COMPUTATIONAL MODELING OF SHAPE MEMORY MATERIALS

Jan Valdman Institute of Information Theory and Automation, Czech Academy of Sciences (Prague)

based on joint works with Martin Kružík and Miroslav Frost

August 6, 2018

Introduction to shape memory materials

2 Mathematical models

- Nonlinear elasticity
- Sharp interface
- Dissipation
- Energetic solutions

3 Numerical implementation (main contribution)

- Simplified model with 2 variants of martensite
- Integer minimization problems
- Computational benchmarks

1 Introduction to shape memory materials

- 2 Mathematical models
- 8 Numerical implementation (main contribution)

Motivation: martensitic patterns

Source: http:

//www.lassp.cornell.edu/sethna/Tweed/What_Are_Martensites.html

Motivation: martensitic patterns

Source: http:

//www.lassp.cornell.edu/sethna/Tweed/What_Are_Martensites.html

Principle of shape memory:

• high temperature: atomic grid with high symmetry (usually cubic): the so-called austenite, higher heat capacity

Principle of shape memory:

- high temperature: atomic grid with high symmetry (usually cubic): the so-called austenite, higher heat capacity
- low temperature: atomic grid with lower symmetry: martensite, lower heat capacity, typically in many symmetry-related variants

Principle of shape memory:

- high temperature: atomic grid with high symmetry (usually cubic): the so-called austenite, higher heat capacity
- low temperature: atomic grid with lower symmetry: martensite, lower heat capacity, typically in many symmetry-related variants

Our model - two variants of martensite only!

Jan Valdman Institute of Information Theory and Automation, C COMPUTATIONAL MODELING OF SHAPE MEMORY MATER

-

More details later.

Introduction to shape memory materials

2 Mathematical models

- Nonlinear elasticity
- Sharp interface
- Dissipation
- Energetic solutions

3 Numerical implementation (main contribution)

$\Omega \subset {\rm I\!R}^3$ $\,$ reference configuration

Jan Valdman Institute of Information Theory and Automation, C COMPUTATIONAL MODELING OF SHAPE MEMORY MATER

Image: Image:

- $\Omega \subset {\rm I\!R}^3$ $\,$ reference configuration
- $y: \bar{\Omega} \to {\rm I\!R}^3$ deformation

- $\Omega \subset {\rm I\!R}^3$ $\,$ reference configuration
- $y: \bar{\Omega} \to {\rm I\!R}^3$ deformation
- ${\sf F}:=
 abla y$ deformation gradient , $\det {\sf F}>0$

- $\Omega \subset {\rm I\!R}^3$ $\,$ reference configuration
- $y: \bar{\Omega} \to {\rm I\!R}^3$ deformation
- ${\sf F}:=
 abla y$ deformation gradient , $\det {\sf F}>0$
- $\mathcal{T}:\Omega \to {\rm I\!R}^{3\times 3}$ $\ \, 1st$ Piola-Kirchhoff stress tensor

 $\Omega \subset {\rm I\!R}^3$ $\,$ reference configuration

 $y: \bar{\Omega} \to {\rm I\!R}^3$ deformation

 ${\sf F}:=
abla y$ deformation gradient , $\det {\sf F}>0$

 $\mathcal{T}:\Omega\to {\rm I\!R}^{3\times 3}$ $\ \, 1st$ Piola-Kirchhoff stress tensor

 $g: \Gamma_1 \to {\rm I\!R}^3$ density of surface forces

化基本 化基本 二基

 $\Omega \subset {\rm I\!R}^3$ $\,$ reference configuration

 $y: \bar{\Omega} \to {\rm I\!R}^3$ deformation

 ${\sf F}:=
abla y$ deformation gradient , $\det {\sf F}>0$

 $\mathcal{T}:\Omega \to {\rm I\!R}^{3\times 3}$ $\ \, 1st$ Piola-Kirchhoff stress tensor

 $g: \Gamma_1 \to {\rm I\!R}^3$ density of surface forces

 $T(x) := \hat{T}(x, \nabla y(x))$ constitutive law

 $\Omega \subset {\rm I\!R}^3$ $\,$ reference configuration

 $y: \bar{\Omega} \to {\rm I\!R}^3$ deformation

 ${\sf F}:=
abla y$ deformation gradient , $\det {\sf F}>0$

 $\mathcal{T}:\Omega \to {\rm I\!R}^{3 imes 3}$ 1st Piola-Kirchhoff stress tensor

 $g: \Gamma_1 \to {\rm I\!R}^3$ density of surface forces

 $T(x) := \hat{T}(x, \nabla y(x))$ constitutive law

$$\begin{split} &\operatorname{div} \mathcal{T} = 0 \quad \text{equilibrium equations} \\ & y = y_0 \text{ on } \Gamma_0 \subset \partial \Omega, \text{ g}{=}\mathsf{Tn} \quad \text{on } \Gamma_1 \subset \partial \Omega \text{ boundary conditions} \end{split}$$

Assumption: 1st Piola-Kirchhoff stress tensor T has a potential:

$$T_{ij} := \frac{\partial W(\nabla y)}{\partial F_{ij}}$$

Image: Image:

Assumption: 1st Piola-Kirchhoff stress tensor T has a potential:

$$T_{ij} := \frac{\partial W(\nabla y)}{\partial F_{ij}}$$

 $W: \mathbb{R}^{3 \times 3} \to \mathbb{R} \cup \{+\infty\}$ stored energy density

$$J(y) := \int_{\Omega} W(\nabla y(x)) \,\mathrm{d}x - \int_{\Gamma_1} f \cdot y \,\mathrm{d}S \;.$$

Minimizers of J satisfy equilibrium equations.

(i)
$$W : \mathbb{R}^{3\times3}_+ \to \mathbb{R}$$
 is continuous
(ii) $W(F) = W(RF)$ for all $R \in SO(3)$ and all $F \in \mathbb{R}^{3\times3}$
(iii) $W(F) \to +\infty$ if det $F \to 0_+$

▶ < E ▶ < E</p>

(i)
$$W : \mathbb{R}^{3\times3}_+ \to \mathbb{R}$$
 is continuous
(ii) $W(F) = W(RF)$ for all $R \in SO(3)$ and all $F \in \mathbb{R}^{3\times3}$
(iii) $W(F) \to +\infty$ if det $F \to 0_+$
!!! (iii) excludes convexity of W !!!

Jan Valdman Institute of Information Theory and Automation, C COMPUTATIONAL MODELING OF SHAPE MEMORY MATER

御 と くきと くきと

3

A sharp interface model

- only the first gradient of y
- non-diffuse boundary between phases (phase indicator z)

$$\mathcal{Y} = \Big\{ y \in W^{1,p}(\Omega, \mathrm{I\!R}^3) : \det \nabla y > 0 \text{ a.e. }, \ \int_{\Omega} \det \nabla y(x) \, \mathrm{d}x \leq \mathcal{L}^3(y(\Omega)) \Big\},$$

A sharp interface model

- only the first gradient of y
- non-diffuse boundary between phases (phase indicator z)

$$\mathcal{Y} = \Big\{ y \in W^{1,p}(\Omega, \mathrm{I\!R}^3) : \det \nabla y > 0 \text{ a.e. }, \ \int_{\Omega} \det \nabla y(x) \, \mathrm{d}x \leq \mathcal{L}^3(y(\Omega)) \Big\},$$

$$\mathcal{Z} := \Big\{ z \in \mathrm{BV}(\Omega, \{0,1\}^{M+1}) : z_i z_j = 0 \text{ for } i \neq j, \sum_{i=0}^M z_i = 1 \text{ a.e. in } \Omega \Big\}.$$

We assume that the body is exposed to possible body and surface loads, and that it is elastically supported on a part Γ_0 of its boundary. The part of the energy related to this loading is given by a functional $L \in C^1([0, T]; W^{1,p}(\Omega; \mathbb{R}^3))$ in the form

$$L(t,y) := \int_{\Omega} b(t) \cdot y \, \mathrm{d}x + \int_{\Gamma_1} s(t) \cdot y \, \mathrm{d}S + \frac{K}{2} \int_{\Gamma_0} |y - y_D(t)|^2 \, \mathrm{d}S.$$

Here, $b(t, \cdot) : \Omega \to \mathbb{R}^3$ represents the volume density of some given external body forces and $s(t, \cdot) : \Gamma_1 \subset \partial\Omega \to \mathbb{R}^3$ describes the density of surface forces applied on a part Γ_1 of the boundary. The last term in with $y_D(t, \cdot) \in W^{1,p}(\Omega; \mathbb{R}^3)$ represents energy of a spring with a spring stiffness constant K > 0.

$$D(z^1, z^2) := |z^1 - z^2|_{M+1}$$
.

The total dissipation reads

$$\mathcal{D}(z^1,z^2) := \int_{\Omega} D(z^1(x),z^2(x)) \,\mathrm{d}x \;.$$

The dissipation of a curve $z : [0, T] \to BV(\Omega, \{0, 1\})$ with $[s, t] \subset [0, T]$ is correspondingly given by

$$ext{Diss}_{\mathcal{D}}(z, [s, t]) := \sup \Big\{ \sum_{j=1}^{N} \mathcal{D}(z(t_{i-1}), z(t_i)) \ : N \in \mathbb{N}, s = t_0 \leq \ldots \leq t_N = t \Big\}$$

$\mathcal{E}(t,y,z) := E_{\mathrm{b}}(y,z) + E_{\mathrm{int}}(y,z) - L(t,y).$

Jan Valdman Institute of Information Theory and Automation, C COMPUTATIONAL MODELING OF SHAPE MEMORY MATER

< ∃ →

- ₹ 🖬 🕨

э

We say that $(y, z) \in \mathcal{Y} \times \mathcal{Z}$ is an energetic solution to $(\mathcal{E}, \mathcal{D})$ on the time interval [0, T] if $t \mapsto \partial_t E(y(t), z(t)) \in L^1((0, T))$ and if for all $t \in [0, T]$, the stability condition

 $\mathcal{E}(t, y(t), z(t)) \leq \mathcal{E}(t, \tilde{y}, \tilde{z}) + \mathcal{D}(z(t), \tilde{z}) \ \, \forall (\tilde{y}, \tilde{z}) \in \mathcal{Q}.$

and the condition of energy balance

 $\mathcal{E}(t, y(t), z(t)) + \text{Diss}_{\mathcal{D}}(z; [0, t]) = \mathcal{E}_0 + \int_0^t \frac{\partial \mathcal{E}}{\partial t}(s, y(s), z(s)) \, \mathrm{d}s$

where $\mathcal{E}_0 = \mathcal{E}(0, y(0), z(0))$, are satisfied.

A standard way how to prove the existence of an energetic solution is to construct time-discrete minimization problems and then to pass to the limit. For given $N \in \mathbb{N}$ and for $0 \le k \le N$, we define the time increments $t_k := kT/N$. Furthermore, we use the abbreviation $q := (y, z) \in Q$. Assume that at t = 0 there is given an initial distribution of phases $z^0 \in Z$ and $y^0 \in Y$ such that $q^0 = (y^0, z^0) \in S(0)$. For k = 1, ..., N, we define a sequence of minimization problems

minimize $\mathcal{E}(t_k, y, z) + \mathcal{D}(z, z^{k-1})$, $(y, z) \in \mathcal{Q}$.

We denote a minimizer for a given k as $(y^k, z^k) \in Q$.

Introduction to shape memory materials

2 Mathematical models

Sumerical implementation (main contribution)

- Simplified model with 2 variants of martensite
- Integer minimization problems
- Computational benchmarks

Model: a FEM mesh

Figure: A FEM triangular mesh (left) and the corresponding rectangular mesh (right) for visualization.

The FEM mesh consists of triangles $T \in \mathcal{T}$ and edges $E \in \mathcal{E}$. The subset $\mathcal{E}_{\mathcal{I}} \subset \mathcal{E}$ denotes the set of internal edges.

A B > A B >

The bulk energy $E_{\rm b}$ is considered in the form

 $E_{\mathrm{b}}(y,z) := \int_{\Omega} \left(z(x) \hat{W}_1(F(y(x))) + (1-z(x)) \hat{W}_2(F(y(x))) \right) \mathrm{d}x,$

where \hat{W}_1, \hat{W}_2 are densities in the form

$$\hat{W}_1(F) := \underline{W}(FF_1^{-1}), \quad \hat{W}_2(F) := \underline{W}(FF_2^{-1}).$$

Bulk energy with two variants of martensite

Here, F_1, F_2 are given stretching matrices

$$F_1 := \begin{pmatrix} 1 & \epsilon \\ 0 & 1 \end{pmatrix}, \qquad F_2 := \begin{pmatrix} 1 & -\epsilon \\ 0 & 1 \end{pmatrix}$$

defined by a parameter $\epsilon > 0$.

Figure: Examples of mesh deformations corresponding to stretching matrices F_1 (left), F_2 (right) for $\epsilon = 0.3$.

Two-dimensional compressible Mooney-Rivlin material model

The form of \underline{W} is given by

 $\underline{W}(F) := \alpha \operatorname{tr}(F^{\mathsf{T}}F) + \delta_1 (\det F)^2 - \delta_2 \ln(\det F).$

Parameters $\alpha, \delta_1, \delta_2 > 0$ satisfy the relation

$$\delta_2 = 2\alpha + 2\delta_1$$

and it holds $\underline{W}(F) \rightarrow \infty$ for det $F \rightarrow 0+$ and

 $I = \operatorname{argmin}_F \underline{W}(F).$

Interfacial energy

We consider the interfacial energy $E_{\rm i}$ in the form

$$E_{\mathrm{i}}(z) := \int_{E \in \mathcal{E}_{\mathcal{I}}} lpha_{\mathrm{i}} |z^+(s) - z^-(s)| \, \mathrm{d}s,$$

where z^+ and z^- denote restrictions of z to triangles T^+ and $T^$ and $\alpha_i \ge 0$ is a parameter.

Figure: An internal edge $E \in \mathcal{E}_{\mathcal{I}}$ shared by two elements $T^+, T^- \in \mathcal{T}$ and its normal vector *n*.

The surface energy $E_{\rm s}$ is given as

$$E_{\mathrm{s}}(F) := \int_{E \in \mathcal{E}_{\mathcal{I}}} lpha_{\mathrm{s}} |\mathrm{cof}\,\mathbb{F}(s)n| |z^+(s) - z^-(s)| \,\mathrm{d}s.$$

It is based on the cofactor of the surface deformation gradient

$$\mathbb{F}:=F(I-n\otimes n),$$

where I represents an identity matrix. A parameter $\alpha_s \ge 0$ is given.

The dissipation is assumed in the form

$$\mathcal{D}(z, z^{k-1}) := \int_{\Omega} \beta |z - z_{k-1}| \, \mathrm{d}x,$$

where $\beta \geq 0$ is a given parameter.

The time sequence of incremental minimizations rewrites as:

minimize

$$\sum_{T \in \mathcal{T}} \left(z \hat{W}_1(F) + (1-z) \hat{W}_2(F) + \beta |z - z_{k-1}| \right) |T|$$

$$+ \sum_{E \in \mathcal{E}_{\mathcal{I}}} \left(|z^+ - z^-| (\alpha_i + \alpha_s | \operatorname{cof} \mathbb{F} n|) \right) |E| \qquad (1)$$
over $y \in [P^1(\mathcal{T})]^2, z \in P^0_{\{0,1\}}(\mathcal{T}).$

All terms are either constant on each triangle $T \in T$ or constant on each edge $E \in \mathcal{E}_{\mathcal{I}}$.

Discrete minimization problem in z only for given F(y)

We introduce an incremental variable

$$\widetilde{z} := z - z_{k-1} \in P^0_{\{-z_{k-1}, 1-z_{k-1}\}}(\mathcal{T}),$$

(z-independent terms are dropped):

minimize $\sum_{T \in \mathcal{T}} \left(\tilde{z} [\hat{W}_1(F) - \hat{W}_2(F)] + \beta |\tilde{z}| \right) |T|$ $+ \sum_{E \in \mathcal{E}_{\mathcal{I}}} \left(\alpha |\tilde{z}^+ - \tilde{z}^- + z_{k-1}^+ - z_{k-1}^-| \right) |E|$ over $\tilde{z} \in P^0_{\{-z_{k-1}, 1-z_{k-1}\}}(\mathcal{T}).$ (2)

Further transformations lead to zero-one integer programming problem.

minimize

$$\sum_{T \in \mathcal{T}} \left(\tilde{z} \hat{W}_{1,2} + \beta \tilde{\lambda} \right) |T| + \sum_{E \in \mathcal{E}_{\mathcal{I}}} \alpha \tilde{\sigma} |E|$$

over $\tilde{z} \in P^0_{[-z_{k-1}, 1-z_{k-1}]}, \tilde{\lambda} \in P^0_{[-1,1]}(\mathcal{T}), \tilde{\sigma} \in P^0_{[-1,1]}(\mathcal{E}_{\mathcal{I}})$
subject to constraints:

Jan Valdman Institute of Information Theory and Automation, C COMPUTATIONAL MODELING OF SHAPE MEMORY MATER

3

Miroslav Frost, Martin Kružík and Jan Valdman - Computational modeling of shape memory materials (in preparation)

Thank you for your attention!