

Shock control bump optimization on a transonic laminar flow airfoil

A Test Case for Database Workshop for Multiphysics Software Validation 16 March 2009, Agora, Jyvaskyla, Finland

N Qin, Department of Mechanical Engineering, University of Sheffield

The Airfoil – RAE5243

- Natural laminar flow airfoil at transonic condition
- Shock wave at M = 0.68 and $C_L = 0.82$

The bump design

- 4 design variables: bump height, position, length and crest position
- Bump added to the airfoil shape
- Tangent at connection points and at the crest

The Test Cases

- Experiments were tripped for full turbulent flow
- Both full turbulent flow and fixed transition cases

Aerofoil	M_{∞}	$Re_{c,\infty}$	C_l	Flow condition	
RAE5243	0.68	1.9×10^{7}	0.82	Fully turbulent	
RAE5243	0.68	1.9×10^{7}	0.82	45%c transition	

The optimization problem

• Optimization problem

Minimize the total drag of the airfoil

min $C_d = C_{d, pressure} + C_{d, friction}$

Under the constraint: $C_l = 0.82$

• Design variable bounds

Bump crest position

Bump starting point to crest

Bump total length

Bump height

 $0 < X_{cre}/C < 1$,

 $0 < X_{bumprelative}/C < X_{bumplength}/C$

 $0 < X_{bumplength}/C < 0.4$

 $0 < \Delta Y_h/C < 0.05$