)

allows to prove global existence of a weak solution r to the equation

∂tr = ∇ · Jr
(1− ε1r − ε2b)Jr = (1− ε1r − ε2b)

[
(1 + ε1r − ε2b)∇r + ε2r∇b

)]
,

in the sense of ∫ T

0

[
〈∂tr ,Φ〉H−1,H1 +

∫
Ω

Jr · ∇Φdx

]
dt = 0,

for all Φ ∈ L2(0,T ,H1(Ω)).
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Global Existence of ∂tr = ∇ · [(1 + ε1r − ε2b)∇r + ε3r∇b]

E2(r) =

∫
Ω

r

[
log

(
r

1− ε1r − ε3b

)
− 1

]
dx

m2(r) = r(1− ε1r − ε2b)

automatically provides the necessary bounds on r with the help of the
boundedness by entropy method and allows to prove global existence of a weak
solution r to the equation∫ T

0

[
〈∂tr ,Φ〉H−1,H1 +

∫
Ω

(
m2(r)∇∂E2

∂r

)
· ∇Φdx

]
dt = 0,

for all Φ ∈ L2(0,T ,H1(Ω)).
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Conclusion

definition of the concept of asymptotic gradient flow structures

full GF: global in time existence, exponential convergence to equilibrium
solutions

AGF: existence and linear stability of stationary solutions, global in time
existence with modification of the flux term

TO DO: prove that time dependent solutions of full GF and AGF are
sufficiently close to each other, i.e. of order O(ε2)
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