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Motivation: martensitic patterns

Source: http:

//www.lassp.cornell.edu/sethna/Tweed/What_Are_Martensites.html

Jan Valdman Institute of Information Theory and Automation, Czech Academy of Sciences (Prague)[5mm] based on joint works with Martin Kruž́ık and Miroslav FrostCOMPUTATIONAL MODELING OF SHAPE MEMORY MATERIALS
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Shape memory alloys

Principle of shape memory:

high temperature: atomic grid with high symmetry (usually
cubic): the so-called austenite, higher heat capacity

low temperature: atomic grid with lower symmetry:
martensite, lower heat capacity, typically in many
symmetry-related variants

Our model - two variants of martensite only!
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Shape memory alloys

More details later.
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Shape memory alloys

More details later.

Jan Valdman Institute of Information Theory and Automation, Czech Academy of Sciences (Prague)[5mm] based on joint works with Martin Kruž́ık and Miroslav FrostCOMPUTATIONAL MODELING OF SHAPE MEMORY MATERIALS
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Elasticity

Ω ⊂ IR3 reference configuration

y : Ω̄→ IR3 deformation

F := ∇y deformation gradient , detF > 0

T : Ω→ IR3×3 1st Piola-Kirchhoff stress tensor

g : Γ1 → IR3 density of surface forces

T (x) := T̂ (x ,∇y(x)) constitutive law

divT = 0 equilibrium equations
y = y0 on Γ0 ⊂ ∂Ω, g=Tn on Γ1 ⊂ ∂Ω boundary conditions
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Hyperelasticity

Assumption: 1st Piola-Kirchhoff stress tensor T has a potential:

Tij :=
∂W (∇y)

∂Fij

W : IR3×3 → IR ∪ {+∞} stored energy density

J(y) :=

∫
Ω
W (∇y(x))dx −

∫
Γ1

f · y dS .

Minimizers of J satisfy equilibrium equations.
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Properties of W

(i) W : IR3×3
+ → IR is continuous

(ii) W (F ) = W (RF ) for all R ∈ SO(3) and all F ∈ IR3×3

(iii) W (F )→ +∞ if detF → 0+

!!! (iii) excludes convexity of W !!!
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A sharp interface model

only the first gradient of y

non-diffuse boundary between phases (phase indicator z)

Y=
{
y ∈W 1,p(Ω, IR3) : det∇y > 0 a.e. ,∫

Ω
det∇y(x) dx ≤ L3(y(Ω))

}
,

Z :=
{
z ∈ BV(Ω, {0, 1}M+1) : zizj = 0 for i 6= j ,

M∑
i=0

zi = 1 a.e. in Ω
}
.
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Loading

We assume that the body is exposed to possible body and surface
loads, and that it is elastically supported on a part Γ0 of its
boundary. The part of the energy related to this loading is given by
a functional L ∈ C 1([0,T ];W 1,p(Ω; IR3)) in the form

L(t, y) :=

∫
Ω
b(t) · y dx +

∫
Γ1

s(t) · y dS +
K

2

∫
Γ0

|y − yD(t)|2 dS .

Here, b(t, ·) : Ω→ IR3 represents the volume density of some
given external body forces and s(t, ·) : Γ1 ⊂ ∂Ω→ IR3 describes
the density of surface forces applied on a part Γ1 of the boundary.
The last term in with yD(t, ·) ∈W 1,p(Ω; IR3) represents energy of
a spring with a spring stiffness constant K > 0.
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Dissipation

D(z1, z2) := |z1 − z2|M+1 .

The total dissipation reads

D(z1, z2) :=

∫
Ω
D(z1(x), z2(x))dx .

The dissipation of a curve z : [0,T ]→ BV(Ω, {0, 1}) with
[s, t] ⊂ [0,T ] is correspondingly given by

DissD(z , [s, t]) := sup
{ N∑

j=1

D(z(ti−1), z(ti ))

: N ∈ N, s = t0 ≤ . . . ≤ tN = t
}
.
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Total energy

E(t, y , z) := Eb(y , z) + Eint(y , z)− L(t, y).
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Energetic solution (Mielke & Theil)

We say that (y , z) ∈ Y × Z is an energetic solution to (E ,D) on
the time interval [0,T ] if t 7→ ∂tE (y(t), z(t)) ∈ L1((0,T )) and if
for all t ∈ [0,T ], the stability condition

E(t, y(t), z(t)) ≤ E(t, ỹ , z̃) +D(z(t), z̃) ∀(ỹ , z̃) ∈ Q.

and the condition of energy balance

E(t, y(t), z(t)) + DissD(z ; [0, t]) = E0 +
∫ t

0
∂E
∂t (s, y(s), z(s))ds

where E0 = E(0, y(0), z(0)), are satisfied.
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Existence

A standard way how to prove the existence of an energetic solution
is to construct time-discrete minimization problems and then to
pass to the limit. For given N ∈ N and for 0 ≤ k ≤ N, we define
the time increments tk := kT/N. Furthermore, we use the
abbreviation q := (y , z) ∈ Q. Assume that at t = 0 there is given
an initial distribution of phases z0 ∈ Z and y0 ∈ Y such that
q0 = (y0, z0) ∈ S(0). For k = 1, . . . ,N, we define a sequence of
minimization problems

minimize E(tk , y , z) +D(z , zk−1) , (y , z) ∈ Q .

We denote a minimizer for a given k as (yk , zk) ∈ Q.
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Model: a FEM mesh
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Figure: A FEM triangular mesh (left) and the corresponding rectangular
mesh (right) for visualization.

The FEM mesh consists of triangles T ∈ T and edges E ∈ E . The
subset EI ⊂ E denotes the set of internal edges.
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Bulk energy with two variants of martensite

The bulk energy Eb is considered in the form

Eb(y , z) :=

∫
Ω

(
z(x)Ŵ1(F (y(x))) + (1− z(x))Ŵ2(F (y(x)))

)
dx ,

where Ŵ1, Ŵ2 are densities in the form

Ŵ1(F ) := W (FF−1
1 ), Ŵ2(F ) := W (FF−1

2 ).
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Bulk energy with two variants of martensite

Here, F1,F2 are given stretching matrices

F1 :=

(
1 ε
0 1

)
, F2 :=

(
1 −ε
0 1

)
defined by a parameter ε > 0.

Figure: Examples of mesh deformations corresponding to stretching
matrices F1 (left), F2 (right) for ε = 0.3.
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Two-dimensional compressible Mooney-Rivlin material
model

The form of W is given by

W (F ) := α tr(FTF ) + δ1(detF )2 − δ2 ln(detF ).

Parameters α, δ1, δ2 > 0 satisfy the relation

δ2 = 2α + 2δ1

and it holds W (F )→∞ for detF → 0+ and

I = argminF W (F ).
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Interfacial energy

We consider the interfacial energy Ei in the form

Ei(z) :=

∫
E∈EI

αi|z+(s)− z−(s)| ds,

where z+ and z− denote restrictions of z to triangles T+ and T−

and αi ≥ 0 is a parameter.

Ε

T
+

T
- n

Figure: An internal edge E ∈ EI shared by two elements T+,T− ∈ T
and its normal vector n.
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Surface energy

The surface energy Es is given as

Es(F ) :=

∫
E∈EI

αs|cof F(s)n||z+(s)− z−(s)| ds.

It is based on the cofactor of the surface deformation gradient

F := F (I − n ⊗ n),

where I represents an identity matrix. A parameter αs ≥ 0 is given.
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Model: a dissipation

The dissipation is assumed in the form

D(z , zk−1) :=

∫
Ω
β|z − zk−1| dx ,

where β ≥ 0 is a given parameter.
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Discrete minimization problem

The time sequence of incremental minimizations rewrites as:

minimize∑
T∈T

(
zŴ1(F ) + (1− z)Ŵ2(F ) + β|z − zk−1|

)
|T |

+
∑
E∈EI

(
|z+ − z−|(αi + αs|cof Fn|)

)
|E |

over y ∈ [P1(T )]2, z ∈ P0
{0,1}(T ).

(1)

All terms are either constant on each triangle T ∈ T or constant
on each edge E ∈ EI .
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Discrete minimization problem in z only for given F (y)

We introduce an incremental variable

z̃ := z − zk−1 ∈ P0
{−zk−1,1−zk−1}(T ),

(z-independent terms are dropped):

minimize∑
T∈T

(
z̃ [Ŵ1(F )− Ŵ2(F )] + β|z̃ |

)
|T |

+
∑
E∈EI

(
α|z̃+ − z̃− + z+

k−1 − z−k−1|
)
|E |

over z̃ ∈ P0
{−zk−1,1−zk−1}(T ).

(2)

Further transformations lead to zero-one integer programming
problem.
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Discrete minimization problem in z only for given F (y)

minimize∑
T∈T

(
z̃Ŵ1,2 + βλ̃

)
|T |+

∑
E∈EI

ασ̃|E |

over z̃ ∈ P0
[−zk−1,1−zk−1], λ̃ ∈ P0

[−1,1](T ), σ̃ ∈ P0
[−1,1](EI)

subject to constraints:

z̃ − λ̃ ≤ 0

−z̃ − λ̃ ≤ 0
on all triangles T ∈ T ,

z̃+ − z̃− − σ̃ ≤ −(z̃+
k−1 − z̃−k−1)

−(z̃+ − z̃−)− σ̃ ≤ z̃+
k−1 − z̃−k−1

on all edges E ∈ EI .
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Time evolution: a full Dirichlet BC
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Time evolution: a full Dirichlet BC
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Time evolution: a partial Dirichlet BC
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Time evolution: a partial Dirichlet BC

Jan Valdman Institute of Information Theory and Automation, Czech Academy of Sciences (Prague)[5mm] based on joint works with Martin Kruž́ık and Miroslav FrostCOMPUTATIONAL MODELING OF SHAPE MEMORY MATERIALS
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Thank you for your attention!
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