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1. Main Objectives

   These lectures describe theoretical and
numerical aspects ( part 1) with applications
(part 2) of Evolutionary Design Methods in
Aerospace Engineering
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2. Motivation:  MASTERING COMPLEXITY, A
COLLABORATIVE WORK….

 technological constraints
 economical constraints
 societal constraints
 integrated systems

Complexity at interfaces

Computer
Science

Distributed
parallel architectures

Networked Information
Technologies

Modelization of Physics
Multi-physics , multi-scale and reduction

models

  Applied
Mathematics
Innovative algorithms
with determinism
   and probabilities

•    Targets ( « doing  better with less »)
• Computational multidiscilinary tools
• Decision maker algorithmsfor the design of

industrial products
• Time and cost reduction for system design

and manufacturing

•    Priorities
• 1) Robustness (global solutions)
• 2) Low cost efficiency (grid computing)
• 3) Human interfaces
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MDO simulations for civil aircraft
(courtesy of Dassault Aviation)

ENVIRONMENT
•Acoustics

•Shapes

Computational

Physics and mathematics

FLIGHT DYNAMICS
•Flight control
•Flight quality

•Thrust/drag control

Embedded

Software

STRUCTURE

•Landing gear
•Hydraulics

•De-icing
•Inertial

EQUIPMENT

AERODYNAMICS

•Shapes

•Architecture

•Flaps
•Anemometry

•Vibrations

•Pilot information
•Visualizations

ERGONOMY

•Thrust/drag control



7Short Course on  Integrated Multiphysics Simulation & Optimization,Laajavuori, March 13-14, 2009

MDO Challenge : Noise prediction and reduction
(courtesy of Dassault Aviation)

Engine NoiseEngine Noise :
Fan, Compressor, Turbine,
Combustion, Exhaust Jet

Airframe NoiseAirframe Noise :
Landing Gear, Slats and
Flaps, Wakes
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NEW CONTEXT….

Multi Disciplinary

Search Space – Large
                           Multimodal
                           Non-Convex
                           Discontinuous    

Trade off between  Conflicting Requirements 

Integration of software
with interfaces and
human factors

Share knowledge:
different cultures  and
technologies connected
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 Multidisciplinary design
problems involve search spaces
that are multi-modal, non-
convex or discontinuous

 Traditional methods use
deterministic approach and rely
heavily on the use of iterative
trade-off studies between
conflicting requirements.

PROBLEMS IN AERODYNAMIC OPTIMISATION (1)
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 Traditional optimization methods
will fail to find the best answer in
many complex engineering
applications, (noise, complex or
non differentiable objective
functions); why? lack of
robustness !!

 The internal workings of validated
in-house/ commercial solvers (
Fluent, Cstar,…) are inaccessible
from a modification point of view (
black-boxes); why? Lack of
flexibility for integration or
modification!

PROBLEMS IN AERODYNAMIC OPTIMISATION (2)
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Traditional Gradient Based
 methods for MDO might fail
to find optimal solution if
search space is:

3. EVOLUTIONARY ALGORITHMS  (1)

►► LargeLarge
►► MultimodalMultimodal
►► Non-ConvexNon-Convex
►► Many Local OptimumMany Local Optimum
►► DiscontinuousDiscontinuous

A real aircraft design
optimization might exhibit
one or several of these
characteristics

! local minimum

Global  minimum
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Optimal Solutions optimal
Surface of UAV, µUAV

Multiple Goals Minimise-Maximise

Payload Capacity

Aerodynamic
Performance

    Structural Performance

Search spaces for multiphysics solutions are complex

!
Traditional Gradient Based
Techniques might fail or be trapped
in local minima

local minimum

Global  minimum
Advanced numerical
techniques
–Evolutionary
Computing

Advanced Techniques are required

Time consuming process
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A brief history of GAs, M. Mitchell, 1996

 50’-60’: evolution could be used as an optimization tool for
engineering problems

 innovation: evolve a population of candidates to a given problem,
using operators inspired by natural genetic variation and natural
selection

 approach: evolution inspired algorithms
 60’: GAs invented by J. Holland, Univ. of Michigan
 target: study the phenomena of adaptation as it occurs in nature
 How ? Developing ways how natural adaptation can be

implemented into computer systems
 result: GAs as an abstraction of biological evolution
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Genetic Algorithms (GAs): notations  (2)

 chromosome: a candidate solution to a problem, encoded as a bit
string

 genes: single bit or short blocks that encode a particular element of
a candidate solution

 cross over: exchanging material between the parent chromosomes
 mutation: flipping a bit at a randomly chosen locus
 fitness: criteria of function to minimize or maximize
 example in CFD or CEM optimization problems:

 population: a set of airfoils; chromosome: an airfoil
 genes: spline coefficient; parents: two airfoils
 offspring: two children airfoils; fitness : drag or  signature
 environment: flow or wave (non) linear PDEs
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Advanced Optimisation Tools:Advanced Optimisation Tools:
 Evolutionary Optimisation Evolutionary Optimisation

Crossover Mutation

Fittest

Evolution

EVOLUTIONARY ALGORITHMS (GAs, ESs, EAs, MAs,…)

►► Good for all of the aboveGood for all of the above
►► Easy to parallelizeEasy to parallelize
►► Robust towards noiseRobust towards noise
►► Explore larger search spacesExplore larger search spaces
►► Good for multi-objective problemsGood for multi-objective problems

►► BBased ased on the Darwinian theory of evolution on the Darwinian theory of evolution   populations ofpopulations of
individuals evolve and reproduce by means of random mutationindividuals evolve and reproduce by means of random mutation
and crossover operators and compete in a set environment forand crossover operators and compete in a set environment for
survival of the fittest (selection).survival of the fittest (selection).
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GENETIC ALGORITHMS  pioneered J. Holland
in the 60’ with binary coding

1000110100101

Crossover

Pc Pm

Mutation1-P c
Selection

Fitness
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 GENETIC ALGORITHMS with 3 OPERATORS

 Selection (semi random, semi deterministic) : survival of
the fittest ( Darwin principle)

 Cross over (random):  Pc (binary coding)
Parents    Offspring
100/01110                             10000000

001/00000                             00101110

 Mutation (random): Pm

 10001110                             10001100
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EVOLUTIONARY ALGORITHMS  (3) : One Generation of
the Algorithm...

Start
Population

Mutate Evaluate

Failures

Offspring
Population

Successful

Final 
Population

Join and 
Re-Rank

Select 
Parents Recombine

One Offspring

In Parallel
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Genetic Algorithm:  parameters

Population size: 30-100 , problem dependent
Cross over rate: Pc= 0.80-0.95
Mutation rate: Pm= 0.001- 0.01
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Areas of applications with GAs

 Optimization and Machine learning( D. Golberg, 1989)
 Automatic programming ( J. Koza, 1992)
 Economics (bidding strategies, economic markets)
 Immune systems  (KrishnaKumar,1998)
 Ecology (co evolution)
 Social systems (evolution of social behaviour in insect colonies,

cooperation and communication of multi-agents systems)
 Complex adapted systems (Hidden order, J.Holland, 1997)
 …..
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How are GAs different from traditional methods ?
( D. Goldberg, 1989)

 GAs work with a coding of the parameter set, not the
parameters themselves

 GAs search from a population, not a single point
 GAs use payoff ( objective function) information, not

derivatives or other auxiliary knowledge
 GAs use probalistic transition rules, not deterministic

rules
 The central theme of research on GAs has been

robustness
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GAs Mechanisms: why they work ?

 GAs are indifferent to problems specifics ( no derivative needed to
take a decision!)

 GAs use a coding of decision variables (DNA and adaptation of
chromosomes)

 GAs process populations via evolutive generations
 GAs use randomized operators
 Theoretical foundations of GAs rely on a binary string

representations of solutions and on the notion of schema
 The schema theorem (J. Holland): “short, low order, above average

schemeta receive exponentially increasing trials in subsequent
generation of a GAs”     ( Michalewicz, 1992)
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EVOLUTIONARY ALGORITHMS :  EXAMPLE OF A
CHROMOSOME OR INDIVIDUAL

In this example: A chromosome or an
individual are the  control points (yi) that define
the aerofoil shape

1000110100101
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DRAWBACK OF EVOLUTIONARY ALGORITHMS

► A typical MDO problem relies on CFD and FEA for
aerodynamic and structural analysis.

► CFD and FEA software are time consuming !

► Evolution process is time consuming/ high number of
function evaluations is required.

GradientGradient  Based Methods or simple Evolutionary Algorithms areBased Methods or simple Evolutionary Algorithms are  notnot
efficient efficient enough to captureenough to capture  globalglobal  solutions for MO and MDO Problems-solutions for MO and MDO Problems-
ThereforeTherefore  AdvancedAdvanced  Techniques are requiredTechniques are required
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4. MULTI-OBJECTIVE OPTIMISATION (1)

 Aeronautical and aerospace design problems normally
require a simultaneous optimisation of conflicting
objectives and associated number of constraints.

 They occur when two or more objectives that cannot be
combined rationally.  For example:

► Drag at two different values of lift.

► Drag and thickness.

► Pitching moment and maximum lift

► ……
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 MULTI-OBJECTIVE OPTIMISATION

Different Multi-Objective approachesDifferent Multi-Objective approaches

►► Aggregated Objectives, main drawback is loss ofAggregated Objectives, main drawback is loss of
information and a-priori choice of weights.information and a-priori choice of weights.

►► Game Theory (von Neumann)Game Theory (von Neumann)
►► Game StrategiesGame Strategies

-Cooperative Games - Pareto-Cooperative Games - Pareto
-Competitive Games - Nash-Competitive Games - Nash
-Hierarchical Games - -Hierarchical Games - StackelbergStackelberg

►► Vector Evaluated GA (VEGA) Schaffer,85Vector Evaluated GA (VEGA) Schaffer,85
►► Multi Objective Optimization with Multi Objective Optimization with GAs  GAs  K. Deb , 2001K. Deb , 2001
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    Maximise/ Minimise

Subjected to
constraints

►►                                         Objective functions, output (e.g. cruise efficiency).Objective functions, output (e.g. cruise efficiency).

►► x:x: vector of design variables, inputs (e.g. aircraft/wing geometry) vector of design variables, inputs (e.g. aircraft/wing geometry)

►► g(x)g(x) equality constraints and  equality constraints and h(x)h(x) inequality constraints: (e.g. inequality constraints: (e.g.
element von element von Mises Mises stresses); in general these are nonlinearstresses); in general these are nonlinear
functions of the design variablesfunctions of the design variables..

( ) Nixfi ...1=

( )

( ) Kkxh

Njxg

k

i

...10

...10
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( )xfi

MULTI-OBJECTIVE OPTIMISATION
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MULTIPLE OBJECTIVE OPTIMIZATION

 Linear Combination of  criteria (aggregation)

 

C = !
i
"c

i

i=1

n

#
BUT

 Dimensionless number
 Heavy bias from the choice of the weights

 VEGA (Vector-Evaluated GA) [Schaffer, 85]

 bias on the extrema of each objective
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GAME STRATEGIES

° Theoretical foundations: Von Neumann

° Applications to Economics and Politics: Von
Neuman, Pareto, Nash, Von Stackelberg

° Decentralized optimization methods:
Lions-Bensoussan-Temam in Rairo (1978, G.

Marchuk, J.L. Lions, eds)

In this lecture: introduce and use Games strategies
in Engineering for solving Multi Objective
Optimization Problems
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NOTATIONS

 For a  game with 2 players, A and B
 For A

Objective function fA(x,y)
A optimizes vector x

 For B
Objective function fB(x,y)
B optimizes vector y

Bfor  strategies possible ofset  

Afor  strategies possible ofset  

=

=

B

A
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Pareto Dominance
 Pareto Optimality (minimization, 2 Players A and B).

is Pareto optimal if and only if:
),( **

yx

 

!(x,y) "A # B ,
fA (x

*
, y

*
) $ fA (x,y)

fB (x
*
, y

*
) $ fB (x,y)

% 

& 

' 

 Pareto Dominance (for n players (P1,…,Pn)
 Player Pi has objective fi and controls vi

 (v1*,..,vk*,..,vn*) dominates (v1,..,vk,..,vn) iff:

  

 

!i, fi(x1
*
,…, xk

*
,…, xn

*
) " fi(x1 ,…, xk,…, xn )

#i, fi(x1
*
,…, xk

*
,…, xn

*
) < fi(x1 ,…,xk,…,xn )

$ 
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Pareto Front

 Pareto Optimality
a strategy (v1*,..,vk*,..,vn*) is Pareto-optimal if it

is not dominated

 Pareto Front
Set of all NON-DOMINATED strategies
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F2

F1
Pareto Optimal Front

Non-Dominated
Dominated

Feasible region

Infeasible region

►► A set of solutions that areA set of solutions that are
non-dominated non-dominated w.r.t all othersw.r.t all others
points in the search space, orpoints in the search space, or
that they dominate every otherthat they dominate every other
solution in the search spacesolution in the search space
except fellow members of theexcept fellow members of the
Pareto optimal set.Pareto optimal set.

PARETO OPTIMAL SET : DEFINITION

►► EAs EAs work on population basedwork on population based
solutions solutions ……can find a optimalcan find a optimal
Pareto set in a single runPareto set in a single run

►► HAPMOEA: Captures ParetoHAPMOEA: Captures Pareto
Front, Nash and Front, Nash and StackelbergStackelberg
solutionssolutions
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Nash Equilibrium
 Competitive symmetric games [Nash, 1951]
 For 2 Players A and B:

 For n Players :
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 « When no player can further improve his criterion, the
system has reached a state of equilibrium named Nash
equilibrium”

 

fA (
!
x*,
!
y*) = inf

x!A
fA (x,

!
y*)

fB (
!
x*,
!
y*) = inf

y!B
fB (
!
x*, y)
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How to find a Nash Equilibrium ?
 Let DA be the rational reaction set for A, and DB the

rational reaction set for B.

 

DA = (x*, y)!A " B  { } such that fA (x*,y) # fA (x,y)

DB = (x,y*)!A " B { }  such that fB (x,y*) # fB (x, y)

$ 
% 
& 

' & 

 

DA = x,
!fA (x,y)

!x
= 0

" 
# 
$ 

% 
& 
' 

DB = y,
!fB (x,y)

!y
= 0

" 
# 
$ 

% 
& 
' 

" 

# 

( ( 

$ 

( 

( 

 Which can be formulated:

 Nash Equilibrium
 A strategy pair                                       is a

Nash Equilibrium !

 

(x*, y*) !DA " DB
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Nash GAs Optimizing    X Y
Player 1 Player 2

Xk Yk-1

Xk-1 Yk

X0
Xk-1

Xk Y0

Yk-1

Yk

Player 1 =  Population 1

Player 2 =  Population 2

X0Yr

XrY0

Gen 0 

X1Y0

X0Y1

Gen 1 Gen k

Xk+1 Yk

XkYk+1

Gen k+1

[Sefrioui & Periaux, 97]
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Stackelberg Games
 Hierarchical strategies

  Stackelberg game, A leader
Stackelberg game with A leader and B follower :

minimize fA(x,y) with y in DB

 

min
x!DA ,y!B 

fB (x,y)

  Stackelberg game, B leader
Stackelberg game with B leader and A follower :
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[Sefrioui & Periaux, 97]

Genetic Operators

Optimize X
player A

Y
player B

Player AX

Y

Genetic Operators

Genetic Operators

Genetic Operators
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Example:
 Let us consider a game with 2 players A and B, with the

following objective functions
22

22

)()3(

)()1(

yxyf

yxxf

B

A

!+!=

!+!=
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Pareto : Analytic Resolution
 Let us consider the parametric function

 

f p(x,y) = ! " ((x #1)
2

+ (x # y)
2
) + (1# ! ) " ((y # 3)

2
+ (x # y)

2
)

with  0 $ ! $1

 The Pareto equilibria are the solution of

 

!f p (x,y)

!x
= 0

!f p (x,y)

!y
= 0

" 

# 

$ $ 

% 

$ 
$ 

&
2'x ( 2' + 2x ( 2y = 0

(2'y + 4y ( 6 ( 2x + 6' = 0

" 
# 
% 
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Pareto Equilibria

 Which yields

 

x =
!2 + ! " 3

!2 " ! "1

y =
3!2 " ! " 3

!2 " ! "1

# 

$ 

% % 

& 

% 
% 
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Stackelberg : Analytic
 Stackelberg, A leader

 Minimize fA(x,y) on DB.
 DB is built by solving

 

!fB (x, y)

!y
= 0

 

!fB (x, y)

!y
= 0" 2(y # 3) # 2(x # y) = 0" y =

x + 3

2

DB is the line

The problem consists now in solving
2

3+
=
x

y

 

!fA x,
x + 3

2

" 

# 

$ 

% 

!x
= 0
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   y is then:

 

!fA x,
x + 3

2

" 

# 

$ 

% 

!x
= 0&

!((x '1)2 + (x '
x + 3

2
)2 )

!x
= 0

 

! 2(x "1) + (
x

2
"
3

2
) = 0! x =

7

5

10

22

2

3
5

7

2

3
=

+

=
+

=
x

y

   The first Stackelberg equilibrium SA is the
point  :

 

7

5

22

10

! 

" 

# 

# 
# 

$ 

% 

& 

& 
& 

=
1.4

2.2

! 

" 
# 

$ 

% 
& 

Stackelberg : Analytic (2)
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Stackelberg : B leader

 Stackelberg, B leader and A follower
 Minimize fB(x,y) on DA.
 DA is built by solving

 

!fA (x, y)

!x
= 0

 

!fA (x, y)

!x
= 0" 2(x #1) + 2(x # y) = 0" y = 2x #1

DA is the line

The problem consists now in solving

12 != xy

 

!fB
y +1

2
, y

" 

# 

$ 

% 

!y
= 0
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   x is then:

 

!fB
y +1

2
, y

" 

# 

$ 

% 

!y
= 0&

!((y ' 3)2 + (
y +1

2
' y)2 )

!y
= 0

 

! 2(y " 3) " (
1" y

2
) = 0! y =

13

5

10

18

2

1
5

13

2

1
=

+

=
+

=
y

x

   The second Stackelberg equilibrium SB is
the point :
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13
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Stackelberg : B leader (2)
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Nash : Analytic

 The Nash Equilibrium is the intersection of the two
rational reaction sets DA and DB. Finding the Nash
Equilibrium consists in solving:

 

y = 2x !1

y =
x + 3

2

" 

# 
$ 

% $ 

 

y = 2x !1

y =
x + 3

2

" 

# 
$ 

% $ 

&
y = 2x !1
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" 
# 
% 

&
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5

3
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7

3

" 

# 

$ 

% 
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   The Nash Equilibrium EN is the point
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3

7
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=
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Pareto Equilibrium
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Optimization results with GAs

 Try to optimize the function fA and fB with
the optimization tools presented earlier
With a Pareto/ GA game
With a Nash/ GA game
With a Stackelberg/ GA game
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Nash GA : convergence
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 fA converges towards 0.896 and fB towards 0.88
 Both those are the values on the objective plane!
 And we can check that

 

fA(
5

3
,
7

3
) = 0.896  and  fB (

5

3
,
7

3
) = 0.88

 So the Nash GA finds the theoretic Nash Equilibrium

 Specifics
2 populations, each of size 30
Pc=0.95 Pm=0.01
Exchange frequency : every generation
 (x,y) in [-5,5]x[-5,5]
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Pareto GA
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Stackelberg GA : convergence
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 In both cases (with either A or B leaders),
the algorithms converges towards 0.8. But
in the objective plane.

 In the plane (x,y), we can see that the first
game converges towards (1.4,2.2) and that
the second game converges towards
(1.8,2.6)
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Converged game solutions for GAs vs analytical approaches
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Pareto Equilibrium
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The optimization problem:

Two-objective Inverse Design in Aerodynamics

Problem: find all the profiles existing between the low-
drag profile and the high lift profile

Optimization problem :
reconstructing two different
pressure distributions

  MULTI-OBJECTIVE DESIGN MULTI-OBJECTIVE DESIGN with gameswith games
Tang Tang Zhili Zhili et al, 2004)et al, 2004)

M
a
= 0.2 ! = 10.8

0

min f
1
= !"c p(w) # psub( )

2
ds

M
a
= 0.77 ! = 1

0

min f
2
= !"c p(w) # ptran( )

2
ds
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Pareto-front, Stackelberg points,Nash equilibrium(Parameterization
with Hicks-Henne functions)

MULTI-OBJECTIVE DESIGN MULTI-OBJECTIVE DESIGN with with gradient gradient methodmethod
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Parameterization with Hicks-Henne functions)

MULTI-OBJECTIVE DESIGN: MULTI-OBJECTIVE DESIGN: Pareto solution setPareto solution set
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Comparison of pareto-fronts
computed by different
parameterization

Comparison Comparison of of paretopareto-fronts-fronts
computed computed by by GAs andGAs and
Deterministic methodDeterministic method

  MULTI-OBJECTIVE DESIGN: MULTI-OBJECTIVE DESIGN: ComparisonsComparisons
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6. Parallel GAs mechanisms

 PGAs : a particular instance of GAs
 sub-population (H.Muhlenbein, 1989)
 network of interconnected sub-populations (Island Model)
 smaller sub-populations versus a single large one

1 node = 1 sub-population

Neighbours
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Parallel GAs mechanisms : a road map to
robustness ! (M. Sefrioui & JP, 1996)

 Isolation and Migration
 sub-populations evolve

independently for a given period
of time (epoch)

 after each epoch, migration
between sub-populations before
isolation resumes

 promising solutions shared by
sub-populations via their
neighbours

Isolation

Migration
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 In dimension 2, the surface is:

Test-case : Rastrigin  Function

 

f = 10 ! 20 + xi
2
"10 !cos(2# ! xi)( )

i=1

20

$
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Convergence for Sequential and Parallel GA
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Convergence (zoom)



7.  Hierarchical Topology-Multiple Models,
Sefrioui et al, 1998

Model 1
precise model

Model 2
intermediate 

model

Model 3
approximate model

Exploration
(large mutation span)

Exploitation
(small mutation

span)

  Interactions of the 3 layers : solutions go up and down the layers.

  The best ones keep going up until they are completely refined.

  No need for great precision during exploration.

  Time-consuming solvers used only for the most promising solutions.

  Think of it as a kind of optimisation and population based multi grid.
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HIERARCHICAL TOPOLOGY-  MULTIPLE MODELS

 Start migration:

 Layer 1: Receive (1/3 population)  best solutions from layer 2
reevaluate using type 1 integrated   analysis

 Layer 2: Receive (1/3 population) random solutions from layer 1
and best from layer 3 reevaluate them using   type 2 integrated
analysis

 Layer 3: Receive (1/3 population) random solutions from layer 2
reevaluates them using type 3 integrated analysis.
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10. Discontinuous Pareto Front industrial test case :
Two Objective UAV Airfoil Section Design (Eurogen 2003

Problem Definition
 Design of a single element aerofoil for a low-cost

UAV application.

 Two subsonic design points considered for
optimisation

     Loitering flight
      Rapid-transit flight.



69Short Course on  Integrated Multiphysics Simulation & Optimization,Laajavuori, March 13-14, 2009

Design Variables: Bounding Envelope of the
Aerofoil Search Space

Six control points on the thickness
distribution.

10 Design variables
for the aerofoil

Constraints:

• Thickness > 12% x/c

•  Pitching moment >  -0.065

Two Bezier curves
representation:

Four control points on the  mean line.
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Fitness Functions and Design Constraints

 Constraints are applied by equally penalizing both fitness
values via a  penalty method.

 Aerofoil generated outside the thickness bounds of 10% to
15% are rejected immediately, before analysis.

Specifications: Z. Johan, Dassault Aviation

Min f1 (Cd transit) Mach=0 .60 and Re= 14.0x10**6,Cm>-.065

Min f2 (Cd loiter) Mach=0 .15 and Re= 3.5x10**6
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Solver

 XFOIL software written by Drela.

 It comprises a higher order panel method with coupled
integral boundary layer.

 We have allowed free transition points for the boundary
layer.

 Locally sonic flow will be prevented by checking :

The value of Cp: Cpi< Cp then the
candidate is rejected immediately
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Implementation

Hierarchical Asynchronous Parallel EA (HAPEA))

Exploitation
Population size =  20

Exploration
 Population size = 10

     Intermediate
     Population size =  20

Model 1
 Grid= 119 panels

Model 2
Grid=99 panels

Model 3
Grid= 79 panels
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Discontinuous Pareto Front for Aerofoil
Design.This case was run for 5300 function evaluations of the head node,

and took approximately four hours on a single 1.0 GHz processor.

Objective 1 optimal

Objective 2 optimal

Compromise
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The Ensemble of Pareto
Aerofoils.

Classical aerodynamic shapes 
have been evolved, 
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Optimum Airfoils for Cruise and Loiter

Objective 1: Optimal Aerofoil – 
Cruise CP Distribution. 

Objective 2: Optimal Aerofoil – 
Loiter CP Distribution.

Evolved a conventional low-drag
 pressure distribution and overall form

Classical 'rooftop' type pressure
distribution upper surface Almost
constant favorable pressure gradient
lower surface
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Compromise Individual

Cruise CP Distribution. Loiter CP Distribution. 
Pronounced S-shaped camber distribution.

Marked favorable gradient on the lower
surface in both flow regimes Conventional  Pressure distribution,
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8. Asynchronous Evaluation (E. Whitney , 2002)

Ignore any concept of a generation based solution

Solution can be generated in and out of order

Processors – Can be of different speeds
          - Added at random

                               - Any number of them possible

Converged PDE solutions to MO and MDO -> variable time to complete.

Time to solve non-linear PDE - > depends upon geometry

Why asynchronous ?

How : 
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Parallelization Strategy

Classification of our model  (S. Armfield, USYD) :

 The algorithm : classified as a hierarchical Hybrid pMOEA model [Cantu
Paz], uses a Master slave PMOEA but incorporates the concept of isolation
and migration through hierarchical topology binary tree structure where
each level executes different MOEAs/parameters (heterogeneous)

The distribution of objective function evaluations over the slave
processors is where each slave performs k objective function evaluations.

Parallel Processing system characteristics:

 Cluster of maximum 18 PCs with Heterogeneous CPUs, RAMs , caches,
memory access times , storage capabilities and communication attributes.

Inter-processor communication:

Using the Parallel Virtual Machine (PVM)
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Evolution Algorithm
Asynchronous

 Evaluator

1  individual

1 individual

Different Speeds
• Ignores the concept of

generation-based solution.
• Fitness functions are computed

asynchronously.
• Only one candidate solution is

generated at a time, and only one
individual is incorporated at a
time rather than an entire
population at every generation
as is traditional EAs.

• Solutions can be generated and
returned out of order.

Asynchronous Evaluation (1)
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Evolution Algorithm
Asynchronous

 Evaluator

1  individual

1 individual

Different Speeds • No need for synchronicity → no
possible wait-time bottleneck.

• No need for the different processors
to be of similar speed.

• Processors can be added or deleted
dynamically during the execution.

• There is no practical upper limit on
the number of processors we can
use.

• All desktop computers in an
organization are fair game.

Asynchronous Evaluation (2)
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Results So Far…

48m ± 24m
(-68%)

504 ± 490
(-78%)

New
Technique

152m ± 20m2311 ± 224Traditional
EA

CPU TimeEvaluations
 HAPEA technique is

approximately three times
faster than other similar EA
methods.

 We have successfully coupled the optimisation code to
different compressible CFD codes and also to some aircraft
design codes

        CFD                                               Aircraft Design
              HDASS     MSES    XFOIL         Flight Optimisation

        Software (FLOPS)
              FLO22      Nsc2ke                     ADS (In house)

 A test bench for single and multi objective problems has
been developed and tested successfully
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 9. Robust design : TAGUCHI METHOD (Uncertainty)

Robust Design method, also called the Taguchi Method (uncertainty), pioneered by
Genichi Taguchi in 1978, improves a quality of engineering productivity. An
optimisation problem could be defined as:

Where x1,...,xn represent design parameters and xn+1,...,xm represent uncertainty
parameters that are in fine step size.

 

 

  
Max or Min f = f x

1
,...,x

n
,x

n+1
,...,x

m( )

Taguchi optimization method minimizes the variability of the performance under
uncertain operating conditions. Define two different objectives associated to the
function to optimise: mean value and variance.
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UNCERTAINTY
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UNCERTAINTY BASED MULTI DISCIPLINARY
DESIGN OPTIMISATION OF J-UCAV

 Variability of flight conditions and radar frequencies

 Fitness functions are
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RESULT: PARETOSET PLANFORMS and
                    AEROFOIL SECTIONS

Pareto M8
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13. CONCLUSION (1)

 This lecture has described the basic concepts of EAs, and a short review of different approaches and industrial
needs for MDO presented.

 Details of Evolutionary Algorithms and their specific applications to aeronautical design problems  discussed.

 The lecture provided specific details on a particular EA used in this research named HAPEA.

 It is noticed that there are different methods, architectures and applications of optimisation and multidisciplinary
design optimisation methods for aeronautical problems.

 However, still further research  for alternative methods are still required to address the industrial and academic
challenges and needs of aeronautic industry.

  EAs is  an alternative option to satisfy some of these needs, as they can be  easily coupled, particularly adaptable,
easily parallelised, require no gradient of the objective function(s), have been used for multi-objective optimisation
and successfully applied to different aeronautical design problems.

 Nonetheless, EAs have seen little application at an industrial level due to the computational  expense involved in this
process and the fact that they require a larger number of function evaluations,  compared to traditional deterministic
techniques.

 The continuing research has focused on development and applications of canonical evolution algorithms for their
application to aeronautical design problems. It is worth  to have a single framework that allows:
 Solving single and multi-objective problems that can be deceptive, discontinuous, multi-modal.
 Incorporation of different game strategies-Pareto, Nash, Stackelberg
 Implementation of multi-fidelity approaches
 Taking  into account uncertainties
 Parallel Computations
 Asynchronous evaluations
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Conclusion (2): KEY CONCEPTS

 systemic technology like the one required by UAVs will
increase in the future ( see Part 3)

 In order to obtain true optimised-global solution we need
to think multidisciplinary.

 Evolutionary Algorithms are techniques to consider as it
provides fruitful and optimal results.

 Simple EAs are not sufficient : the complex task of MO
and MDO in aeronautics required advanced EAs
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