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1 Introduction

In this paper, we will consider the convergence of iterative refinement for a linear equation

Av = b, (1)

where A ∈ Fn×n and b ∈ Fn. Here, F is a set of floating point numbers. Let u be the unit
round-off of the working precision and κ(A) = ∥A∥∞∥A−1∥∞ be the condition number of the
problem. For well posed problems, i.e., in case of uκ(A) < 1, it has been shown [1]-[4] that the
iterative refinement improves the forward and backward errors of computed solutions provided
that the residuals are evaluated by extended precision, in which the unit round off u is the order
of u2, before rounding back to the working precision. In this talk, we will treat ill-conditioned
problems with

1 < uκ(A) < ∞. (2)

We can assume without loss of generality that for a certain positive integer k the following is
satisfied:

ukκ(A) 5 β < 1. (3)

In Ref. [7], Rump has shown that for arbitrary ill-conditioned matrices A, we can have good
approximate inverses R1:k satisfying ∥R1:kA − I∥∞ 5 α < 1. Here, R1:k is obtained as

R1:k = R1 + R2 + · · · + Rk (4)

with Ri ∈ Fn×n. I is the n-dimensional unit matrix. In Ref. [5], we have partially clarified the
mechanism of the convergence of Rump’s method.

Let A, B,C ∈ Fn×n. We assume that we have an accurate matrix product calculation
algorithm

D1:k = [AB − C]k (5)

satisfying ∥∥∥∥∥
k∑

i=1

Di − (AB − C)

∥∥∥∥∥
∞

5 cuk∥AB − C∥∞. (6)

Such algorithms have been proposed, for instance, by the authors [6] and [8].
Now we propose the following iterative refinement algorithm:

v′ = [v − R1:k[Av − b]k]1. (7)

This scheme is a modification of the iterative refinement algorithm proposed in [9]. Put rk =
[Av − b]k and let Φ(v) = [v − R1:krk]1. Then, we can write

v′ = Φ(v). (8)
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The following holds:
v′ = v − R1:k[(Av − b) + er] + em, (9)

where er = rk − (Av − b) and em ∈ Rn satisfying

∥er∥∞ 5 cuk∥Av − b∥∞, ∥em∥∞ 5 cu∥v − R1:krk∥∞. (10)

In this paper, we will show the forward stability and backward stability of this iterative
algorithm.
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