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1. Main Objectives

hese lectures describe theoretical and
numerical aspects ( part 1) with applications
(part 2) of Evolutionary Design Methods in
Aerospace Engineering
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2. Motivation: MASTERING COMPLEXITY, A
COLLABORATIVE WORK....

Complexity at interfaces

m technological constraints
m economical constraints
Applied Compute m societal constraints
Mathematics Science :
ipcranstalatas et m integrated systems
with determinism parallel architectures
SIS Networked Information
Technologies .
Modelization of Physics
Multi-physics , multi-rﬁgglglsand reduction
. Priorities

* 1) Robustness (global solutions)
« 2) Low cost efficiency (grid computing)
« 3) Human interfaces
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ENVIRONMEN

*Shapes FLIGHT DYNAMICS

*Flight control
*Flight quality

*Architecture
*Vibrations

Em\)edded
goftwar®

*Inertial

6
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MDO Challenge : Noise prediction and reduction
(courtesy of Dassault Aviation)

AirframerNoise
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PROBLEMS IN AERODYNAMIC OPTIMISATION (1)

\

A\

~

N

<» Multidisciplinary design
problems involve search spaces
that are multi-modal, non-
convex or discontinuous

<+ Traditional methods use
deterministic approach and rely
heavily on the use of iterative
trade-off studies between
conflicting requirements.
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PROBLEMS IN AERODYNAMIC OPTIMISATION (2)

Traditional optimization methods
will fail to find the best answer in
many complex engineering
applications, (noise, complex or
non differentiable objective
functions); why? lack of
robustness !!

The internal workings of validated
in-house/ commercial solvers (
Fluent, Cstar,...) are inaccessible
from a modification point of view (
black-boxes); why? Lack of
flexibility for integration or
modification!
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3. EVOLUTIONARY ALGORITHMS (1)

Traditional Gradient Based

methods for MDO might fail
to find optimal solution if

V local minimujm

A

search space is:

» Large
» Multimodal

Mo

A

Global minimun

» Non-Convex
» Many Local Optimum

» Discontinuous 1

Entire Population and Optimum Pareto Surface - 250 Evaluations

A real aircraft design
optimization might exhibit ¥ e
one or several of these °
characteristics

-04

-06
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Multiple Goals  Minimise-Maximise

Search spaces for multiphysics solutions are complex

Aerodynamic

Optimal Solutions optimal Performance

Surface of UAV, uUAV

Time consuming process

>

Structural Performance

Payload Capacity
— : A
Traditional Gradient Based V local minimum M
Techniques might fail or be trapped >
in local minima A ]
Advanced numerical
. ) techniques ini
Advanced Techniques are required | | “gyoutionary Global minimurp
Computing
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A brief history of GAs, M. Mitchell, 1996

m 50’-60" evolution could be used as an optimization tool for
engineering problems

m jnnovation: evolve a population of candidates to a given problem,
using operators inspired by natural genetic variation and natural
selection

approach: evolution inspired algorithms
60’ GAs invented by J. Holland, Univ. of Michigan
target: study the phenomena of adaptation as it occurs in nature

How ? Developing ways how natural adaptation can be
Implemented into computer systems

m result. GAs as an abstraction of biological evolution
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Genetic Algorithms (GAs): notations (2)

m chromosome: a candidate solution to a problem, encoded as a bit
string

m genes: single bit or short blocks that encode a particular element of
a candidate solution

cross over: exchanging material between the parent chromosomes
mutation: flipping a bit at a randomly chosen locus

fitness: criteria of function to minimize or maximize

example in CFD or CEM optimization problems:

population: a set of airfoils; chromosome: an airfoll
genes: spline coefficient; parents: two airfoils

offspring: two children airfoils; fitness : drag or signature
environment. flow or wave (non) linear PDEs
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EVOLUTIONARY ALGORITHMS (GAs, ESs, EAs, MAs,...)

Advanced Optimisation Tools:

Evolutionary Optimisation
~ Good for all of the above m, ’V m
» Easy to parallelize 4
» Robust towards noise PN
» Explore larger search spaces - [
~ Good for multi-objective problems

» Based on the Darwinian theory of evolution = populations of
individuals evolve and reproduce by means of random mutation
and crossover operators and compete in a set environment for
survival of the fittest (selection).
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Fithess
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m Selection (semi random, semi deterministic) : survival of
the fittest ( Darwin principle)

m Cross over (random): Pc (binary coding)
Parents Offspring

100/01110 >< 70000000
001/00000 00107710
m Mutation (random): Pm

10001110 10001100
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In Parallel

A One Offspring
\

Successful
Failures
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Population size: 30-100 , problem dependent
Cross over rate: Pc= 0.80-0.95
Mutation rate: Pm= 0.001- 0.01
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Areas of applications with GAs

Optimization and Machine learning( D. Golberg, 1989)
Automatic programming ( J. Koza, 1992)

Economics (bidding strategies, economic markets)
Immune systems (KrishnaKumar,1998)

Ecology (co evolution)

Social systems (evolution of social behaviour in insect colonies,
cooperation and communication of multi-agents systems)

m Complex adapted systems (Hidden order, J.Holland, 1997)

Short Course on Integrated Multiphysics Simulation & Optimization,Laajavuori, March 13-14, 2009 20




How are GAs different from traditional methods ?
( D. Goldberg, 1989)

m GAs work with a coding of the parameter set, not the
parameters themselves

m GAs search from a population, not a single point

m GAs use payoff ( objective function) information, not
derivatives or other auxiliary knowledge

m GAs use probalistic transition rules, not deterministic
rules

m T he central theme of research on GAs has been
robustness
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GAs are indifferent to problems specifics ( no derivative needed to
take a decision!)

GAs use a coding of decision variables (DNA and adaptation of
chromosomes)

GAs process populations via evolutive generations
GAs use randomized operators

Theoretical foundations of GAs rely on a binary string
representations of solutions and on the notion of schema

The schema theorem (J. Holland): “short, low order, above average
Schemeta receive exponentially increasing trials in subsequent
generation of a GAs” ( Michalewicz, 1992)
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EVOLUTIONARY ALGORITHMS : EXAMPLE OF A
CHROMOSOME OR INDIVIDUAL

In this example: A chromosome or an
individual are the control points (yi) that define
the aerofoil shape

Y
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envelope
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DRAWBACK OF EVOLUTIONARY ALGORITHMS

» Evolution process is time consuming/ high number of
function evaluations is required.

= A typical MDO problem relies on CFD and FEA for
aerodynamic and structural analysis.

= CFD and FEA software are time consuming !

Gradient Based Methods or simple Evolutionary Algorithms are not
efficient enough to capture global solutions for MO and MDO Problems-
Therefore Advanced Techniques are required

—
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m Aeronautical and aerospace design problems normally
require a simultaneous optimisation of conflicting
objectives and associated number of constraints.

m They occur when two or more objectives that cannot be
combined rationally. For example:

» Drag at two different values of lift.
» Drag and thickness.

> Pitching moment and maximum lift
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Different Multi-Objective approaches

= Aggregated Objectives, main drawback is loss of
information and a-priori choice of weights.

» Game Theory (von Neumann)
» Game Strategies
-Cooperative Games - Pareto
-Competitive Games - Nash
-Hierarchical Games - Stackelberg

= Vector Evaluated GA (VEGA) Schaffer,85
» Multi Objective Optimization with GAs K. Deb , 2001

Short Course on Integrated Multiphysics Simulation & Optimization,Laajavuori, March 13-14, 2009 26



Maximise/ Minimise fz(x) i=1..N
Subjected to g(x)=0 j=L.N
constraints h, (x)S 0 k=1.K

- fl(x)- Objective functions, output (e.g. cruise efficiency).
= X: vector of design variables, inputs (e.g. aircraft/wing geometry)

~ g(x) equality constraints and h(x) inequality constraints: (e.g.
element von Mises stresses); in general these are nonlinear
functions of the design variables.
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m Linear Combination of criteria (aggregation)

BUT

1 Dimensionless number
1 Heavy bias from the choice of the weights

m VEGA (Vector-Evaluated GA) [schaffer, 85]

1 bias on the extrema of each objective
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° Theoretical foundations: Von Neumann

> Applications to Economics and Politics: Von
Neuman, Pareto, Nash, Von Stackelberg

> Decentralized optimization methods:

Lions-Bensoussan-Temam in Rairo (1978, G.
Marchuk, J.L. Lions, eds)

In this lecture: introduce and use Games strategies
iIn Engineering for solving Multi Objective
Optimization Problems
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m Pareto Optimality (minimization, 2 Players A and B).

- is Pareto optimal if and only if:

m Pareto Dominance (for n players (P,,...,P,)
-1 Player P, has objective f.and controls v,
(VeSS 7)) dominates (vq,..,V,..,Vv,) iff:
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Pareto Front

m Pareto Optimality

a strategy (v,*,..,v.”,..,v,*) is Pareto-optimal if it
IS not dominated

m Pareto Front
Set of all NON-DOMINATED strategies
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PARETO OPTIMAL SET : DEFINITION

-.._Infeasible region

- Aset of solutions thatare . 4 /9 Feasible rest
non-dominated w.r.t all others* 2 casible reglon
points in the search space, or o

that they dominate every other
solution in the search space
except fellow members of the
Pareto optimal set.

» EAs work on population based
solutions ...can find a optimal
Pareto set in a single run

= HAPMOEA: Captures Pareto

Front, Nash and Stackelberg Pareto Optimal Front @
solutions Non-Dominated ®
Dominated O
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m Competitive symmetric games [Nash, 1951]
m For 2 Players A and B:

fA(-;é*ay*) — }cIelng(x’j;*)
fo (. 5) = nf £, (F*.)

m FornPlayers .

« When no player can further improve his criterion, the
system has reached a state of equilibrium named Nash
equilibrium™
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m Let D, be the rational reaction set for A, and Dg the
rational reaction set for B.

m \Which can be formulated:

m Nash Equilibrium

A strategy pair
Nash Equilibrium !

IS a
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Optimizing

Gen 1 Gen k Gen k+1

X1 Yk XkYk+1
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Stackelberg Games

m Hierarchical strategies

m Stackelberg game, A leader

Stackelberg game with A leader and B follower :
minimize f,(X,y) with y in Dg

m Stackelberg game, B leader
Stackelberg game with B leader and A follower

min _ f,(x,y)

xeD,. yeB
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X Y

vlayer A player B

[Sefrioui & Periaux, 97]
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Example:

m Let us consider a gameW|th2pIayers A and B, with the
following objective functions . -
T T O T T R VR Gl AR GRS
[ R I C o

35\ :
25\........:.....

20~ .

o~
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Pareto . Analytic Resolution

m Let us consider the parametric function

f ) =A-((x=D"+(x=y))+1=A)-(y=3) +(x=y)"

with 0< A <1
m [he Pareto equilibria are the solution of
rafp ('x’y) O _
Ox _ 2Ax —2A+2x—2y =0
<

af, (x,y) —0 :><K—2/’Ly+4y—6—2x+67L=O
dy

\
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Stackelberg : Analytic

m Stackelberg, A leader

Minimize f,(x,y) on Dg.

D, is built by solving s (X,y) _ 0
dy
df , (x, +3
JsC00) () s 2y — 3= 2(x— y) =0 5 y =
dy 2
x+3
Dgistheline V= )
The problem consists now in solving
x+3
0 (x, )
4 >

=0
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Stackelberg : Analytic (2)

x+3 3
afA(-xa ) a((x—1>2+(x—“ )*)
2 N 2 -0
0x 0x
x 3 7
<:>2(X—1)+(5—§)—0<:>X—§
z+3
y is then: y:X+3:5 _22
2 2 10
The first Stackelberg equilibrium S, is the
int - (7
point g —(1'4j
22 | (22
(10 /
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Stackelberg : B leader

m Stackelberg, B leader and ,gffozlow

Minimize fz(x,y) on Da.
D, is built by solving

of , (x,y)
ox

D, is the line ¥ =2x—1

=0 2(x-D+2(x—y)=0 y=2x—-1

The problem consists now in solving

+1
afB(yTay)
=0
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Stackelberg : B leader (2)

+1 1
afB(yT,y) A(y= 3 +E—=y))
—0 o 2 =0
dy dy
-y 13
& Ay=3)- (5 =0 y=2
E+1
X is then: g=2t_s5 I8
2 2 10
The second Stackelberg equilibrium Sg is
I - 18
the point : [E} (ng
13|17 26
5
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Nash : Analytic

m [he Nash Equilibrium is the intersection of the two
rational reaction sets D, and Dg. Finding the Nash

Equilibrium consists in solving: y=2x—1
x +3

Y T2

J\

~

| JW | W

x +3 & =
y = > 3y=7

y =
The Nash Equilibrium Ey is the point
(5)
3 _(1.66)
71 (2.33
.3/
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e chuilibre de Pareto Théorigue | -
O O  Equilibre de Nash Théorigue
< <& Stackelberg A leader
X x  Stackelberg B leader

~25F

= "
1.5 .f::' -
, ;
05k .

........ l)(' -l- y‘l.:..-.J-". © . R R L T
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Optimization results with GAs

m Try to optimize the function f, and fg with
the optimization tools presented earlier

With a Pareto/ GA game
With a Nash/ GA game
With a Stackelberg/ GA game
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Mash, Convergence des 2 joueurs sur le Plan des critéres

1 -
. 5 : : : :
............................................ fA.F‘Q’.‘Y‘?!’QQY?[S..0.3.35....,...........
i7 | : . f converge versUElB
i P [ s i B e RS S s
2 |
o
= |
1] "R | .......... e : :
[ : : ——  Population 1: f -{x 1% +(x-y
{ . _——— Populat|on2 f -(-;—3} (x-y)
os5k..... ||
!
[ : :
I | e A
) : : :
e E :
03 l l l 1 1 l 1 ]
0 5 10 15 20 25 30 35 40
Mombre de générations
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m f, converges towards 0.896 and f; towards 0.88
m Both those are the values on the objective plane!

m And we can check that
fA(%%)z 0.896 and f, (%%): 0.88

m So the Nash GA finds the theoretic Nash Equilibrium
m Specifics

2 populations, each of size 30

P.=0.95 P.=0.01

Exchange frequency : every generation

(Xx,y) in [-5,5]Xx[-5,9]
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Mash, Convergence sur le Plan {xy)

- - " =
| e——=  Convergence du point de Nash
29t m} O  Equilibre de Nash theoricue
28
27f S

26" _;
>25 ’ 4

2.4

23F

2.2

21 \

N o

2 1 1
1.5 1.5 16 165 1.7 1.75 18 1.85 19 1.95 2
R

A R ol N 4.
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Ao
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Fitness Stackelberg-GaAs convergence
4-625 ! '. ! ! ! '. ! '.

- Stackelberg , A leader ——

Stackelberg, B leader —+—

082 b N SR ST ST S ST SO AU e
0.815F oonnn N S S L S L SR e
0.81 Fooiinn. ST S-S T A S R SO

ovs| SRR 0 NS NRRORIS TAVIN PRI AN S M

. ; ; N ; : : ;

Nb Generations
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m In both cases (with either A or B leaders),
the algorithms converges towards 0.8. But
In the objective plane.

m In the plane (x,y), we can see that the first
game converges towards (1.4,2.2) and that

the second game converges towards
(1.8,2.6)
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28

Convergence pour Mash et Stackelberg, plan (x,y)

(] O  Equilibre de Mash Théorigue
< ¢ Stackelberg Théorigue, leader
271 | % x  Stackelberg Théoricue, B leader s
&— — - Convergence vers MNash W v =
% — -1 Convergence vers Stackelberg Aleader | - jf S GRERE
26k | & — = Convergence vers Stackelberg B leader [~ g,l P
...... SR g ECZ
e R RUPPPRPPES S8 SRLTAL T SR
25F Lo e e ¢ ‘E"'& :
............................ I'."""""---...__
e b
=24+ |
R S 3
................. o e
23} O L
2.2 i qu:-q_.'_. ‘._,- 5. ....... .". ...... -_‘. ..........................
a1
1.35 1.4 1.45 1.5 1.55 16 1.65 1.7 1.75 18
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Equilibres Théoriques

S T T T T T 1 AT ™
45k —.— D
T . Equilibre de Pareto Théorique
4 b SR = O  Equilibre de Nash Théorigue
: /,/ & < Stackelberg A leader
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35F 4 : i
. v 4
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MULTI-OBJECTIVE DESIGN with games

Tang Zhili et al, 2004

Two-objective Inverse Design in Aerodynamics

The optimization problem:

Optimization problem :
reconstructing two different
pressure distributions

M,=02 o=108"

mlnfi = '[FC (p(W)— psub )2 ds

95 Ma =077 a=10

mlan = IFC (p(W)— Prran )2 ds SN
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VMIULTI-OBJECTIVE DESIGN with gradient

Pareto-front, Stackelberg points,Nash equilibrium(Parameterization
with Hicks-Henne functions)

Pareto Front (parameterization Hicks-Henne function)
4.5 T T T

I
Pareto Front +

35 -

25 -

Stackelberg
* (f2 is leader)

f2

15 -

[
o
|

4=
5 Ib .
b +7+§+ ?i'h ?ea?g)
19 = 48  NashEq.
0 | +347|4+’15+ 17 _+18 | 19 20
0 0.01 0.02 0.03 0.04 0.05

f1
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MULITI-OBJECTIVE DESIGN: Pareto solution set

Parameterization with Hicks-Henne functions)

Pareto Front of Airfoil (parameterization is Hicks-Henne function)
300 1 I I I I I I 1 I
< TT==20
=19
250 - C>1 8 |
< |
< T
<
200 . T—a }
13
12
150 + 1 -
10
9
100 6 .
50 -
0 -
1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500
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VIULTI-OBJECTIV

E DESIGN: Comparisons

Comparison of pareto-fronts
computed by different

Comparison of pareto-fronts
computed by GAs and

parameterization Deterministic method
Comparison of Pareto Fronts Computed with Different Parameterization Comparison of Pareto Fronts Computed with Different Optimizer
45 45
l ] Hicks-Hennle function + I I I Bezier, Idegree-9 +
3 Bezier, degree=16  x b GAs >
4 Bezier, degree=9 ¥ | 4+
i
35 35 &
3+ 3 -
+ %
25 - 25
u * o *
2+ o X
+ X
1501 151
t :
+
§ s\‘
1+ % bo%
¥ +,
By n Ay
05T * 5 05 Ten
*;* & . ++>f§< X
¢ +
0 I W%’*“ﬁ* * K ¥ Y 0 ! ) +++ﬁ+|++ 3 [ I
0 0.01 0.02 0.03 0.04 0.05 0 0.01 0.02 0.03 0.04 0.05
f1 f1

Short Course on Integrated Multiphysics Simulation & Optimization,Laajavuori, March 13-14, 2009 60



m PGAs : a particular instance of GAs
0 sub-population (H.Muhlenbein, 1989)
0 network of interconnected sub-populations (/sland Model)
0 smaller sub-populations versus a single large one

1 node = 1 sub-population

Neighbours
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Parallel GAs mechanisms : a road map to
robustness ! (M. Sefrioui & JP, 1996)

= |solation and Migration

[0 sub-populations evolve

independently for a given period  |solation
of time (epoch) 0SS
(1 after each epoch, migration

between sub-populations before
isolation resumes

[0 promising solutions shared by
sub-populations via their
neighbours

Toutes les k generations

Migration
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Test-case : Rastrigin Function

£=10-20+ Z(x ~10-cos(27- x,))

m |In dimension 2, the surrace IS:
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Rastrigin Function Parallel and Sequential GA convergence
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Rastrigin Function Parallel and Sequential GA convergence
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/. Hierarchical | opology-Multiple Models,
Sefrioui et al, 1998

Model 1

Model 2

Model 3

Interactions of the 3 layers : solutions go up and down the layers.
The best ones keep going up until they are completely refined.

No need for great precision during exploration.

Time-consuming solvers used only for the most promising solutions.
Think of it as a kind of optimisation and population based multi grid.



HIERARCHICAL TOPOLOGY- MULTIPLE MODELS

m Start migration:

m Layer 1: Receive (1/3 population) best solutions from layer 2
reevaluate using type 1 integrated analysis

m Layer 2: Receive (1/3 population) random solutions from layer 1
and best from layer 3 reevaluate them using type 2 integrated
analysis

m Layer 3: Receive (1/3 population) random solutions from layer 2
reevaluates them using type 3 integrated analysis.
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10. Discontinuous Pareto Front industrial test case :
Two Objective UAV Airfoil Section Design (Eurogen 2003

Design of a single element aerofoil for a low-cost
UAYV application.

Two subsonic design points considered for
optimisation

Loitering flight
Rapid-transit flight.
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Design Variables: Bounding Envelope of the
Aerofoil Search Space

0.6 ¥ T [ | T T T
0.4 |- ~
Four control points on the mean line.
02 |- S ' 7 il
°r /’;—_,:_.::'——\ -
o2+ /S e —
Constraints:
o4 L S_lx c_ontl_'ol points on the thickness | 1. kness > 12% x/c
distribution.
* Pitching moment > -0.065
_06 1 3 1 1 13 1 1
O 02 0.4 0.6 0.8 1
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Fitness Functions and Design Constraints

Specifications: Z. Johan, Dassault Aviation
Min f1 (Cd transit) Mach=0 .60 and Re= 14.0x10**6,Cm>-.065
Min f2 (Cd loiter) Mach=0 .15 and Re= 3.5x10**6

Constraints are applied by equally penalizing both fithess
values via a penalty method.

Aerofoil generated outside the thickness bounds of 10% to
15% are rejected immediately, before analysis.
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< XFOIL software written by Drela.

< |t comprises a higher order panel method with coupled
integral boundary layer.

» We have allowed free transition points for the boundary
layer.

< Locally sonic flow will be prevented by checking :

The value of Cp: Cpi< Cp then the
candidate is rejected immediately
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Implementation

Hierarchical Asynchronous Parallel EA (HAPEA)

Model 1
Grid= 119 panels

Exploitation
Population size = 20

Model 2
Grid=99 panels

Intermediate
Population size = 20

Model 3
Grid= 79 panels

Exploration
Population size =10
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Discontinuous Pareto Front for Aerofoll

This case was run for 5300 function evaluations of the head node,
and took approximately four hours on a single 1.0 GHz processor.

Sh

0.012

0.011

0.01

0.008

0.008

Fitness Objective 2

0.007

Population Fitness Distribution - Aerofoil Optimisation

______________________________________________________________________________ I’ ’I I D'""Jllation - |
Objective 1 optimal
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" Compromise |
................................................... e Qbjective. 2 .optimal
00025 0003 00035 0004 00045 0005 00055  0.006

Fitness Objective 1




The Ensemble of Pareto

Optimum Aerofoils

Classical aerodynamic shapes
have been evolved, -
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Optimum Airfoils for Cruise and Loiter

Evolved a conventional low-drag
pressure distribution and overall form

2. Upeont Pareto Opt (13.2% Thick)
Ma = 0.6000
Re = 14.00x10°

-5 @ = -0.3024°

C, € =-0-.0500
Cy = -0.0266

-1.0 Cp = 0.00317
L/D= 15.76

) Ne. = 9.00
0.5 //_j//;(%w\\:\%
_, S
7 S
0.0 - ‘ —
™\ S T
S N, T
D Y
0.5
1.0
,/ \
,/
k\\
— B

Obijective 1: Optimal Aerofoil —
Cruise CP Distribution.

Classical 'rooftop' type pressure
distribution upper surface Almost
constant favorable pressure gradient
lower surface

-2.0 oL Pareto Opt (14.37% Thick)
Ma = 0.1500
Re = 3.500x10°
-1.5 a = 4.8499°
C P €, = 0.7800
o P = Cy = -0.0384
-1.0 r \\\:\ Cp = 0.00usY
N (/o= 160.99
.
S Ne. = 9.00
0.5 .
.
\'\
0.0 =
//’m,\ \ RS -
el \i\‘//
Vi i
/
0.5 /
/
1.0
/A\
//
¢ TTee—
. —

Obijective 2: Optimal Aerofoil —
Loiter CP Distribution.
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Marked favorable gradient on the lower
surface in both flow regimes

Conventional Pressure distribution,

~e- 0wt Pareto Opt (13.8% MRick) | ~2.Opwon [ Pareto Opt (13.8% Thick)
Ma = 0.6000 ) Ma = 0.1500
Re = 1U.D0x10° Re = 3.500x10°

-1.9 a = 1.9204° -1.5 o = 8.5034°

Co |77 € =-0.6500 - - - - - - - C, = 0.7800
Cy = 0.1209 Cy = 0.0903

-1.0 Cp = 0.0036U -1. C, = 0.00660
L/o= 13.75 \ L= 118.17
Ner = ©.00 Ne. = 9.00

-0.5 -0.5

0.5 0.5

1.0 m

Pronounced Stsxtqped car

Cruise CP Distribution

< T

nber distribution.
Loiter CP Distribution.
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8. Asynchronous Evaluation (E. Whitney , 2002)

Why asynchronous ?

Converged PDE solutions to MO and MDO -> variable time to complete

Time to solve non-linear PDE - > depends upon geometry

lgnore any concept of a generation

Solution can be generated in and out of order

Processors — Can be of different speeds
- Added at random
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Parallelization Strategy

Classification of our model (S. Armfield, USYD) :

The algorithm : classified as a hierarchical Hybrid pMOEA model [Cantu
Paz], uses a Master slave PMOEA but incorporates the concept of isolation
and migration through hierarchical topology binary tree structure where
each level executes different MOEAs/parameters (heterogeneous)

The distribution of objective function evaluations over the slave
processors is where each slave performs k objective function evaluations.

Parallel Processing system characteristics:

Cluster of maximum 18 PCs with Heterogeneous CPUs, RAMs , caches,
memory access times , storage capabilities and communication attributes.

Inter-processor communication:
Using the Parallel Virtual Machine (PVM)
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Asynchronous Evaluation (1)

A

1 individual

LR

. _ Asynchronous {é, ‘
volution Algorith S D q — 9
’ L

2 4 —

0‘ 4]
* 9
“ < /;

1 individual -\

Short Course on Integrated Multiphysics Simulation & Optimization,Laajavuori, March 13-14, 200

Ignores the concept of
generation-based solution.

Fitness functions are computed
asynchronously.

Only one candidate solution is
generated at a time, and only one
iIndividual is incorporated at a
time rather than an entire
population at every generation
as is traditional EAs.

Solutions can be generated and
returned out of order.
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Asynchronous Evaluation (2)

j

U

1 individual / |

Y

Asynchronous =
volution Algorith )I/Evaluator q oy |
2y -

. ==

0‘ 4|
’ =
. =y

1 individual

g
VX

!

No need for synchronicity — no
possible wait-time bottleneck.

No need for the different processors
to be of similar speed.

Processors can be added or deleted
dynamically during the execution.

There is no practical upper limit on
the number of processors we can
use.

All desktop computers in an
organization are fair game.
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Results So Far...

] _ Evaluations CPU Time
HAPEA technique is
approximately three times Traditional 2311 £224 152m+20m
faster than other similar EA | £4
methods New 504 +£490 48m +24m
' Technique (-78%)

A test bench for single and multi objective problems has
been developed and tested successfully

We have successfully coupled the optimisation code to
different compressible CFD codes and also to some aircraft

design codes

CFD Aircraft Design
HDASS MSES XFOIL Flight Optimisation
Software (FLOPS)

FLO22 Nsc2ke ADS (In house)
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9. Robust design : TAGUCHI METHOD (Uncertainty)

Robust Design method, also called the Taguchi Method (uncertainty), pioneered by
Genichi Taguchi in 1978, improves a quality of engineering productivity. An
optimisation problem could be defined as:

Max or Min f = f(xl,...,xn,xn+l,...,xm)

Where x,,...,X, reprgsgnt design. parameters and x, . ;,...,X, represent uncertainty
parameters that are in fine step size.

Taguchi optimization method minimizes the variability of the performance under
uncertain operating conditions. Define two different objectives associated to the
function to optimise: mean value and variance.

MEAN VARIANCE

—_ 1 K 1 K _
E 57=——| 2|1, - 1]

Y k1| &1
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MEAN _ | & VARIANCE 1 K —
r=—2/ o =27 |7 -1
J — .
K j=1 J=1
—— . Sl ol tn laon oo 4 Without
Uncertainty design technique imgle-o ]ectn.)e esign optimisation Uncertainty
f:mm(CD)atMS ’
With )
Uncertainty II
/
Uncertainty based Single-criteria design optimisation N /
— ~
f; =min(CD) and f, =min(6C,) (Wesign g
M, e[M,-eM M +¢
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UNCERTAINTY BASED MULTI DISCIPLINARY
DESIGN OPTIMISATION OF J-UCAV

Fitness functions are

: 1
fitess(f) = mm(mj

_ L
fimess( f,) = min (5Bj

I x M’ L ] X Y 1
h —=y B - ' L/DZ=_T/D
where . K%:( / I)Mz an - (K—l)g( 2 ]

S hY

f = min(RCS4u, )= (RS 05, ) (RS, 5, )

where € =[0°:3°:360°] and ¢ =[0°:0°:0°] (Monostatic)
where incident angles 8 =135°, ¢ =90° at 8 =[0°:3°:360°], ¢ =[0°:0°:0°] (Bistatic)

Variability of flight conditions and radar frequencies
M_€[0.75,0.775,M , = 0.80,0.825,0.85]

o €[4.662,3.968,cr, =3.275°,2.581,1.887]
ATI e [30062,25093, ATI, = 20125 f2,15156,10187]
F €[1.0,125F =15GHz,1.75,2.0]
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RESULT: PARETOSET PLANFORMS and

AEROFOIL SECTIONS

Pareto M1 ——
Pareto M2 -------
Pareto M3 --------
Pareto M4 e
Pareto M5~
Pareto M6
Pareto M7 «-=-=---
Pareto M8 == == ==
Pareto M9 == ----
Pareto M10 ———
Baseline Design

ZC'! ZC2
(% croor ) (% croor ) el

Baseline 4.45 18.9 19.7 19.7 55° 29° 29°
ParetoM1 6.02 22.20 18.1 18.1 N o &
BOI)  (135% (H7%) (8% (8% o0 3127 309
ParetoM8 4.30 18.32 224 224
(-3%) (-3%) (-14%) (-14%)
ParetoM10 346 16.47 29.0 27.0 B - B
(BO2BO3) (229%) (13%) (47%) (376 o120 22 267
DI10rtL LOUrse Il Ineyrateu viuilupIiiysics SdHNnuidauort o

Models AR

56.3°  30.0° 29.2°
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This lecture has described the basic concepts of EAs, and a short review of different approaches and industrial
needs for MDO presented.

Details of Evolutionary Algorithms and their specific applications to aeronautical design problems discussed.
The lecture provided specific details on a particular EA used in this research named HAPEA.

It is noticed that there are different methods, architectures and applications of optimisation and multidisciplinary
design optimisation methods for aeronautical problems.

However, still further research for alternative methods are still required to address the industrial and academic
challenges and needs of aeronautic industry.

EAs is an alternative option to satisfy some of these needs, as they can be easily coupled, particularly adaptable,
easily parallelised, require no gradient of the objective function(s), have been used for multi-objective optimisation
and successfully applied to different aeronautical design problems.

Nonetheless, EAs have seen little application at an industrial level due to the computational expense involved in this
pror?ess and the fact that they require a larger number of function evaluations, compared to traditional deterministic
techniques.

The continuing research has focused on development and applications of canonical evolution algorithms for their
application to aeronautical design problems. It is worth to have a single framework that allows:

Solving single and multi-objective problems that can be deceptive, discontinuous, multi-modal.
Incorporation of different game strategies-Pareto, Nash, Stackelberg

Implementation of multi-fidelity approaches

Taking into account uncertainties

Parallel Computations

Asynchronous evaluations

OO00o0onOnO
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m systemic technology like the one required by UAVs will
increase in the future ( see Part 3)

m In order to obtain true optimised-global solution we need
to think multidisciplinary.

m Evolutionary Algorithms are techniques to consider as it
provides fruitful and optimal results.

m Simple EAs are not sufficient : the complex task of MO
and MDO in aeronautics required advanced EAs
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