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The Problem

Strong formulationρi (
∂u
∂t + (u · ∇)u) = div σi + g

div u = 0
in Ωi (t),

u(0) = u0 in Ωi (0)

[σnΓ] = −τκnΓ on Γ(t),
[u] = 0 on Γ(t),

VΓ = u · nΓ on Γ(t)

with the Newtonian stress tensor
σi = −pI + µi

(
∇u + (∇u)T ) and a normal

velocity of the interface given by VΓ.

nΓ
Γ(t)

Ω1(t)

Ω2(t)
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A Typical Problem
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A Typical Problem

y

z

x

t
Q = (0,T )× Ω

Q2

ΓST
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Space-Time Domains

y

z

x

t
Q = (0,T )× Ω

Q2 =
⋃

t∈(0,T )

{t} × Ω2(t)

ΓST =
⋃

t∈(0,T )

{t} × Γ(t)

Q1 =
⋃

t∈(0,T )

{t} × Ω1(t)

ρ = ρ1χQ1 + ρ2χQ2

µ = µ1χQ1 + µ2χQ2
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Weak Formulation

Space-Time formulation for velocity and pressure
Find u such that

ρ(∂u
∂t + (u · ∇)u)−∆µu +∇p = f in L2(0,T ; H−1(Ω))d ,

div u = 0 in L2(Q),
u(0) = u0 in L2(Ω)d ,

where
〈∆µu, v〉Ω := 〈µ

(
∇u + (∇u)T ),∇v + (∇v)T 〉Ω.

Physical coefficients are constant in Qi

∂ρ

∂t + (u · ∇)ρ = 0, ∂µ
∂t + (u · ∇)µ = 0 in H−1(Q)

ρ(0) = ρ0, µ(0) = µ0.
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Weak Formulation

Linearized Space-Time formulation for velocity and pressure
Find u such that

ρ(∂u
∂t + (w · ∇)u︸ ︷︷ ︸

=u̇

)−∆µu +∇p = f in L2(0,T ; H−1(Ω))d ,

div u = 0 in L2(Q),
u(0) = u0 in L2(Ω)d ,

where w ∈ L∞(Q)d , div w = 0.

Physical coefficients are constant in Qi

ρ̇ = ∂ρ

∂t + (w · ∇)ρ = 0, µ̇ = ∂µ

∂t + (w · ∇)µ = 0 in H−1(Q)

ρ(0) = ρ0, µ(0) = µ0.
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Divergence Free Formulation
Spaces of Divergence free functions
Standard spaces:

V := { v ∈ H1
0 (Ω)d | div v = 0 }, X := L2(I;V).

Solution spaces of Bochner-type:
W := {v ∈ X |ρv̇ ∈ X ′}, ‖v‖2

W = ‖v‖2
X + ‖ρv̇‖2

X ′ ,

V := H1(I;V)
‖·‖W ⊂W .

Note: W and V do not have the standard Tensor-product structure if ρ is
time dependent. Is W = V ?

Weak divergence free formulation
Find u ∈ V such that∫ T

0
〈ρu̇, v〉Ω +

∫ T

0
a(t; u(t), v(t)) =

∫ T

0
〈f, v〉Ω, for all v ∈ X ,

where a(t; u(t); v(t)) = 〈∆µ(t)u(t), v(t)〉Ω.
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Well-posedness

Conditions on the bilinear form a
A bilinear form a is called uniformly elliptic and uniformly continuous if (resp.)

∃ γ > 0 : a(t; v, v) ≥ γ‖v‖2
H1(Ω)d for all v ∈ V, t ∈ I,

∃ Γ > 0 : a(t; u, v) ≤ Γ‖u‖H1(Ω)d‖v‖H1(Ω)d for all u, v ∈ V, t ∈ I.

Main Result
Let a(t; ·, ·) be a uniformly elliptic, uniformly continuous, bilinear form on V × V.
For every f ∈ X ′ there exists a unique u ∈ V with u(0) = 0 such that

b(u, v) := 〈ρu̇, v〉Q +
∫ T

0
a(t; u(t), v(t)) dt = 〈f, v〉Q for all v ∈ X . (P) {Res1a}

Furthermore, the map f 7→ u is continuous.
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Proof of Well-posedness

Problem
For every f ∈ X ′ there exists a unique u ∈ V with u(0) = 0 such that

b(u, v) := 〈ρu̇, v〉Q +
∫ T

0
a(t; u(t), v(t)) dt = 〈f, v〉Q for all v ∈ X . (P) {Res1b}

Is this a standard problem?
The well-posedness of similar problems is typically proven by using either a
Galerkin argument or by applying Banach-Nečas-Babuška Theory. Here this is not
possible is a direct way. This is due to the fact that V and W do not have a
tensor product structure. A combination of these two needs to be used.
BNB Theorem: necessary conditions on the continuous bilinear form b:

inf
06=u∈V , u(0)=0

sup
06=v∈X

b(u, v)
‖u‖V ‖v‖X

≥ cs , (BNB 1) {BNB1}

If b(u, v) = 0 holds for all u ∈ V , u(0) = 0, then v = 0. (BNB 2) {BNB2}

I. Voulis, A. Reusken (RWTH Aachen) Space-Time XFEM for Two Phase Flow 08/08/2018 9 / 15



Proof of Well-posedness

Problem
For every f ∈ X ′ there exists a unique u ∈ V with u(0) = 0 such that

b(u, v) := 〈ρu̇, v〉Q +
∫ T

0
a(t; u(t), v(t)) dt = 〈f, v〉Q for all v ∈ X . (P)

Structure of the Proof
The proof of the main result is obtained in several steps.

(1) Well-posedness of (P) is first proven for a symmetric, time-independent
bilinear form a. This is done using a Galerkin argument (use v = ∂u

∂t ).

(2) Using the BNB Theorem, well-posedness of (P) can be proven for a
symmetric, time-dependent bilinear form a. (1) is used to verify (BNB 2).

(3) Inductively adding small (in terms of γ) anti-symmetric perturbations to the
bilinear form a from (2), on can verify that (P) holds for any time-dependent
bilinear form.
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Regularity and Pressure

Regularity

If f ∈ (XL2

)′ ∩ L2(I; H−1(Ω)d ) ⊃ L2(Q)d and w ∈ C2(Q)d , then the solution u of

〈ρu̇, v〉Q +
∫ T

0
a(t; u(t), v(t)) dt = 〈f, v〉Q for all v ∈ X , (P) {Res1c}

has the additional regularity u ∈ H1(I; L2(Ω)d ).

Pressure
If the solution u of (P) satisfies u ∈ H1(I; L2(Ω)d ), then there exists a unique p
such that (u, p) ∈ H1(Q)× L2(I; L2(Ω)/R) is the unique solution of

〈ρ∂u
∂t , v〉Q +

∫ T

0
ã(t; u(t), v(t)) dt + 〈∇p, v〉Q = 〈f, v〉Q for all v ∈ L2(I; H1

0 (Ω)d ),

〈div u, q〉Q = 0 for all q ∈ L2(I; L2(Ω)/R))

where ã(t; u(t), v(t)) = 〈ρ(t)w(t) · ∇u(t), v(t)〉Ω + a(t; u(t), v(t)).
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Discretization

Continuous Variational Formulation
Find (u, p) ∈ H1(Q)× L2(I; L2(Ω)/R) (with u(0) = 0) such that

〈ρ∂u
∂t , v〉Q +

∫ T

0
ã(t; u(t), v(t)) dt + 〈∇p, v〉Q = 〈f, v〉Q for all v ∈ L2(I; H1

0 (Ω)d ),

〈div u, q〉Q = 0 for all q ∈ L2(I; L2(Ω)/R)).

I. Voulis, A. Reusken (RWTH Aachen) Space-Time XFEM for Two Phase Flow 08/08/2018 11 / 15



Discretization in Space

Finite Elements in Space - XFEM

Uh = {v ∈ C0(Ω)d |∀Ts ∈ Th : v|Ts ∈ Pk+1(Ts)d}
Ph(t) = {q ∈ C(Ω1(t) ∪ Ω2(t))/R|∀Ts ∈ Th,∀i = 1, 2 : q|Ts∩Ωi ∈ Pk(Ts ∩ Ωi )}

Ts

Γ(t)
Ω1(t)

Ω2(t)
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Find (uh, ph) ∈ H1(I; Uh)× L2(I; L2(Ω)/R) (with u(0) = 0) with
∀t ∈ I : ph(t) ∈ Ph(t) such that

〈ρ∂uh
∂t , v〉Q +
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0
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Discretization in Space-Time

Finite Elements - ST-XFEM

UN,h =
{

v : [0,T )→ C0(Ω)d |∀Ts ∈ Th, 1 ≤ n ≤ N : v|In×Ts ∈ P`(In,Pk+1(Ts)d )
}

PN,h =
{

q : [0,T )→ C(Q1 ∪ Q2)|∀Ts ∈ Th, 1 ≤ n ≤ N,∀i = 1, 2 :
q|(In×Ts )∩Qi ∈ P`(In,Pk(Ts))|Qi

}

tI1 = [t0, t1) I2 = [t1, t2) I3 = [t2, t3) . . . IN = [tN−1, tN)
T

Uh
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Discretization in Space-Time

Finite Elements - ST-XFEM
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Discrete Variational Formulation
Find (u, p) ∈ UN,h × PN,h (with u(0) = 0) such that

〈ρDtuh, v〉Q +
∫ T

0
ã(t; uh(t), v(t)) dt + 〈∇ph, v〉Q = 〈f, v〉Q ∀v ∈ UN,h,

〈div uh, q〉Q = 0 ∀q ∈ PN,h.
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Discretization in Space-Time

Discrete Variational Formulation
Find (u, p) ∈ UN,h × PN,h (with u(0) = 0) such that

〈ρDtuh, v〉Q +
∫

Q
µ(t, x)∇Su : ∇Sv dxdt + 〈∇ph, v〉Q = 〈f, v〉Q ∀v ∈ UN,h,

〈div uh, q〉Q = 0 ∀q ∈ PN,h.

where ∇Su = ∇u + (∇u)T .
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Numerical Results - P2-PX
1 in Space/P1 in Time

Convergence of velocity
S\T 16 32 64 128

4 0.19753 0.19552 0.19510 0.19507
8 0.04699 0.04390 0.04332 0.04318
16 0.01736 0.01154 0.01064 0.01047
32 0.01326 0.00525 0.00306 0.00267

Error in L2(I; H1(Ω)3)-norm. 1 2 3 4

10−2

100 h2

Convergence of pressure
S\T 16 32 64 128

4 0.99726 0.96497 0.97083 0.98616
8 0.17501 0.16322 0.16244 0.16315
16 0.10682 0.04883 0.04331 0.04355
32 0.17825 0.07309 0.02646 0.01895

Error in L2(I; L2(Ω))-norm. 1 2 3 4
10−2

100

102
h1

h2
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Conclusions and Outlook
Conclusions

Well-posedness of an incompressible two-phase flow problem,
Space-time XFEM method,
Space-time quadrature for discontinuous coefficients,
Optimal convergence results for velocity (numerically).

To do
XFEM for velocity,
Error analysis, stabilization
Non-linearity,
Adaptive Space-Time Methods,
. . .

Thank you!
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