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More details in
B. Mohammadi & O.P. Applied Optimal Shape Design, Oxford U.
Press (2001). Second edition 2009.
O.P. Optimal shape design for elliptic systems. Springer, (1984)
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The Topic of Today

Present the continuous case.

Books

¢ J. Haslinger and R. A. E. Makinen Introduction to Shape Optimization:
Theory, Approximation, and Computation.SIAM series 2003.

e Jasbir S. Arora: Introduction to Optimum Design. Elsevier 2004

e E. Laporte, P. Letallec: Numerical Methods in Sensitivity Analysis and
Shape Optimization. Birkhauser, 2003.

¢ M. Bendsoe and O. Sigmund. Topology Optimization. Theory, Methods,
and Applications. Springer 2003.

e M. Delfour, J.P. Zolezio: shape and geometries SIAM 2001.

e G. Allaire: Shape Optimization by Homogenization Springer 2001.

e A. Cherkaev. Variational Methods for Structural Opt. Springer 2000.

e G.W. Litvinov. Optimization in elliptic pb with appli. to mech. of structures
and fluid mech., vol 119 Operator Theory. Birkhauser, 2000.

¢ J. Haslinger, P. Neittanmakki: Finite Element Approximation for Optimal
Shape. J. Wiley 1996.

¢ M. Bendsoe Methods for optimization of structural topology, shape and
material. Springer 1995.
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Important Applications

@ Aerodynamics: Shape optimization to improve airplanes, cars,
ventilators, turbines...

@ Hydrodynamics: wave drag of boats, pipes, by-pass, harbors...

@ Electromagnetics: Stealth airplane, antenna, missiles...

JiL
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Important Applications

@ Aerodynamics: Shape optimization to improve airplanes, cars,
ventilators, turbines...

@ Hydrodynamics: wave drag of boats, pipes, by-pass, harbors...

@ Electromagnetics: Stealth airplane, antenna, missiles...
@ Combustion: Car and airplane engines, scramjets...

@ Turbulence: delay the separation of boundary layers, reduce
turbulent drag (active control, deformable airplane...) il
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Main Topics for Shape Optimization

min  E(v)
veVCcRa

@ Black Box Optimization: use only v — E(v)

@ Differentiable Optimization: use also grad,E(V)

E(v+dév) = E(v)+ < gradE(v),dv > +o(|lov||)
ov = —pgradE(v) = E(v +6v) — E(v) =~ —pl|/gradE(v)|?

@ Constrained Optimization: V={ve H : f(v)=0, g(v) <0}
@ Multi-criteria and Pareto optimality:

E(v) = Za,-E,-(V) 73w E(w) < E(v) Vi
i .l’ll

@ Topological Optimization: Embed the problem into a larger class
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An Academic Problem

e
c RE—

S | D | ) ]

g — S

min{/Drw—wdz  AG=0,inC—-8, wls=0 bloc = a}

SeSy

Wind tunnel Design by adapting S so that flow is uniform in D. Flow is
irrotational inviscid and 2D.

JiL
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Existence of Solution

Theorem
min  E(v)

veVcRrd

has a solution if V is closed, E is bounded from below, |.s.c. and
either V' is bounded or lim| || E(X) = +00

JiL
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Existence of Solution
Theorem
min  E(v)
veVcRrd
has a solution if V is closed, E is bounded from below, |.s.c. and
either V' is bounded or lim| || E(X) = +00
Thus if one can show that the criteria of the OSD problem is |.s.c. a

solution will exist. It has been shown by Sverak that this is so if the
number of connected component of Q2 is bounded.

In Allaire, Bucur, Delfour et al, it is shown that a penalization of the
perimeter of the unknown surface also induce existence in 2D.

Theorem The following problem has at least one solution:

min{/D|w—wd|2+e|S|2  AG=0,inC-8, wls=0 dloc = va}

SeSy ,_l’ll
Uniqueness is almost impossible to prove;
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Sensitivity Analysis

—AyY =1 inQ° Ye=0onT“:={x+ean: xerl}

Definition If4/, := lim 1 (v — 1) exists then +) is Gateau differentiable
with respect to T in the direction «. I, is linear in « then v is Frechet
differentiable. Similarly

7/’ =9+ 61/104 + 1/1 ‘ ///7\4\ - r

To compute ' and ¥ notice that, by Ilnearlty, they satlsfy the same
PDE but with f = 0. By Taylor expansion, x € I':

e 2 .2 92
0 = 0 (x + can) = v (x) + ca 2l (x) + SV 4

on 2 0n?
Therefore
0 oyl a?o?
—Ay, =0 %lr:—ai)7 —QDipy =0 Yglr =~ o T
on on 2 on3
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Optimality Conditions

Consider the Wind Tunnel Problem with S = {x + ecan: x € S}. Think
of the PDE as the implicit definition of S — (S). Then J() is a
function of S only:

J(S) = /D [ — pal? = /D [ — gl + 2¢ /D (4 — )il + 0e)

with Ay, =0, Wl |s = —ags. ¥lr-s=0.
If J is Frechet differentiable there exists ¢ such that J/, = [ £a. To find
& we must use the adjoint trick and introduce

—Ap = (¥ = ¢a)lp, plr=0

Then
€ ! / / 8/17/)/
2 [ wd)wazz/%Ap:z/Awam/( o, + Lep)
D Q Q on
Corollary =2 [ R, -
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Conceptual Algorithm

@ 0. Choose a shape S°, a small number p > 0 and set m=0.
@ 1. Compute ¥ and p™ by solving

7A¢m = 07 ¢m|S'" = Oa ¢m|rd = 7/)d
—Ap™ = (™ —1pg)Ip, Plrm =0

@ 2. Set
__ opToy" mt _ . m

@ 3.Setm«— m+1andgoto1.

It works because
m m
HE™ ) = UM + [ ca=d(sT) -2 [ (BT o)
gm sm on on
L
Notice that there is a loss of regularity from S™ to S+ -
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Implementation with freefem++

real x1 =5, L=0.3;

mesh th = square (30,30, [x,y*(0.2+x/x1)1)

func D=(x>0.4+L && x<0.6+L)* (y<0.1);

func psid = 0.8xy;

fespace Vh(th,P1l);

Vh psi,p,w;

problem streamf (psi,w)=int2d(th) (dx (psi) *dx(w) + dy (psi)xdy (w))
+on(l,4,psi = y/0.2)+on(2,psi=y/(0.2+1.0/x1)) + on(3,psi=1);

problem adjoint (p,w)=int2d (th) (dx(
— int2d(th) (Dx (psi-psid) »w)+ on
Vh a=0.2+x/x1, gradg;
for(int i=0;1i<100;i++) {
streamf; adjoint;
real E = int2d(th) (D (psi-psid) "2)/2;
gradkE = dx(psi)«*dx(p) + dy(psi)xdy(p);
a=a(x,0)-50+«gradE (x,a(x,0) ) *xx (1-x);
th = square (30,30, [x,y*a(x,0)1);

) i

Execute
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Oscillations
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Regularity Preserving Algorithms: Sobolev Gradients

_ @% m+1 __ . m

= ~P5nan S™={x+an: xe 8™}
can be replaced by
d?a dp o

92 =P o (S0) =d(s1) =0. S™V={x+an: x e 8™}

25 &
= ™ - s =2 [ ags =2 [ (GF o)

pJs p
Alternatively one may use a smoothing operator like
, . 0
B — ~v(B) = v where v is solution of — Av =20 a—;\r =f.

Let S™1 = {x + y(B)n: x € S™} with 5 = L%

J(S™1) —J(S™) = 2p/r’v(ﬂ)ﬁ = 2P/r V% = 2,0/9 N il
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Geometric Constraints
@ Projected Gradient: the case [, = 1.

M= {x+an(x): xer} = 5J:/Xads+o(|a|)
r

r

_{x—i—(a—‘; a)n(x): xerl} - X‘én B
- 6/ / ‘r/ )+ ofjal) = of/al)
5J = / = /X) /a)ds+ o|a)

JiL
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Geometric Constraints
@ Projected Gradient: the case [, = 1.

M= {x+an(x): xer} = 5J:/Xads+o(|a|)
r

={x+ (a— ‘1r a)n(x): x €T} ey Ql_,,/

- - / ‘r/ )+ ofjal) = of/al)
5J = / |F|/X) /a)ds+o(a|)

@ Penalization: replace J by

r

.1

1
+—|F(QT 2+ —|G(Q)]?
€ w

to maintain F(Q < 0), G(Q) =0 JiL
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State Constraints

mvin{J(u, v): Au=g(v), F(u,v) <0}
where Ais a linear invertible operator.
6J = J,0u+ J,6v with Asu = g|dv, Flou+ F,6v<0if F(u,v)=0
Introducing A"p = J/,, ATq = F/ leads to

Jou=06uA"p=pAsu=pg,iv  Flou=éuA"p=qgAsu=qgdg,ov
u v u

§d=(p-g,+J,))svwith (q- g, + F,)ov < 0if F(u,v) =0
A direction of descent is built from this. il
Notice that two adjoint vectors are needed
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Example

Build a stealth airfoil with "good" aerodynamic properties

mingJ = [|u]? : [ =a
Wu+Au=0,inQ ur=g
*AQ/) :07 in Q 1/)|r :¢d
Requires the following
Lemma

of  f
! _ . — _
F_{x+an.xer}:>5/rf_/ra(an H)

where R is the mean radius of curvature.
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The Minimum Drag Problem

"1

J(Q) = _ min —||Vul[Pdx : Ulao —

@) QeC,voll(c)1/QgH | lon = g
UVUTva*VAU:O‘ V.UZO7

The solution exists in 2D if the nb of connected component is
bounded. In 3D ? but probably yes because the criteria is the energy
of the system. For safety regularize by adding ecall(C).

JiL
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The Minimum Drag Problem

"1
J(Q) = min _Ivullldx - o
(@) QGC,VOII(C)1/QZH ul[=dx Ulpa =g

uVu+Vp—-—vAu=0, V-u=0,
The solution exists in 2D if the nb of connected component is
bounded. In 3D ? but probably yes because the criteria is the energy

of the system. For safety regularize by adding ecall(C).
Proposition

0 = {x +an(x): x €I} =7 5J:/ xads + o(|al)
o0
ou 10u ow
aQa%'(E%JF%)—FO(‘O{D

where —uVw + wVu' +Vq—vAw =vAu, V- -w=0, wlspo=0

od =

From JFM 73. See also, Modi, Gunzberger, Tasan, Jameson... Q7
What minimal norm on «?
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Proof

Recall that § [, f = [ af. Then

1
5J:/w-v5u+/ o VUl + o(|a))
2 Jaq

and suVu+ uVéu+ Vép —vAsu=0, V- -éu=0, dulr = —a@

on
So /Vu Véu = — /5uAu

:—V/( uvw +wvuT +Vq - vAw)su
Q

1 .
:—/(V'(u®6u+5u® U)—VA(SU)W—/V(?W(S“JFOUO‘D
v Jo Jroon

JiL
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Minimum drag object of given area at Reynold 50 (Courtesy of
Kawahara et al.).

Pironneau (LJLL) Two (Quasi-)Differentiable OSD Methods VKI 08
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Compressible Flows
Euler or Navier-Stokes equations

P
W= (pu> HW +V - F(W)-V - G(W, VW) =0

W(0,x) =0, +B.C.

Involves an adjoint equation

0P+ (F/(W) — G{(W,VW) VP -V - (Gpo(W, VW) VP) =0

JiL
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Some Realizations - A. Jameson (I)

i i —
NouE
[ i
. o

Plain vs Sobolev Gradients

Before & after optimization ¥/
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Some Realizations - A. Jameson (II)

COMPARISON OF CHORDWISE PRESSURE DISTRIBUTIONS
B747 WING-BODY
REN=10000 , MACT=03860 . cL=0419

SYMBOL  SOLRCZ  ALPHA  CD
———— STuTDEENS 23 00w

co; Jr:.[m: MCDONNELL DOU LTL{@:.,
Optimization of the Boeing 747: 10% wing drag saving (5% aircraft dragji
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Some Realizations - A. Jameson (lll)

AIRPLAN= AIRPLANE

DENSITY flom 06250t0  1.1000 DENSITY fom D0.6250to  1.1000

Falcon jet: Cp decreases from 234 to 216

Pironneau (LJLL) Two (Quasi-)Differentiable OSD Methods
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Outline

9 Discretization
@ Summary

JiL
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Summary
@ Optimal Shape Design of S relies on Optimization

mSin Jw,S) : A(Slu=f

@ The Continuous problem is well posed after regularization
min J(u, S) +€S]2: ASu=f

@ The L2 local gradient x is computable by calculus of variation:

6J:/Sxa+o(]a), S(a) = {x+a(x)n(x) : x € S}

@ The Sobolev gradient is the right tool for gradient methods:
—Asf=x, S™'={x—pA(x)n(x) : x € 8"}

Pironneau (LJLL) Two (Quasi-)Differentiable OSD Methods VKI 08
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M —
c RE—

S [D] . []

min J(S) = {/D\w—wdﬁ . AP =0,inC—8, Yls=0 dloc = vy

Discretization of gradients J!, = V¢)Vp where —Ap = 2Ip(¢) — 14),
p|r = 0 or derivation of gradient for the discrete problem?

Optimization of the Discrete Problem

e The Finite Element Method,

e Discrete Gradients
e Finite Volume Methods

JiL
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The Finite Element Method

Q is covered with triangles Ty and g’ are the vertices. The PDE of the
wind tunnel problem is approximated by

/QVWVWh =0, Ynls=0, ¥pr =g

for all wy, continuous and affine on each T, and zero on 0f2.

da
_ B 2 2
J= [on—vallt+e [ 1521

| m
Let 5gn(x) = 3, 6q;w(x), the basis {w/}, the hat function of g;. =
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Summary: Continuous versus Discrete Gradient

min J(S) = {/W—wdF: CAG=0,inC- 8, tls=0 Ploc = ta}

od = / op dl Wlth —Ap=2(¢p —1g)lp
o B ov op Iy
use normal dlsplacement ~V: —Av=0, \r = 3n3n
For the discrete system

min J(S5) —{/ o — ol /vwh VW — 0, Vj dnls = 0 tnloc = da}

ql
od = / (th(Vc)qh + quh )Vph — Vp - VPV - 5C]h = Z X,-(Sqf
Q

with / Vpavw =2 / (o — a)W, Pn € Vo
JQ D

And use a smoothed version of x; to move the vertices and find the new il
shape (and triangulation).
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Part Il

e Topological Optimization
e Shocks: extending Calculus of Variations

JiL
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Topological Optimization

e Applies when the topology is not known
e Black-box favors Genetic algorithm (yet slow)
e Combine topological and geometrical shape design?

'v
A

From T. Borrval and J. Petterson From Schoenauer et al

JiL
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Topological Derivatives

Following the work of L. Tartar and N. Kikuchi, J. Sokolowski came with
the following idea (f has zero mean, B(0, 1) the unit ball)

—Au="finQ, ulr =0,
—Auc = fin Q\B(xo,€), ulr =0,
Neumann or Dirichlet on 90B(xg,¢) = 0,
US(O(X) = lim._o El'y(ue - U)

exists and is not identically 0 or +oc for some value of ~.
Theorem For the Neumann (resp Dirichlet) problem v = 2 (resp loge)
in 2D and v’ solves

/ Vu-Vw = cVuVw|y,
Q

This is sufficient for gradient type algorithm, but convergence is
usually a problem. i
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Applications of Topological Optimization

b »

Stokes flow drag optimization (courtesy of M. Masmoudi)

Pironneau (LJLL) Two (Quasi-)Differentiable OSD Methods VKI 08
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Micro Channel flow (Borrval and Petterson)
Optimization of a micro channel flow averaged vertically gives

5
i i = — 2 N — A = . = =
z(r)r:;gzj(u) /D(u Uq) 572U u+Vp=0, V-u=0, ur=g

where the pointwise values of functions of Z are equal to € or h. Let

p = 2.5272; notice that

ag + a
2

Therefore if U’ exists, the derivative w/r “p, becoming p¢" at xp, it must
be

[ou] = plu] + [plu &= 8] = a1 — a

pu +pu— AU +Vp =0 V- -U =0with o/ = [p]d(x — x0), U|T=0
But u is continuous so U = u. Introduce the adjoint state v, g

pv—Av+Vq=0 V-g=2(u—ug)xp, Vv|IT=0
= J' = —[plu(x0)p(x0)
Replace : p2 by p1 at xo when [p]u(xp)p(xg) > 0

Pironneau (LJLL) Two (Quasi-)Differentiable OSD Methods VKI 08 34 /61
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Important Applications

Solid mechanics: Weight optimization of airplanes, cars, parts

Topological optimization of the weight of a stool for a given strength
Pironneau (LJLL)

(courtesy of F. Jouve et al)

Two (Quasi-)Differentiable OSD Methods
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Lesson Il

Optimization of the continuous problem by discretization of the
gradient is not allowed by the theory. Optimization of the discrete
problem is possible but the formulas are complex. There is a middle
way and there are acceleration methods

@ Parallel and Stream Computing

@ Mesh Refinement and Optimization

@ Link with CAD

@ Enormous systems: automatic Differentiations
@ Some Results

JiL
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GPGPU, CUDA, Nvidia and the CELL

100
90 —e—GPU
a0 —= CPU ,."If
0

80

50

40

30

20

10 — = I
o L e o 1 -

J2H32 B4xB4  126%128 2564256 5124512
Population size Qizhi Yu et
al. Parallel Genetic Algorithms on Programmable Graphics Hardwarem

Time (=)
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What to do To Use CUDA

You need Windows-Mac-Linux machine with Nvidia graphic card
@ Download the compiler+Toolkit (+ graphic driver) =
/usr/local/bin
@ To use the compiler easiest is to
export PATH=/usr/local/cuda/bin:S$PATH
export DYLD_LIBRARY_PATH
=/usr/local/cuda/lib:$DYLD_LIBRARY_PATH
@ To compile a *.cu program do nvcc BSCuda.cu
also available in emulation mode: emul: nvcc -deviceemu
BSCuda.cu
@ Thenlaunch by . /a.out
@ Function Type Qualifiers

@ _ device__ called by the GPU and run by the GPU
@ _ _global__ called by the host and run by the GPU
@ _ host___ called by the host and run by the host

. L
@ Variables qual.: __device_ , __shared__, _constant_

Pironneau (LJLL) Two (Quasi-)Differentiable OSD Methods VKI 08 38/61



#include <math.h>

#define Pl 3.14159265358979323846264338327950288f

const int NbBlocs = 20000, NbThreads = 500, N = NbBlocs*NbThreads;
const float K = 110, S0=100, r=0.02, .3, T=1.0,R = (r-sig*sig/2)*T;

L __device__ void BS(float *x, float *y){
= sqrtf(-2.0f * logf(*x)) * cosf(2.0f * PI * (*y));
*y= S0*expf(R+sig*sqrtf(T)*z);

3

__global__ void BSgpu(float *a1, float *a2, int 1) {
inti = blockDim.x*blockldx.x + threadldx.x;
if (i< 1) BS(al+i, a2+i);

ks
void BScpu(float *al, float *a2, int 1) {
for (inti=0;i<1;++i) BS(al+i, a2+i);

int main() {
const int taille = N*sizeof(float) ;
float *A1 = (float *) malloc(taille); // allocate A in CPU RAM
float *A2 = (float *) malloc(taille);
float *A3 = (float *) malloc(taille);
float *B1, *B2; // will be allocated in GPU RAM
srandom(time(NULL));

for (intn=0;n<N; ++n){ //fill vector A with random nb

A1[n] = (rand() + 0.5f)/(RAND_MAX + 1.0f);

A2[n] = (rand() + 0.5f)/(RAND_MAX + 1.0f);
i
cudaMalloc( (void **) &B1, taille); // allocate B1 in GPU RAM

1cpy(B1, Al, taille, ct HostToDevice); // transfer Al into B1
cudaMalloc( (void **) &B2, taille);
py(B2, A2, taille, cud tToDevice);

BSgpu<<<NbBlocs, NbThreads>>>(B1,B2,N);

1cpy(A3, B2, taille, ct DeviceToHost); // transfer results in A3
BScpu(AL,A2,N);

float put=0, err = 0;
for(intn=0;n<N;++n){
err += fabs(A3[n] - A2[n]);
put += fmax(K-A2[n],0.0f);
3

Pironneau (LJLL) Two (Quasi-)Differentiable OSD Methods
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The Schwarz-Zoom Method

vy (resp ~p) is the interpolation operator on Vy (resp Vp)

Find ult! € Vy, uﬁ“ € V,, such that Ywy € Vou, Ywy € Vo

aH(u,’j“

a (u,r7TI+1

wy) = (f, wh), uf™s, =yuup, uf™'ir, = gu.
wh) = (f,wp), uptls, = ynuf, uf'ir, = ga

JiL
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Convergence of Discrete Schwarz-Zoom Method

Hypothesis H1 Assume that the maximum principle holds for the 2
FEM-PDE and assume vy € Vy solution of

a/-/(l//-/7 WH) = 0, Ywy € VOHa VH‘SH = 1, VH|FH =0
satisfies A := |vh|oo. s, < 1.
Theorem Under H1 Schwarz’ algorithm converges towards uj;, uj,
an(ufy, wy) = (f,wn), Ywy € Vou, Ugls, = yuUp, Uhlr, = gH

an(up, wp) = (f,wn), YWh € Von, Ujls, = vnuf
and one has

1 1
lu = tnlloe. 0 + |t = tnllsc,0, < C(H?l0g 7 [[U]l2,50.0, + Hlog [|u2.00.2,)

JiL
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Part of the Proof

Proposition Assume H1. Then the discrete Schwarz algorithm converges to
the unique solution (uj, uy;) € Vi x Vy of the following system

an(ufy, wy) = (f,wy), Ywy € Vou, Ujls, = vHUh, Ullr, = 9H
an(Up, wp) = (f,wy), YW € Von, Upls, = vnuUf

Proof By the maximum principle and as ~y and +, decrease the L> norms,
vy € Vy, vy € V), defined by

an(VH, wy) =0, Ywy € Vou, Vuls, = YHUn, VH|r, =0
an(Vh, wh) =0, Ywh € Von, Vhls, = YaVH

satisfy : ||Vhlloo < [[Unlloo,sy>  IVhlloo < [[VHIoo,s,-
Hence : [|Vh|lso < [[VHllso,s, < MIVHlso < Allthlso-

Let T : Vi, — Vj, define by u = T(ul" ). Since T is affine, and contractant,
by Banach’s contraction theorem there is a unique fixed point uj’ — uj; of T.

JiL
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An example of time- Chimera/Schwarz

Courtesy of W. A. Wall

JiL
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Steepest Descent Method

Objective: Use inexact gradient in the context of mesh refinement

minJ(z) approximated by min Jy(2).

zeZ zeZy

(Steepest descent with Goldstein’s rule)
while || grad,J,(z™)|| > € do

{

zM1 = zM — p grad,J,(2™) where p is any number satisfying,
— Bpl|lwl? < Jn(2™ — pw) — Jn(2™) < —ap||w|?

withw = grad,Jy(z™) Setm:=m+1;
}

v

=
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Steepest Descent with Mesh Refinement

Now consider the same algorithm with parameter refinement

(Steepest descent with refinement)

{
while || grad,Jn(z™)|| > eh” do

z™ = zM — p grad,J,(z™) where p such that,
= Bpllw||? < Jn(2™ — pw) — In(2™) < —ap||w|?
withw = grad,Jp(zm) Setm:=m+1;

}
h:=h/2;
}
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Steepest Descent and Inexact Gradients

e Convergence obvious : it is either S.Descent or gradJ, — 0 because
h— h/2.

e Gain in speed : we do not need the exact gradient grad,Jp!

e Let N be an iteration parameter and J, y =~ J; and

grad,Jp n = grad,J in the sense that

Nlim JIn.n(Z) = Jn(2) Nlim grad, nJhn(2) = grad,Jdp(2)

Add K and N(h) with N(h) — oo when h — 0 :

JiL
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Inexact Gradient (Il)

(E. Polak et al)(Steepest descent with Goldstein’s rule mesh
refinement and approximate gradients)
while h > hpin{
while | grad,,J™| > eh?{
try to find a step size p with w = grad,,J(z™)

= Bpllwl® < J(Z" — pw) — J(27) < —ap|wlf?

if success then
{zM1 = zM — p grad,\,J™; m:=m+1,}
else N:.=N+K;
}
h:=h/2; N:= N(h);
}
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algorithm

The convergence could be established from the observation that
Goldstein’s rule gives a bound on the step size:

—Bpgrad,J - h < J(z+ ph) —
grad,J - h
J"(§)hh

2
J(z) = pgrad,J - h+ p—J”hh

= p>2(6-1) so JJ™ —ym < 2 (1

[[J7]]
Thus at each grid level the number of gradient iterations is bounded by
O(h—27). Therefore the algorithm does not jam hence convergence.

)| grad,J|?
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Mesh Refinements
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Link with CAD

e CAD = Beziers patches or other with infinite details PROPRIETARY.
° 1. Generate a surface mesh

2. Geta C' + edges software for mesh refinement

3. Get a 3d volumic mesh generator (George-Hecht-Saltel...)
4. Do the optimization

5. Feed back into CAD (?)

JiL

Pironneau (LJLL) Two (Quasi-)Differentiable OSD Methods VKI 08 50/ 61



= CAD-free platform.

Mesh adaptation for the flow around a submarine

51/61

VKI 08

Two (Quasi-)Differentiable OSD Methods

Pironneau (LJLL)



Huge Systems

Otp+V-(pu)=0 )
O(pu) + V- (pu@ u) + V(p+ 5pk) =V - (1 + 1) S)

OpE) +V - ((6E -+ P+ 2pk)) = V- (4 + ) Su) + V((x +x)¥ )

Otpk + V.(puk) — V((1u + pt) VK) = Sk
Otpe + V.(pue) — V((n + c.put)Ve) = Se.

Adjoint... use Automatic Differentiation of Programs (Adol-C,
Tapenade)

T L N

in C++ by operator overloading — > OK up to 50 variables i
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Principle of Automatic Differentiation

Let J(u) = |u — ugl?, then its differential is

0d =2(u — ug)(du — duy) gz =2(u—uy)(1.0-0.0)
Obviously the derivative of J with respect to u is obtained by putting
ou=1, dug = 0. Now suppose that J is programmed in C/C++ by

double J(double u, double u_d) {
double z = u-u_d;
z = zx(u-u_d);
return z;

}
int main(){ double u=2,u_d = 0.1;
cout << J(u,u_d) << endl;

}

A program which computes J and its differential can be obtained by
writing above each differentiable line its differentiated form: J
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A simple example (cont)

class ddouble ({public: double v,d;
ddouble (double a, double b=0){ v = a; d=b;}
bi

ddouble JandDJ (ddouble u, ddouble u_d)
{ ddouble z;
z.d = u.d - u_d.d;

zZz.v = u.v-u_d.v;
z.d= z.dx(u.v-u_d.v) + z.vx(u.d - u_d.d);
z = zx(u-u_d);

return z;
}
int main ()
{
ddouble u(2.,1.), u_d= 0.1, J = JandDJ(u,u_d);
cout << J << " dJ="<<dJ<<endl;

} il
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The class ddouble

class ddouble{ public: double v[2];
ddouble (double a, double b=0){ vI[0] = a; vI[l]l=b;}
ddouble operator=(const ddouble& a)
{ val[l] = a.v[1l]; val[0O]l=a.v[0];
return *this;

}
friend ddouble operator-(const ddouble& a,const ddouble& b)

4

{ ddouble c;
c.v[1] = a.v[1] - b.v[1]; // (a-b)’'=a’-b’
c.v[0] = a.v[0] = b.v[0];

return c;
}
friend ddouble operatorx (const ddouble& a,const ddouble& b)

{ ddouble c;
c.v[1l] = a.v[1l]l*b.v[0] + a.v[0]* b.v[1];
c.v[0] = a.v[0] * b.v[0];
return c;}
bi il
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A Simple Example (final)

#include "ddouble.hpp"

ddouble J(ddouble u, ddouble u_d) {
ddouble z = u-u_d;
z = zx(u-u_d);
return z;
}
int main () {
ddouble u=2, u_d = 0.1;
u.v[1l]=1;
cout << J(u,u_d).v[1] << endl;
}

Simply replace all double by ddouble and link with the class lib.
A few pitfalls: e.qg.

ddouble sqgrt (ddouble x) { ddouble y;
y.v[1l]=x.v[1l]/sqgrt (fabs{x.v[0]) +eps); y.v[0]=sqrt(x.v[0tzj
return vy; }
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Limitations

program newtontest
x=0.0;

al=0.5

call newton(x,10,al)
write(*,*) x

end

subroutine newton (x,n,al)
do i=1,n
f = x—alphax*cos (x)
fp= l+alphaxsin (x)
x=x-f/fp
enddo
return
end

2n adjoint variables are needed! while the theory is

f(x,a)=0 = Xfi+f =0 = x'=

f/

A

So it is better to understand the output of AD-reverse and clean it. see

www.autodiff.org
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Tapenade

program newtontest

x=0.0

xb=2

al=0.5

call newton_b(x,xb,5,al,alb)
write (x,*) x,xb

end

SUBROUTINE NEWTON_B (x,xb,n,al,alb)

DO i=1,n alb
CALL PUSHREAL4 (
f = x - alxCOS(
CALL PUSHREAL4 (
fp = 1 + al*SIN
CALL PUSHREAL4 (
x = x - f/fp

ENDDO

f)
x)
fp)
(x)
x)

Pironneau (LJLL)

CALL PUSHINTEGER4 (i-1)
alb = 0.0

CALL POPINTEGER4 (nb)
DO i=nb,1,-1

CALL POPREAL4 (x)
fb = - (xb/fp)

fpb = fxxb/fp**2
CALL POPREALA4 (fp)

alb+SIN (x) »fpb-COS (x) xfb

xb = xb + al*xCOS (x) ~fpb
(al*SIN(x)+1.0) *fb

CALL POPREALA4 (f)

ENDDO

END

JiL
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Optimization of a wing profile

Drag is mostly pressure by the shock. The lift & area are imposed
1 2 1 2
J(u,p,0) =F - Uso + —|F X Uso — CJ] +B( dx — a)
€ S

with F = [g(pn+ (uVu+ VuT)) and Navier-Stokes + k — € + wall laws

e il
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Optimization of a 3D Business Jet

Done by B. Mohammadi in a few hours on a workstation i
Ji
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Perspectives

@ Differentiable Shape Optimization is complimentary to
Evolutionary Methods

@ |t is the work of a specialist and it cannot be done overnight

@ Yet 3D problems fit on a Workstation if care is applied

@ lItis an area where analysis really pays: a real meeting ground
between good theory and practice

From G. Allaire - F. Jouve JiL
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