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The Problem

Strong formulation

Ou .
pl(a + (u ) v)u) - leO’, + g in Q,(t),
divu=0
u(0) = ug in Q;(0)
[onr] = —7knr  on T (t),

[uy=0 on I(t),
Vi=u-nr on [(t)
with the Newtonian stress tensor

oi=—pl+ p;(Vu+ (Vu)™) and a normal
velocity of the interface given by V.
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The Problem

Strong formulation

Ju
p:(g +(u-Vu) — piAu+Vp=g -

divu =20
u(0) = ug in 2;(0)

Qi(t),

[pnr + (Vu+ (Vu)")nr] = —7knr on T(t),
[ul=0 on I(t),
Vi=u-nr on [(t)

with the Newtonian stress tensor

o;=—pl+ p;(Vu+ (Vu)™) and a normal
velocity of the interface given by Vr.
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A Typical Problem
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A Typical Problem

Q:(O’T)XQ

Tst
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Space-Time Domains

Q=(0,T)xQ
Tst= | {t} xT(®)

! te(0,T)
P = pP1XQ, + P2XQ,
H=p1XQ, + H2X @

Q= J {t} x(

te(0,T)
U {8 x ()

te(0,T)

Q=
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Weak Formulation

Space-Time formulation for velocity and pressure

Find u such that

P(% +(u-V)u) = Au+Vp=Ff in 30, T;H Q)

divu=0 in [*(Q),
u(0) =up in L3(Q)9,

where

(Ayu,v)g = (u(Vu+ (Vu) "), Vv + (Vv) M.

Physical coefficients are constant in Q;

|
\

Op _o 9 o e
S H (U V)p =020+ (u-V)u=0 in H(Q)

p(0) = po, 11(0) = po-
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Weak Formulation

Linearized Space-Time formulation for velocity and pressure

Find u such that

]
p(afl: +(w-V)u) = Au+Vp=Ff in 20, T; H1(Q))",

—_——

divu=0 in [3(Q),
u(0) =up in L3(Q)9,

where w € L>=(Q)?, divw = 0.

Physical coefficients are constant in Q;

o
P= B¢

FwoV)p=0ji= g (w- V=0 inH(Q)
p(0) = po, 1(0) = po-

4
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Divergence Free Formulation

Spaces of Divergence free functions

Standard spaces:
Vi={veHy(Q) | dive=0}, X:=L*(V).
Solution spaces of Bochner-type:
W o= {veX|pve X'}, |y = vl + llovll%

ll-llw

vV o= HILY) M cw.

Note: W and V do not have the standard Tensor-product structure if p is
time dependent. Is W = V?

Weak divergence free formulation
Find u € V such that

/0 (pu,v>9+/0 a(t; u(t), v(t)) :/0 (f,v)q, forallve X,
where a(t; u(t); v(t)) = (Aumu(t),v(t))a.
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Well-posedness

Conditions on the bilinear form a

A bilinear form a is called uniformly elliptic and uniformly continuous if (resp.)

Jy>0: a(t;v,v) > 'y||v||f_,1(Q)d forall veV, tel,
Ir>0: a(t;u,v) <Tullgyeyllvlip@) forall u,veV, tel

Main Result

Let a(t; -, -) be a uniformly elliptic, uniformly continuous, bilinear form on V x V.
For every f € X’ there exists a unique u € V with u(0) = 0 such that

| A

) = <pu,v>o+/o a(t: u(t), v(£)) dt = (Fv)o forall veX.  (P)

Furthermore, the map f — u is continuous.

\
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Proof of Well-posedness

Problem
For every f € X’ there exists a unique u € V with u(0) = 0 such that

) = <pl],v>o—|—/0 a(t:u(t), v(£)) dt = (Fv)o forall veX.  (P)

Is this a standard problem?

The well-posedness of similar problems is typically proven by using either a
Galerkin argument or by applying Banach-Necas-Babuska Theory. Here this is not
possible is a direct way. This is due to the fact that V and W do not have a
tensor product structure. A combination of these two needs to be used.

BNB Theorem: necessary conditions on the continuous bilinear form b:

inf wp 2V o (BNB 1)
0£ueV, u(0)=0 oxvex |[ullv|[v]lx
If b(u,v) =0 holds for all u € V, u(0) =0, then v = 0. (BNB 2)
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Proof of Well-posedness

Problem

For every f € X’ there exists a unique u € V with u(0) = 0 such that

B0 = <pu,v>Q+/ a(t:u(t),v(t)) dt = (Fv)o forall veX. (P)

| O
\

Structure of the Proof

The proof of the main result is obtained in several steps.

(1) Well-posedness of (P) is first proven for a symmetric, time-independent

bilinear form a. This is done using a Galerkin argument (use v = % .

V.
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Proof of Well-posedness

For every f € X’ there exists a unique u € V with u(0) = 0 such that

B0 = <pu,v>Q+/0 a(t:u(t),v(t)) dt = (Fv)o forall veX. (P)

4

Structure of the Proof

The proof of the main result is obtained in several steps.

(1) Well-posedness of (P) is first proven for a symmetric, time-independent

bilinear form a. This is done using a Galerkin argument (use v = % .

(2) Using the BNB Theorem, well-posedness of (P) can be proven for a
symmetric, time-dependent bilinear form a. (1) is used to verify (BNB 2).

V.
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Proof of Well-posedness

Problem

For every f € X’ there exists a unique u € V with u(0) = 0 such that

B0 = <pu,v>Q+/ a(t:u(t),v(t)) dt = (Fv)o forall veX. (P)

Structure of the Proof

The proof of the main result is obtained in several steps.

| O
\

(1) Well-posedness of (P) is first proven for a symmetric, time-independent

bilinear form a. This is done using a Galerkin argument (use v = 24).

(2) Using the BNB Theorem, well-posedness of (P) can be proven for a
symmetric, time-dependent bilinear form a. (1) is used to verify (BNB 2).

(3) Inductively adding small (in terms of -y) anti-symmetric perturbations to the
bilinear form a from (2), on can verify that (P) holds for any time-dependent
bilinear form.

V.
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Regularity and Pressure

Regularity

2
If f € (XL ) N L2 HH(Q)) D L2(Q)? and w € C?(Q)?, then the solution u of

(pﬁ,v>0+/0 a(t; u(t),v(£)) dt = (F,v)o for all ve X, (P)

has the additional regularity u € H*(/; L2(Q)9).
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Regularity and Pressure

Regularity

2
If f € (XL ) N L2(1; H-H(Q)?) D L2(Q)? and w € C2(Q)?, then the solution u of

<pu,v>o+/0 a(t: u(t), v(£)) dt = (F,vho for all v e X, (P)

has the additional regularity u € H*(/; L2(Q)9).

Pressure

| A\

If the solution u of (P) satisfies u € H*(/; L2(2)9), then there exists a unique p
such that (u, p) € HY(Q) x L2(/; L?(2)/R) is the unique solution of
du T 2 1/0\d
(pﬁ,vm + [ a(t;u(t),v(t))dt + (Vp,v)g = (f,v)q for all v e L*(I; Hy(2)7),
0
(divu,q)g =0 for all g€ L?(]; [*(Q)/R))

where a(t;u(t),v(t)) = (p(t)w(t) - Vu(t),v(t))q + a(t;u(t), v(t)).
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Discretization

Continuous Variational Formulation

Find (u, p) € HY(Q) x L2(/; L?(2)/R) (with u(0) = 0) such that
(p%mm +/0 3(t;u(t),v(t)) dt + (Vp,v)g = (F,v)q for all v € L2(I; HE(Q)Y),

(divu,q)q =0 forall g€ L*(/;L*(Q)/R)).
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Discretization in Space

Finite Elements in Space - XFEM

Up={ve GQINT, € Tp: v|T. € Pry1(T:)}
Pi(t) ={q € C(1(t) U Q(t))/RIVTs € Tp,Vi=1,2: q|1.n0; € Pr(Ts N Q)}
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Discretization in Space

Finite Elements in Space - XFEM

Upn={ve G(QINT: € Ty : V|7, € Prya(T:)?}
Pr(t) ={q € C(1(t) U Q(t))/RIVTs € Tp,Vi =1,2: q|1.00; € Pr(Ts N Q2)}

Semi-Discrete Variational Formulation

Find (up, pr) € HY(I; Up) x L2(1; L2(2)/R) (with u(0) = 0) with
Vt € | : pu(t) € Pu(t) such that
T

<P%,V>Q +/0 a(t;un(t), v(t)) dt + (Vpn,v)q = (fv)q W € L2(/; Un),

(divup, q)g =0 Vg € L3(Q),q(t) € Py(t)

o
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Discretization in Space-Time

Finite Elements - ST-XFEM

Unp={v:[0,T) = G(QINTs € Th,1 < n < N:v|j 7, € Pe(ln, Pes1(Ts)?)}
Pn.p = {q [0, T) = C(QLU Q)NVTs € Th,1 <n< N,Vi=1,2:

9lt,x 1.)nQ; € Pelln, Pu(Ts))l o, }

Un

\

~_

-
h=[t,t1) h=I[t,t) oo Iy = [tn-1, ty) t
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Discretization in Space-Time

Finite Elements - ST-XFEM

Unp={v:[0,T) = G(QIVTs € Th, 1 < n < N:v|jxr, € Pe(lny Prs1(Ts))}
Pnp = {q ([0, T) = C(QLU Q)NVTs € Tp,1 <n< N,Vi=1,2:

al(x 1y € Pelln, Pi(T5))l @)}

I. Voulis, A. Reusken (RWTH Aachen) Space-Time XFEM for Two Phase Flow

08/08/2018  13/15



Discretization in Space-Time

Finite Elements - ST-XFEM

Unp={v:[0,T) = G(QINT; € Th,1 < n < N:v|j 7, € Pe(ln, Pes1(T:)?)}
Pnvp=1{q:[0,T) > C(Q1UQ)VT; € Th,1 < n< N,Vi=1,2:

9lt,x 1.)nQ; € Pelln, Pu(Ts))l o, }
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Discretization in Space-Time

Finite Elements - ST-XFEM

Unp = {V : [0, T) — Co(Q)d|VT5 €ETn,1<n<N: V‘/nXTs € Pg(/n,Pk+1(Ts)d)}
Pn.p = {q 0, T) = C(LU Q)NVTs € Th,1 <n< N,Vi=1,2:

I (1 x )@ € Pelln, Pi( TS))|Qi}

Discrete Variational Formulation

Find (u,p) € Un.p x Py (with u(0) = 0) such that
T

(pDrup,v) g +/ a(t;up(t),v(t)) dt + (Vpn,vyg = (f,v)o YV € Unp,
0

<diVUh, q)Q =0 Vq S PN,h-

N
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Discretization in Space-Time

Discrete Variational Formulation

Find (u, p) € Un.p x Py, (with u(0) = 0) such that
T

(pDrup,v) g +/ a(t;up(t),v(t)) dt + (Vpn,vygo = (f,v)o WV € Unp,
0

(divup,q)q =0 Vg € Py .

08/08/2018  13/15



Discretization in Space-Time

Discrete Variational Formulation

Find (u, p) € Unp X P p (with u(0) = 0) such that

(pDrup,v) g + /,u(t,x)Vsu : Vsvdxdt + (Vpp,vygo = (f,v)o YV &€ Unp,
Q

<diV Uy, q>Q =0 Vqé&€Pnp
where Vsu = Vu + (Vu) 7.
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Numerical Results - P,-P;% in Space/P; in Time

Convergence of velocity

S\T | 16

32

64

128

4 | 0.19753
8 | 0.04699
16 | 0.01736
32 | 0.01326

0.19552
0.04390
0.01154
0.00525

0.19510
0.04332
0.01064
0.00306

0.19507
0.04318
0.01047
0.00267

Error in L2(/; HY(2)3)-norm.

10°

1072 |

N,

Convergence of pressure

S\T | 16

32

64

128

4 | 0.99726
8 | 0.17501
16 | 0.10682
32 | 0.17825

0.96497
0.16322
0.04883
0.07309

0.97083
0.16244
0.04331
0.02646

0.98616
0.16315
0.04355
0.01895

Error in L2(/; L(2))-norm.

102 -

100

102
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Conclusions and Outlook

Conclusions
@ Well-posedness of an incompressible two-phase flow problem,
@ Space-time XFEM method,
@ Space-time quadrature for discontinuous coefficients,

@ Optimal convergence results for velocity (numerically).
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Conclusions and Outlook

Conclusions
@ Well-posedness of an incompressible two-phase flow problem,
@ Space-time XFEM method,
@ Space-time quadrature for discontinuous coefficients,
@ Optimal convergence results for velocity (numerically).
To do
XFEM for velocity,

Error analysis, stabilization

Non-linearity,

Adaptive Space-Time Methods,
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Conclusions and Outlook

Conclusions
@ Well-posedness of an incompressible two-phase flow problem,
@ Space-time XFEM method,
@ Space-time quadrature for discontinuous coefficients,
@ Optimal convergence results for velocity (numerically).
To do
@ XFEM for velocity,
@ Error analysis, stabilization
@ Non-linearity,
@ Adaptive Space-Time Methods,

Thank you!
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