Plenary speakers

Lazarov Raytcho

Texas A&M University, USA

Petrov-Galerkin Finite Element Method for Fractional Convection-Diffusion Equations

Ragnar Winther

University of Oslo, Norway

Geometric decomposition of finite element spaces

Roland Glowinski

University of Houston, USA

On the Motion of Rigid Solid Particles in Incompressible Visco-Elastic Liquids: A Numerical

Approach

Markus Melenk

TU Vienna, Austria

Directional H2-matrices for Helmholtz integral operators

Yuri Kuznetsov

Institute of Numerical Mathematics, Russia; University of Houston, USA

Nonconforming Mixed FE Methods on Polyhedral Meshes

Carsten Carstensen

Humboldt University, Germany

Axioms of Adaptivity: Rate optimality of adaptive algorithms with separate marking

Stefan Sauter

University of Zurich, Switzerland

Wave-Number Explicit Convergence Analysis for Galerkin-type discretizations of the Helmholtz

equation

Jun Zou

The Chinese University of Hong Kong Professor, China

Efficient Preconditioners for Edge Element Systems for Various Maxwell Equations

Boris Khoromskij

Max-Plank Intitute, Germany

Rank-structured tensor approximation of multi-dimensional PDEs

Rolf Stenberg

Aalto University, Finland

Stabilized Mixed Finite Elements

Roderick Melnik

Wilfrid Laurier University, Canada

Coupled Mathematical Models and Multiscale Phenomena at the Nanoscale with Their Applications

Contributed talks

Fahhad Alharbi

Hamad bin Khalifa University, Qatar

High Order Real-space Techniques for Atomistic Calculations

Thomas Apel

Universität der Bundeswehr München, Germany

Discretization Error Estimates for Dirichlet Control Problems in Polygonal Domains

Giorgio Bornia

Texas Tech University, USA

Fluid-structure Interaction Solvers of Newton-Krylov Type with Multigrid Preconditioning

Irina Burova

Saint Petersburg State University, Russia

Interval Estimation of Polynomial Splines of the Fifth Order

Yuri Demýanovich

Saint Petersburg State University, Russia

Orthogonal Basis in Spline-wavelet Decomposition of the Numerical Flow

István Faragó

Eötvös Loránd University Budapest, Hungary

Mathematical Models of Spatial Disease Propagation and their Qualitative Properties

Seiji Fujino

Kyushu University, Japan

Improvement of Parallelism of E-ssor Precondition Using Strategy of Cache-Cache Elements Technique

Pawel Gora

Concordia University, Canada

A Two-dimensional Family of Transformations with Very Diverse Behavior

Friederike Hellwig

Humboldt-Universität zu Berlin, Germany

Low-Order dPG-FEMs for Linear Elasticity

Christoph Hofer

Johannes Kepler University Linz, Austria

Dual-Primal Tearing and Interconnecting Methods for Continuous and Discontinuous Galerkin Isogeometric Analysis

Chengming Huang

Huazhong University of Science and Technology, China

Delay-dependent Stability of Runge-Kutta Time Discretizations for Partial Differential Equations With Delay

Kab Seok Kang

Max-Planck-Institut fuer Plasmaphysik, HLST Core Team, Germany

Multigrid Solver in Bout++

Reijo Kouhia

Tampere University of Technology, Finland

Experiences of the Time-discontinuous Galerkin Method in the Problems of Structural Mechanics

Alexander Lapin

Kazan Federal University

Domain decomposition and Uzawa-type iterative solution methods for variational inequalities

Oluwaseun Lijoka

Heriot Watt University Edinburgh, Scotland

Trefftz Space-time Discontinuous Galerkin Method for the Wave Equation in Time Domain

Piotr Matus

The John Paul II Catholic University of Lublin, Poland

Exact finite-difference schemes

Sanna Mönkölä

University of Jyväskylä, Finland

High-Quality Discretizations for Electromagnetics

Rainer Picard

TU Dresden, Germany

On Some Models of Thermo-Piezo-Electro-Magnetism

Johannes Pfefferer

Technical University of Munich, Germany

Adapted Numerical Methods for the Poisson Equation with Non-Smooth Boundary Data and

Emphasis on Non-Convex Domains

Irina Raichik

Bar-Ilan University, Israel

Numerical Approximation of a 3D Singular Electromagnetic Fields by a Variational Method

Sergejs Rogovs

Universität der Bundeswehr München, Germany

Maximum Norm Estimates with Application to Neumann Boundary Control Problems

Ioannis Toulopoulos

Johann Radon Institute for Computational and Applied Mathematics, Austria
Discontinuous Galerkin Isogeometric Analysis of Elliptic Diffusion Problems on Segmentations with
Gaps and Overlaps

Vladimir Vasilyev Lipetsk State Technical University, Russia Discrete Operators, Factorization, Boundary Value Problems and Numerical Analysis

Daniel Walter

Technische Universitat Munchen
Algorithmic solution of sparse sensorlocation problems

Max Winkler

Universität der Bundeswehr München, Germany Superconvergence Results for Neumann Boundary Control Problems on Locally Refined Meshes

Alexander Zlotnik

National Research University Higher School of Economics
On Conservative Spatial Discretizations for Quasi-Gasdynamic Systems of Equations

MS 1: Numerical Methods for Fractional Order PDEs. Organized by Prof. Petr Vabishchevich (Nuclear Safety Institute of RAS, Moscow) and Prof. Raytcho Lazarov (Texas A&M University).

Anatoly Alikhanov

Institute of Applied Mathematics and Automation, Russia

A Difference Scheme for the Tempered Time Fractional Diffusion Equation

Petr Vabishchevich

Nuclear Safety Institute (RAS), Russia

Numerical solution of boundary value problems with fractional boundary conditions

Fazal Haq

Hazara University Mansehra

Numerical Solution of Fractional Order Model of HIV-1 Infection of CD4+ T-cells by Using Laplace Adomian Decomposition Method

Kotapally Harish

Indian Institute of Technology Indore, India

A Pseudo Spectral Modified Quasilinearization for Fractional Perturbation-differential Equations

Joseph Pasciak

Texas A&M University, USA

Numerical Approximation of a Variational Problem on a Bounded Domain Involving the Fractional Laplacian

Aiguo Xiao

Xiantang University, China

Dissipativity and Contractivity of Fractional-order Systems and Their Numerical Simulation

Sergey Piskarev

Lomonosov Moscow State University, Russia

Fractional Equations and difference schemes

Yücel Çenesiz

Selcuk University, Turkey

Approximate Analytical Solution of Sharma-Tasso-Olver and Burgers-KDV Equations with Homotopy Analysis Method and Conformable Fractional Derivative

MS 2: Reliable Computational Methods.

Organized by Prof. Sergey Repin (V.A. Steklov Institute of Mathematics, St. Petersburg) and Prof. Neittaanmäki (University of Jyväskylä).

Stefka Dimova

Sofia University, Bulgaria

Nonsymmetric and Nonstandard Galerkin Methods for Nonlinear Problems

Maxim Frolov

Peter the Great St. Petersburg Polytechnic University, Russia

Implementation of a Functional-type a Posteriori Error Estimate for Reissner-Mindlin plates

Svetlana Matculevich

RICAM, Austria

A Posteriori Error Estimates for a Poroelastic Medium

Nokka Marjaana

University of Jyvaskyla, Finland

A Posteriori Error Bounds for Approximations of the Stokes Problem with Nonlinear Boundary Conditions

Stanislav Sysala

Institute of Geonics, Czech Academy of Sciences, Czech Rep.

Reliable Computational Methods in Limit Analysis of Elastic-Perfectly Plastic Bodies

Jan Valdman

JCU Ceske Budejovice and UTIA Prague, Czech Republic

A FEM Approximation of a Two-phase Obstacle Problem and its a Posteriori Error Estimate

Steffen Weisser

Universität des Saarlandes, Germany

Reliable and Efficient a Posteriori Error Control for Bem-based Fem on Polygonal Meshes

MS 3: Galerkin Methods for Nonlinear Problems. Organized by Dr. Omar Lakkis (University of Sussex).

Omar Lakkis

University of Sussex

A Galerkin method for the Monge-Ampère problem with transport boundary conditions

Marco Agnese

Imperial College London, United Kingdom

Fitted Ale Scheme for Two-phase Navier-Stokes Flow

Manuel Borregales

University of Bergen, Norway

Numerical Convergence of Iterative Coupling for Non-linear Biot's Model

Radim Hošek

Czech Academy of Sciences, Czech Rep.

Convergent finite difference scheme for compressible Navier-Stokes in three spatial dimensions

Morufu Olayiwola

College of Science, Engineering and Technology, Nigeria

The Variational Iteration Method for Solving Linear and Nonlinear Problems that Arise in

Mathematical Physics

Nail Yamaleev

Old Dominion University, USA

Entropy Stable Weno Spectral Collocation Schemes for the Navier-Stokes Equations

Denis Schadisnkii

Institute of Mathematics of The National Academy of Sciences of Belarus, Belarus

Conservation Laws in Blow-up Problems for Nonlinear Parabolic Equations

Martin Lind

Karlstad University

A priori feedback estimates for multiscale reaction-diffusion systems

MS 4: Error analysis and computational aspects of PDE eigenvalue problems. Organized by Prof. Daniele Boffi (Università di Pavia).

Daniele Boffi

Università di Pavia, Italy

Adaptive finite element schemes for eigenvalue problems: from mixed laplacian to Maxwell's equations

Gallistl Dietmar

Universität Bonn, Germany

Approximation of Polyharmonic Eigenvalue Problems

Arbaz Khan

University of Heidelberg, Germany

Arnold-Winther Mixed Finite Elements for Stokes Eigen Value Problems

Patrick Kürschner

Max-Planck Institute, Germany

Inexact and preconditioned linear solves in iterative eigenvalue methods

Önder Türk

Gebze Technical University, Turkey

A Stabilized Finite Element Method for the Two-field and Three-field Stokes Eigenvalue Problems

Harri Hakula

Aalto University, Finland

A Posteriori Estimates for Eigenproblems Using Auxiliary Subspace Techniques

Antti Hannukainen

Aalto University, Finland

On a Priori Error Estimates for Eigenvalue Problems

MS 5: Tensor numerical approximation of multi-dimensional functions, operators and PDEs. Organized by Prof. Boris Khoromskij (MPI MIS, Leipzig) and Prof. Martin Stoll (MPI DCTS, Magdeburg).

Sergey Dolgov

Uni. Bath, UK

A combination of Alternating Least Squares and low-rank cross approximation for solution of parametric PDEs

Venera Khoromskaia

MPI MIS, Leipzig, Germany

Tensor-structured Method for Fast Calculation of the Excitation Energies for Compact Molecules

Angelos Mantzaflaris RICAM, Linz, Austria USING TENSOR DECOMPOSITION IN ISOGEOMETRIC ANALYSIS

Akwum Onwunta

MPI DCTS, Magdeburg, Germany

Fast Solvers for Optimal Control Problems Constrained by PDEs with Uncertain Inputs

Kuniyoshi Abe

Gifu Shotoku University, Japan

On Mister R Method for Solving Linear Equations with Symmetric Matrices

Andreas Hahn

Otto-von-Guericke University, Germany

ALE-FEM for Incompressible Flows and Transport Problems

MS 6: Recent developments on computational electromagnetism and related applications. Organized by Prof. Dirk Pauly (University of Duisburg-Essen, Germany) and Prof. Jun Zou (The Chinese University of Hong Kong).

Eric Chung

The Chinese university of Hong Kong

Staggered Discontinuous Galerkin Methods for Maxwell's Equations

Dirk Pauly

University of Duisburg-Essen, Germany

Non-standard Partial Integration: Implications to Maxwell and Korn Inequalities

Haijun Wu

Nanjing University, China

Finite Element Method for Nonlinear Helmholtz Equation with High Wave Number

Weiying Zheng

Academy of Mathematics and Systems Science, Chinese Academy of Sciences
Perfectly Matched Layer Method for Electromagnetic Scattering Problems in Layered Media

Vera Bommer

Universtität Duisburg-Essen, Germany

Numerical Analysis for the Optimal Control of the Time-Dependent Maxwell's Equations

Mourad Sini

Austrian Academy of Sciences, Austria

Gröger-Meyers's Estimate and Justification of the Enclosure Method for the Maxwell System

Jun Zou

The Chinese University of Hong Kong Professor, China

Adaptive Fems for Inverse Problems

Yifeng Xu

Shanghai Normal University, China

A Convergent Adaptive Finite Element Method for Cathodic Protection

MS 7: Numerical methods for time-dependent transportation and optimal control problems. Organized by Dr. Monika Wolfmayr (RICAM, Linz).

Monika Wolfmayr RICAM, Austria Optimal Control Models in Pedestrian Dynamics

Romana Boiger

Alpen-Adria-Universität Klagenfurt, Austria
Profile likelihood calculation for time-dependent PDE constrained parameter estimation problems

Adriano Festa

RICAM - Austrian Academy of Sciences (ÖAW), Austria A Discrete Hughes' Model for Pedestrian Flow on Graphs

Dante Kalise

Radon Institute for Computational and Applied Mathematics (RICAM), Austria Optimal Feedback Control of Nonlinear Parabolic Equations

Giacomo Albi

Technische Universität München, Germany Binary interaction approximation for mean-field optimal control problems

Axel Kröner

INRIA Saclay, and CMAP, Ecole polytechnique, France
Optimal Control of Infinite Dimensional Bilinear Systems: Applications to the Heat, Wave, and Schrödinger Equations

SS Recent Developments in Differential Equations and Their Applications

Galip Oturanc

Selcuk University, Turkey

Reduced Differential transform method with fixed grid size for solving telegraph equations

Betul Ayse Koc Selcuk University, Turkey New Operational Matrix Scheme for Differential Equations

Muammer Ayata Selcuk University, Turkey Operational Matrix Method for Solving Two Point Boundary Value Problems

Hatice Kübra Duru and MSc. Durmus Bozkurt Selcuk University, Turkey Integer Powers of Certain Complex Pentadiagonal 2 – Toeplitz Matrices

Sema Servi

Selcuk University, Turkey

Numerical Solution of wave equations by reduced differential transform method with fixed grid size