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Abstract
A way of applying genetic crossing-over operators to Markov Chain
Monte Carlo (MCMC) integration without introducing bias is presented.
The crux of the method is to either accept or reject together both of the
offsprings from reversible crossing-over operations. This method can con-
verge faster than traditional MCMC methods in several problems; numeri-
cal computations for two model distributions are shown. The relationship
between the presented method, Swendsen-Wang -type algorithms, and

Metropolis-Coupled MCMC is discussed.

1 Introduction

Metropolis-Hastings MCMC]1, 2] is a popular numerical method for integrating
over a multidimensional probability distribution p(z). It is used extensively
in Bayesian computation and statistical mechanics (cf. [3, 4]). We propose a
method of speeding up the convergence of the basic method by using genetic
crossing-over, an idea from genetic algorithms[5, 6].

The Metropolis algorithm simulates a process where at each time step, a
new, proposed point z' is drawn from some probability distribution g(z,z')
depending on the current point xz. In effect the proposal distribution defines
a “neighborhood structure”, i.e. what is considered to be close to the current
point. The new point is accepted with the probability

a(z,z') = min{l,%}. 1)

If the new point is not accepted, the old point is kept for the next time step.
It can be shown that under certain simple conditions, the distribution of = over



time will converge to p(z) [4, 7]. The most important condition is stationarity of
the distribution p(x), so that once reached, the correct distribution is maintained
for ever. This follows from the local detailed balance condition, which holds if
the probability distribution for generating the new points is symmetric:

q(xaxl) = q(mlax)' (2)

Another requirement for convergence is that the system is irreducible, so that it
has a possibility to eventually get from any point z to any other point z’, pos-
sibly through several steps. This can be achieved through having ¢ be positive
everywhere, such as a Gaussian, or by knowing beforehand that the neighbor-
hood structure determined by ¢ connects all the modes of p through paths for
which p is never zero.

The problem with MCMC calculations is that they can be excruciatingly
slow for multidimensional systems and that it is often difficult to estimate con-
vergence. This problem is emphasized if parts of the state space are connected
only through paths with low probability. For example, consider a distribution
consisting of two Gaussian peaks. As the distance between the peaks grows
the convergence slows down rapidly since the system has to random-walk sev-
eral times between the two modes before the resulting distribution approaches
stationarity. This slowdown becomes even more pronounced as the number of
dimensions and modes grows. The modes, however, are typically not randomly
distributed but there is some structure. Most multidimensional real-world prob-
lems are simpler than general functions of the same dimensionality and are often
approximately decomposable to several few-dimensional functions (the building
block hypothesis, cf. [6, p. 45]). Unfortunately, there is generally no direct way
to take advantage of that approximate structure, especially since the structure
is usually not known.

Auxiliary variable methods such as the Swendsen-Wang -type algorithms[8,
9] attempt to get hold of the structure of the target distribution by introducing
auxiliary variables such that conditional on the auxiliary state, the target distri-
bution is decomposable in some specific way. The Metropolis-coupled MCMC
and simulated tempering algorithms (cf. [10]) take a different approach by simu-
lating gradually tempered or damped versions of the target distribution creating
new, known structure to the model.

In optimization the problem can be attacked by genetic algorithms[5, 6] (GA)
which are often able to implicitly exploit the near-decomposability of the objec-
tive function and converge to the optimum faster that way. Genetic algorithms
work by evolving a population of points, denoted by {z;}. At each round (gener-
ation), a new set of points is generated by randomly applying genetic operators
to the previous set and the fittest offsprings are selected. The most important
genetic operation is the crossing-over operation, in which a new point is gen-
erated by taking one part of the description of one point and another part of
another point and combining them: for example, crossing (D,E,F) and (J,K,L)
could result in (D,K,L). While the crossing-over operator enables global search,
there is another operator, mutation, which is responsible for local variation and



is in effect similar to the proposal distribution ¢(z,z') of the MCMC method.
There are an enormous number of variations of genetic algorithms but the basic
principle remains the same: the genetic recombination gives a different kind of
a neighborhood structure that has proven to be advantageous for optimization.

The point of this article is to try to bridge the performance gap between
optimization and MCMC by enabling the use of genetic operators in MCMC
integration. The reason that genetic operations are not used for MCMC is that
they are generally not reversible: if the points (D,E,F) and (J,K,L) as above are
used to produce the point (D,K,L), the process cannot be reversed after natural
selection has been applied to the offspring. Using non-reversible operators in an
MCMC calculation will generally introduce bias into the calculated distribution.

The following sections introduce a way of using genetic operators in MCMC
without introducing bias, consider the justification for such a method, prove its
convergence, discuss its relationship with the Swendsen-Wang[8] and Metropolis-
coupled MCMCJ[10] algorithms, and show numerical examples where using ge-
netic operators speeds up the convergence of an MCMC integration considerably.

2 Genetic Operator MCMC (GO-MCMC)

Figure 1 gives the algorithm for using genetic operators in MCMC without
introducing bias in the resulting sample.

The algorithm is based on the usual Metropolis-Hastings formulation, but
on the power distribution

instead of the target distribution. The power distribution is defined in a power
space whose points are populations of states x = {z;}. A proposal distribution
for the power space is of the form q(x,x’), i.e., the proposals are from a pop-
ulation x to another population x'. In this formulation, genetic crossing-over
operators can be expressed as reversible proposals to recombine two individuals,
x; and z; (see Figure 2):

where the crossing-over operator 7' is its own inverse:

(.’Ei,-’lfj) :T(IL’;,.’L’;) (5)

The new values z; and zj are either accepted or rejected but they must be
accepted or rejected together as parts of x', depending simply on the probabilities
of x and x’. The acceptance probability then simplifies to

a(x,x') = min {1, II’)((’:)) } = min {1, %} . (6)

Note that since the old points are discarded from the population, the use
of genetic operators will not cause an increase of the better genes — rather, it




0. Select recombination rate p. and choose an initial population z1,...,zxN.
1. Choose a random number 0 < r < 1.

2. If r < p., divide the population into random pairs and for each pair
($i7xj)7
2a. Apply a randomly chosen crossing-over operator T, to produce

(.ZL';,.(L"I’) = Tm(a"z:x])

2b. Replace (z;,7;) by (2}, 7)) with the probability min {1, %}.
3. If r > p, for each individual z;, do an ordinary MCMC update, e.g.:

3a. Draw zj from the proposal distribution g(z;, x}).
3b. Replace z; by z} with the probability min {1, p(z})/p(x;)}.

4. Output the population z7,...,zN-

5. Goto 1.

Figure 1: One way to apply genetic operators to MCMC simulation.

x {(A,B,C), (D,?,F), (G,H,1), (J,;iL)}

N
T
! / \‘ !
z; '

X {(A,B,C), (D,K,L), (G,H,I), (J,E.F)}

Figure 2: An example of a reversible crossing-over proposal in a population of
four individuals.



simply allows the system to faster explore parts of the state space. The crossing-
over operation can exchange approximately independent components between
the individuals with a high probability, thus reducing spurious correlations be-
tween variables.

The crossing-over operation alone is not sufficient to guarantee convergence.
To assure convergence, we additionally use standard MCMC steps. As the tar-
get distributions for the individual states z; are independent, we can efficiently
update them separately using the ordinary proposal distribution ¢(z;,}), ac-
cepting or rejecting the new z} separately as well with the ordinary acceptance
probability (1). In terms of the power space, these proposals are generated by
the distributions q;(x,x') = q(@i, 7;) [1,4; 0z, (z}), where d; is the Kronecker or
Dirac delta function. All z; or just a randomly chosen subset can be updated in
this way at each time step, corresponding to mutations in GA. These mutation
steps are then combined with the above crossing-over steps to form an ergodic
hybrid sampler.

The next section gives a proof of convergence for the algorithm. In short,
the reason this algorithm works correctly within the MCMC framework with-
out biasing the estimates is that both of the above operations are proper and
reversible MCMC steps in terms of the whole population and so, the probability
distribution will eventually converge to p, which is a product of the independent
distributions p(x;). This in turns means that the distribution for each z; will
converge to p(x;), and so we can approximate the target distribution p(x) by
combining the samples.

Note that real implementations use a set {T), },m of crossing over-operators
from which one is randomly chosen for each operation. The different operators
correspond to, for example, different points of where to cut the chromosome.

3 Mathematics and asymptotic convergence

In this section, we attempt to illustrate why the present algorithm can signif-
icantly speed up the convergence of MCMC simulations. We then show that
the present algorithm converges and at least does not slow down the asymptotic
convergence of the underlying kernel.

It is hard to come up with a rigid proof of why genetic algorithms (and
thereby algorithms like the present one) are useful since they excel in treating
“real-world” functions, for which there is not yet an adequate theoretical descrip-
tion. Some attempts have been made with schema theory (cf. [6, 11]), where the
key assumption is that the descriptions of good individuals can be made up from
many short “building blocks”. Mathematically, this can be viewed as assuming
that the distribution is approximately the product of lower-dimensional, multi-
modal distributions. The basic idea of using genetic recombination instead of
simple mutations is that good building blocks “discovered” in different individ-
uals can be brought together to form new, good individuals.

As a toy example of a situation where using genetic operators will help,



consider the exactly decomposable distribution
p(@) o [T (ka® = 1)+ k(z® + 1)) (7)
!

where k(t) is a one-dimensional function with a sharp peak at zero, e.g. exp(—15¢2),
and 2z is a scalar, one component of the vector z. This function has peaks
at the corners of an mn-dimensional hypercube. Due to the sharpness of the
peaks it will take a number of iterations for MCMC to get from one mode to
the other. When the number of dimensions grows, the number of local maxima
grows exponentially. With traditional MCMC, the random walk will take more
and more time to reach enough different maxima, even when started at several
points at once, like the GO-MCMC. With genetic crossing-over, however, the
mixing between the local maxima will be faster and the simulation will converge
more rapidly.

Simple examples show that GO-MCMC can improve convergence over the
traditonal algorithm in specific cases. In the following, we consider what can be
said about the algorithm in general. In particular, we show that geometric and
uniform limits for asymptotic convergence are generally preserved.

3.1 Definitions

Formally, we consider Markov chains given by a transition kernel P(z,dz') on
an arbitrary state space E with a countably generated o-algebra €. A thorough
development of general state space Markov chain theory can be found in Meyn
& Tweedie[12].

A transition kernel P is called reversible with respect to a measure 7, if the
detailed balance relation

7(dz)P(z,dz') = w(dz')P(z', dx) (8)

is satisfied (cf. Tierney|[13]). This condition implies that 7 is an invariant
distribution for P, that is

7(A) = (rP)(A) := / (dz) P(z, A) )

for all A € £. A transition kernel P is called irreducible if there is a non-zero
measure @ such that for each z € E and A € £ with p(A4) > 0 there is an integer
n such that P"(z, A) > 0. An invariant measure 7 of an irreducible kernel is a
maximal irreducibility measure in the sense that any ¢ is absolutely continuous
with respect to 7.

It is assumed that an ordinary MCMC transition kernel P(z,dz') is given
with the invariant distribution m(dz). We then expand the state space to EY
and use

7®N (dx) = n(dzy) - - w(dzw) (10)

as a target distribution on the power o-algebra £®V. The ordinary MCMC
transition kernel P(z;,dxz}) is used for each individual z; in the population



x = (21,...,ox) € EN. In terms of the power space, the ordinary kernel
corresponds to
P;(x,dx") := P(z;,dz}) H 0z, (dx}) (11)
J#i
when applied to z;. Here §, is the Dirac measure. Formally we use the product
Py - - - Py of the component kernels for mutation steps. Note that if the original
kernel is reversible, so is this product.

We view the set {T},}m of genetic operators as one-to-one mappings on
the power space EV, operating on whole populations instead of on a pair of
individuals. Generally, the set {T,,}, then contains separate copies of the
crossing-over operations for each combination of two individuals. Denote by
Pr,,(x,dx') the transition kernel corresponding to proposing a crossing-over
x — T, (x) and either accepting or rejecting it. Suppose that the population
is divided into pairs and crossing-over operations are applied to each pair as
in the example algorithm given in Figure 1. This kind of a transition can be
represented as a product

Pry = H Prp, (12)

of the transition kernels corresponding to the single crossings. It is essential that
each T, indexed by m € M operates only on individuals that are fixed by all
other T, so that the kernels Pr,, commute and the product is well-defined. It
also follows that Prjs inherits the reversibility of the component kernels. Now,
let cpr be the probability of applying a particular set of crossings indexed by
M. The kernel used for recombination steps is then some convex combination

Pr = Z e Pry (13)

of the kernels Prjys, each of which is selected with a possibly zero probability
CM -

The actual transition kernel used by the GO-MCMC algorithm is a mixture
pePr + (1 —p.)P; - - - Py of the recombination and mutation kernels. In the fol-
lowing we first define the kernel Pr,, corresponding to a deterministic proposal
mapping T;, so that the kernel is reversible with respect to the target distribu-
tion. Then we consider asymptotic convergence. For simplicity and generality,
we will denote the power space again simply by FE.

The formulation of the recombination kernel is similar to the treatment of the
general case of the reversible jump kernel in Green[14]. The case of deterministic
proposals is also sketched in Tierney[13]. Some results on combining different
kernels can be found in Tierney|7].

3.2 Deterministic proposals in general state space

A deterministic proposal is merely one special case of the proposal distribution.
The Metropolis-Hastings method, however, is usually formulated assuming that
the proposal and target distributions are defined as densities with respect to a



common dominating measure and as such, does not apply for our case. We need
to consider the deterministic proposals in a more general setting.

Let T: E — E, T~! =T, be a measurable, deterministic proposal mapping
on an arbitrary state space (E,&). Then the corresponding transition kernel is

Py(z,da’) = a)dr(s) (da') + (1 — a(x))5, (da), (14)

where a : E — [0,1], a(z) := a(z,T(x)), is the acceptance probability of the
proposed move from z to T'(z). The first term corresponds to accepted transi-
tions and the second term accounts for rejected proposals. Next, we consider
under which conditions the transition kernel Pr above will be reversible (cf.
Tierney[13]).

Proposition 3.1 For Pr(z,dz') given by (14) the following are equivalent:
(i) Pr(z,dx") is reversible with respect to w(dz).
(1) a(z)r(dz) = a(T(z))n(dT(z)).

(#i) For m-almost all x,

where w,(dT (z)) is the absolutely continuous part of the Lebesgue decom-
position w(dT(x)) = mo(dT (z)) + 7. (dT'(x)) with respect to w(dx).

(iv) For a set R given by the Lebesgue decomposition such that w(R) = 1,
7(T(R)) =0, and w(dT (x)) = 7o (dT(x)) restricted in R,
——a(T(x)), =w-ae in RNT(R)
0, w-a.e. in R\ T(R).

Furthermore, these conditions only determine o up to w-equivalence.
Proof. (i) <= (ii): Substituting (14) in the reversibility condition (8) yields

m(dz)[e() 01 (o) (da') + (1 — ()3, (da")] =

r(de")o(e )1 (de) + (1 — a(a'))5, (d)]. (15)

Because the first terms are concentrated at &' = T'(z) on both sides and the
second terms are equal, reversibility is equivalent to

w(dz)a(z) = w(dT (z))a(T(x)). (16)

It is clear from this equation that « is only determined up to m-equivalence.



(i) = (iv): Because w(dT'(z)) is absolutely continuous with respect to
m(dz) in R, the Radon-Nikodym theorem states that for m-almost all z € R,

alz) = %Q(T@})). (17)
Furthermore, 7(T(R \ T'(R))) = 0 and so for x € R\ T(R) the right side can
equivalently be written as (0/7(dz))a(T(z)) = 0.
(iv) = (iii): Equation (17) above is equivalent to (iv) and implies (iii)
because 7(R) = 1 and 7, (dT'(z)) = n(dT'(x)) in R.
(iii) = (ii): Forz € R, 7,(dT(x)) = w(dT(x)) and we can write a(z)n(dz) =
o(T(z))w(dT (x)) for R. By symmetry, (16) also holds for T'(R). The rest of the
state space is null for both sides and so, (16) holds everywhere. O

Proposition 3.2 A deterministic proposal kernel given by (14) using the Metropo-
lis acceptance probability

(18)

a(z) = min {1, M}

w(dz)
satisfies detailed balance.

Proof. Detailed balance holds by Proposition 3.1(iv): Restricted to RNT'(R),
we have 7, (dz) = 7(dz), 7, (dT(z)) = 7n(dT(z)), and so

w(dT(z)) . [w(dT(x)) w(dT(x)) =(dx)
r(dr) “T(@) = min { m(dz) ' w(dr) (dl (@) }
(19)
= min m(dT(z)) 1} = a(z)
{ m(dz)
for w-almost all z € RN T(R). Because 7(T'(R\ T(R))) = 0, we have a(z) =
min{l, 7(dT(z))/m(dz)} = 0 for w-almost all z € R\ T(R). O

To illustrate the acceptance probability expression, assume 7 has a density
p(x) with respect to a measure, say p. If T is measure-preserving with respect
to p, the Radon-Nikodym derivative in (18) will be just p(T'(z))/p(z). In case
of a discrete state space, p can be taken as the counting measure and T will
obviously preserve count. If T is differentiable and 7 is given with respect to
the Lebesgue measure, we can take p(T(z))/p(x) - |0T(x)/0z|, where |---| is
the absolute value of the determinant of the Jacobian matrix. This last case
is in fact the same as a deterministic reversible jump transition (cf. Green[14])
within a single subspace.

3.3 Rates of convergence

There are differing definitions of convergence limits. Our definitions coincide
with Roberts & Rosenthal[15] and Tierney[7]. We denote the total variation
norm of a signed measure p by ||p|| := |u|(E) = sup 4 u(A) — inf 4 p(A).



Definition 3.3 A transition kernel is said to converge from a starting point z
if

lim ||P"(z, ) —x(-)[| = 0.

n—oo

The transition kernel P is ergodic if it converges for all z € E.

Definition 3.4 A transition kernel P is called 7-almost everywhere geometri-
cally ergodic if there exist a w-almost everywhere finite function M (x) and a
constant r < 1 such that

1P (2, ) =m()[| < M(z)r"

for all x € E. If M(z) is constant, the transition kernel P is called uniformly
ergodic.

Proposition 3.5 If P is irreducible and aperiodic and P = wPr = «, the
mizture p.Pr + (1 — p.)P, 0 < p. < 1, is irreducible, aperiodic, and converges
w-almost everywhere.

Proof.  Clearly the mixture p.Pr + (1 — p.)P inherits aperiodicity, irre-
ducibility, and the invariant distribution 7 which, by Theorem 1 of Tierney[7],
implies 7-a.e. convergence. O

Proposition 3.6 Suppose that Pr is given by (14) and P is ergodic with m =
7P = wPp. Then the mizture p.Pr + (1 — p.)P, 0 < p. < 1, converges -
a.e. and can be made ergodic with a specific choice of the acceptance probability
function a(x). Furthermore, the same statement holds about Pr := Prys given

by (12).

Proof. As an ergodic kernel is always aperiodic and irreducible, 7-a.e.
convergence follows from the previous proposition. Now, let

D:={z € E:p.Pr+ (1-p.)P does not converge from z}.

By changing the definition of the acceptance probability in the w-null set D so
that a(x) = 0 for all x € D, the chain can be made to converge started from
D. This does not affect the convergence from points outside D, because such
a chain reaches D with probability 0 — otherwise the chain would not have
converged in the first place.

The same argument holds for a product Pr = Pry - -+ Pry, if the acceptance
probability is modified for each of the component kernels. Then, as above, only
P will be effective for all € D. d

Proposition 3.7 Suppose that 1 = 7P = wPr and P is uniformly ergodic.
Then the mizture p.Pr + (1 — p.)P, 0 < p. < 1, is uniformly ergodic.

Proof. Proposition 3 in Tierney|7]. O

10



Definition 3.8 The L?(r) Hilbert space of signed measures is defined as
L2 (m) = {p: & = [~00,00] | ||ullzz(my < o0},

where the norm is given by

Il = [ | 450

when p is absultely continuous with respect to m and ||u||z2(r) = oo otherwise.

’ w(dz)

Proposition 3.9 Any Markov transition kernel P with an invariant distribu-
tion m = 7P is a weak L*(m)-contraction, that is, ||uP||p2(x) < ||pllp2(r) for all
€ L2(m).

Proof. This follows from the corresponding general result for all LP(r),
1 < p < oo (Corollary to Lemma 1 in Baxter & Rosenthal[16]). O

Proposition 3.10 Suppose that Pr is reversible, P is irreducible, reversible,
and w-a.e. geometrically ergodic, and m = #P = wPr. Then p.Pr + (1 — p.)P,
0 < pe <1, is irreducible, reversible and w-a.e. geometrically ergodic.

Proof. Because P and Pr are reversible and P is irreducible, p. Pr+(1—p.) P
is also irreducible and reversible. By Theorem 2 of Roberts & Tweedie[17], -
a.e. geometric ergodicity is equivalent to L?(7)-geometric ergodicity for chains
that are reversible and irreducible. Thus, it is sufficient to prove the statement
for L?(m)-geometric ergodicity.

By Theorem 2 of Roberts & Rosenthal[15], L?(r)-geometric ergodicity for a
reversible chain is equivalent to having r < 1 such that for all y € L?(r) with
WE) =0,

6P z2(ry < rllitllzecmy- (20)

This condition along with the previous proposition and triangle inequality yields
lulpeT + (1 = pe) Plll2(x) < pelluPrllr2(xy + (1 = pe)llwPllL2(x)

< pellpllLzmy + (1 = pe)rllullL2x (21)
= [pc + (1 _pC)r]”:u’”Lz(ﬂ)a

where p. + (1 —pe)r < pe+ (1 —p.) = 1. Because p.Pr + (1 — p.) P is reversible,
this implies that p.Pr + (1 — p.) P is L?(r)-geometrically ergodic. O

Finally, we need to consider how to relate the convergence on the power
space to the convergence of the original one-chain kernel. The total variaton
distance of a probability distribution p from 7 can be related to the distance of
the power distribution p®" from 7®V as follows:

I = 7l < [|p® = 7N < Nllp — 7). (22)

11



This implies that asymptotic convergence for a power chain is equivalent to the
same kind of convergence for all of the component chains. Thus, any assump-
tions on the convergence rate about the ordinary one-chain kernel P(z,dz') are
equivalent to same kind of assumptions about the corresponding power kernel
that updates each of the components independently using P(z,dz'). Hence,
(by mixing in the crossing-over product kernels Prjs one at a time), we can
summarize the above results as follows.

Theorem 3.11 Suppose P(x,dz') is o transition kernel with the invariant dis-
tribution m(dz), {Tyn}m 45 a finite set of crossing-over operators T, : EN —
EN| for which T;;' = T,, holds, and cpr are weights for some sets M of indezes
m € M to the operators T, such that > cyr = 1 and for each cpr > 0, all Ty,
m € M, operate on disjoint sets of individuals x;. Denote the corresponding
GO-MCMC kernel by

Pgo ::pCZCMPTM+ (]- _pC)HPi:
M i

where Pryr = [0 Prm, Pi(x,dx) = P(2i,dw;) [[;4; 02, (dz}), i =1,..., N,
Pry, is given by (14) and (18), and 0 < p. < 1 is the recombination rate. Then
the following statements hold:

1. If P is irreducible and aperiodic, then Pgo is irreducible, aperiodic, and
converges 7®N -a.e.

2. If P is ergodic, then Pgo converges n®N-a.e and is ergodic with appro-
priate choices of acceptance functions, (which should be evident in appli-
cations).

3. If P is irreducible, reversible, and m-a.e. geometrically ergodic, then Pgo
is irreducible, reversible, and 7®™-a.e. geometrically ergodic.

4. If P is uniformly ergodic, then Pgo is uniformly ergodic.

O

Furthermore, the total variation distance of a probability distribution g from
7@ on the power space can be related to the total variation distances of its
marginal distributions from 7 such that for all i =1,..., N,

(B x () x BEN=D) —x()]| < [lp— =7 (23)

This means that the above convergence limits for the chain on the power space
also hold for each of the component chains.

Thus, the genetic recombination operators can be incorporated into any
MCMC kernel preserving the convergence properties in usual cases. We could
also base the the algorithm on a kernel P(x,dx') already on the power space

12



EN with the invariant distribution 7€~ with an analogous result on preserving
convergence.

Note that in discrete case, a stronger notion of irreducibility than the -
irreducibility of general state spaces is often used [12, Chapter 4]. The discrete
irreducibility means that all states communicate, i.e., for all z,y there is n such
that P"(z,{y}) > 0. It then follows that w({z}) > 0 for all z if 7 is invariant.
Hence, if the discrete irreducibility is assumed for P(z,dz'), the above 7-a.e.
and 7®"-a.e. are equivalent to everywhere.

4 Relationship with other MCMC speedup meth-
ods

The Swendsen-Wang algorithm[8] and other algorithms derived from it such
as the Wolff algorithm[9] can speed up MCMC calculations of Ising models by
several orders of magnitude. The algorithms work by flipping a block (or several
blocks) of spins at a time instead of a single spin and thereby moving through the
state space much faster, avoiding the potential energy barriers between the local
minima (corresponding to maxima of the probability density function p(z) o
exp(—E(z)). There are several variations of the basic algorithm corresponding
to different ways of choosing the block(s) of spins to be flipped. Generally
the method uses auxiliary random variables indicating which adjacent spins are
considered bonded and only flips clusters of bonded spins. These bond variables,
however, are usually updated independent of their previous values and so the
algorithm can be seen as a plain Markov process with a sophisticated transition
probability.

It is illustrative to compare the Swendsen-Wang -type algorithms and the
present algorithm to obtain a clearer picture of what the current algorithm
actually does. Not surprisingly, the Swendsen-Wang -type algorithms and the
present algorithm are related in a fundamental way. Both algorithms are useful
for models where the “most obvious” choice for g(z, z') suffers from a too weakly
connected neighborhood structure. In the Ising case, flipping a single spin in the
middle of a large frozen block can be next to impossible energetically, yet the
whole block can be reversed without resistance. In our present case, the slow
random walk between the multiple modes in one dimension has to be repeated
again and again as the other dimensions go through different combinations of
their modes, in order to obtain convergence.

Both algorithms exploit the fact that it is possible to add into g(z,z') easier
“channels” between the maxima, because something about the structure of the
space is assumed to be known. In the Ising model, it is known that flipping
a block of spins has little effect on the probability and in our present genetic
model, it is assumed that there is some decomposability in the function being
modeled. The fact that we use the distribution in power space is interesting
because we are in fact taking advantage of the structure, not in the distribution
for the single individual z, but the composite distribution p(z1,...,zx) shown

13



in Equation 3. The basic assumption is that if a relatively probable composite
point is drawn from this distribution then it is likely that the composite point
obtained by applying a crossing-over operation to this composite point is also
relatively probable. In this way, we hope to be able to travel between the local
maxima, faster.

However, the similarities between the current and the Swendsen-Wang -type
algorithms end at that abstract level: on a more detailed level, the Swendsen-
Wang algorithms work by knowing that (— — — —) is close to (+ + ++) but
our algorithm by assuming that if both (— — — —) and (+ + ++) have high
probabilities in our distribution, then (— — ++) and (+ + ——) should be tried
as well, in case the function would be approximately decomposable in this way.
Thus, the two algorithms solve completely different problems but simply use
the same tool: adding more information about the nature of the problem to
q(z,z").

Redefining the locality of the transitions is not the only way of obtaining
a better neighborhood structure: for instance, the Metropolis-Coupled MCMC
(MCMCMC) method proposed by Geyer (see e.g. [10]) works by running paral-
lel Markov chains for multiple gradually tempered distributions py,ps,...,DN,
where p; is the target distribution. The tempered distributions are usually
defined as

pi(z) o (p1(2))"/ " (24)

for some temperatures 1 = T; < Ty < ... < Ty. Mathematically, the algorithm
simulates the composite probability distribution

P(x) =p(x1,- .., 28) = p1(21) - - pn(EN)- (25)

In addition to the standard updates of the individual chains, the algorithm pro-
poses transitions that try to swap the states of two of the chains. For swapping
the states z; and x;, the Metropolis acceptance probability is

min {1,557} = m“{l%} (26)

The idea of MCMCMC is to transfer the faster mixing from the tempered chains
to the target chain through the transitions between chains of different temper-
atures. Only the state of the first chain is used for actual integration.

The present algorithm is similar to the MCMCMC algorithm in that it also
uses a chain on a power space and incorporates transitions affecting two of
the parallel states. The most important difference is that MCMCMC connects
the local maxima of the target distribution by more likely detours through the
tempered distributions while GO-MCMC achieves faster mixing by (in the usual
sense) nonlocal recombination transitions so that step-by-step travel between
maxima is not necessary.

There are also some other algorithms that work in a product or power space
such as adaptive direction sampling and adaptive Metropolis sampling (cf. [18])
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and population-based Monte Carlo algorithms surveyed in Iba[19]. These al-
gorithms, however, are related to the present algorithm only at an abstract
level.

While preparing a revision of this article we came across a conference paper[20]
describing a similar idea of applying genetic crossing-over in MCMC context.

5 Simulations

In this section, we discuss the results of numerical simulations carried out on two
discrete systems. The first system is a qualitative model of an ideal target for
GO-MCMC: a fully decomposable multidimensional system whose independent
subsystems move only slowly between their modes. As a more realistic exam-
ple, the second, non-ideal system is only near-decomposable to low-dimensional
subsystems. In both cases, using genetic operators speeds up the integration
substantially.

The longest simulation runs for the sample models consumed in the order
of 10® random numbers. All the simulations presented in this article were per-
formed using the Mersenne Twister[21] (MT) random number generator from
the GNU Scientific Library[22]. MT has an extremly long period of 21937 — 1
which is sufficient. Furthermore, different seeds give non-overlapping sequences
with a high probability, so that it is possible to obtain independent test runs. No
significant differences were found between the MT simulations and simulations
carried out with the Linux[23] /dev/random generator.

In order to evaluate convergence over time, a measure of distance between
the observed frequencies and the equilibrium distribution is needed. A natural
choice is the Kullback-Leibler distance, which is simply the difference between
cross-entropy and the entropy of the target distribution and is given by

. b, bs(z)
ot Pehoor) = 3 Piheor(®) o ( L), @)
obs’ Ptheor ZZ: theor Ptheor ()
The observed frequency p,q is given by the estimate
. fi+1
== 28
pObS(l) Z,(fz + 1)7 ( )

where f; is the observed count of state i. Adding one to the actual counts is
needed in order to obtain finite distance for a small run length 7.

In the Figures, we use a special histogram of the frequencies f;/T to illustrate
the observed distribution given by an MCMC simulation. These histograms
show the number of bit-vector counts f; falling between evenly spaced ranges
on simulated runs. The histogram does not graph the frequency of a state as a
function of the state as one might first assume, but the number of states that
have a particular frequency.

The implementations of the algorithm for the sample models follow the ex-
ample algorithm given in Figure 1. Recombination rate p. = 0.4 and population
size N = 4 was used for all simulations.
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5.1 Ideal case: a fully decomposable system

In its most basic form, a recombination operation swaps some components be-
tween individuals. If the exchanged components are independent of the other
components, the transition does not affect the composite probability of the pop-
ulation and will always be accepted. Thus, the ideal target for GO-MCMC is a
system consisting of entirely independent components that move only slowly be-
tween their modes. In such a case, the components making up the individuals
can be freely recombined with no change in probability, thus creating short-
cuts between the local maxima corresponding to different combinations of the
independent components.

A product distribution consisting of two-modal independent components,
such as Equation (7), is the simplest form of the above ideal case. We consider
a discrete qualitative model of this distribution with n binary variables, corre-
sponding to the independent components. The two values of a bit are considered
to represent the two modes of the corresponding component. Suppose that a
random-scan Metropolis algorithm is run on the modelled system and that the
components move only through paths of low probability between their modes.
We model the slow movement by flipping one randomly chosen bit with prob-
ability 1 — a on each time step, where 0 < a < 1 is a constant autocorrelation
parameter.

This simple model captures the essence of the ideal case in that it has slow-
moving multimodal components and that the number of local maxima grows
exponentially with the number of dimensions. For short simulations, the sam-
pled states will differ only in some bit positions and thus will show correlation
between variables even though the variables are in fact independent. Increas-
ing the number of variables or choosing a closer to one will make the spurious
correlation stronger requiring a longer run length.

In order to incorporate crossing-over operations to the system, consider a
population zj,...,zy of N n-bit strings. The recombination operation will
first divide the population into randomly chosen pairs and then for each pair,
choose a random n-bit mask from the uniform distribution, and cross over the
variables specified by the mask. The recombination proposition will always
be accepted as the modelled variables are independent and so the acceptance
probability will simplify to 1.

Each mutation or recombination round was counted as IV time steps as they
both would require N evaluations of p(z) in a real system. After each round, the
whole population was saved to the sample vector. If we take p. = 0, the system
will correspond to the standard Metropolis algorithm with N parallel chains.
By increasing p. we can model the effect of recombination on the perceived
correlation between variables. Adjusting the parameter a allows us to model
different levels of autocorrelation.

The starting population for the simulations was chosen randomly from the
uniform distribution, which is also the target distribution of the model. Never-
theless, a burn-in period of 100000 time steps was inserted before collecting the
sample vector in order to eliminate any systematic bias in the initial state of
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the simulation. Furthemore, all graphs show the results of multiple consecutive
test runs.

Figure 3 graphs the convergence of the observed distribution as a function of
time for the cases without recombination, with recombination, and for the non-
autocorrelated ideal case, where the samples are drawn from the equilibrium
distribution. By comparing the frequency histograms in the graphs, one can see
that GO-MCMC performs better than standard MCMC even when standard
MCMC is run for four times as long as the GO-MCMC case. The figure shows
also the Kullback-Leibler distance from the equilibrium distribution as a func-
tion of time. Figure 4 graphs the same kind of histograms with the Kullback-
Leibler distance, but this time as a function of the autocorrelation parameter
a. The figure shows that GO-MCMC maintains good convergence under slower
step-by-step motion between local maxima than the plain traditional MCMC
method.

5.2 Approximately decomposable system

In reality, functions are more often approximately than exactly decomposable.
As a numerical example, we consider a discrete system which can be thought to
model the general class of such functions, whether they are discrete or continu-
ous. The function is not exactly decomposable to one-dimensional components
but it is approximately decomposable to low-dimensional components so that
the wandering between the local maxima can be speeded up through the genetic
operators.

There are n = 3k binary dimensions divided to groups of three adjacent bits.
The probability distribution p has two terms: each group that is not 000 or 111
is penalized by multiplying the probability by a factor of 1/200, and if all groups
are 000 or 111, the function is multiplied by 1/2 if the parity (number of 111
states) is odd. The starting state is random in all dimensions.

The first term can be thought of as the potential energy barrier separating
the local maxima of the probability density function. This makes the random
walk of the system through the states slow. The second term can be thought of
as the actual interesting information that we are trying to extract by integrating
this function.

The two MCMC algorithms used on this function, GO-MCMC and trad-
MCMC differ only in that GO-MCMC includes the crossing-over operation. The
two operators are mutation, which flips a random bit, and one-point crossing-
over, which takes two individuals from the population and exchanges their tails.
A recombination round consists of dividing the population in random pairs and
proposing crossing-over on each pair. After every round, each individual is saved
to the sample vector.

The simulation was carried out for n = 3-8 and 3-12 variables. An additional
500000 time step burn-in was simulated before collecting the actual samples.
The distribution of the frequencies of the 2* “legal” states with only 000 or
111 groups along with the corresponding Kullback-Leibler distance from the
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equilibrium is shown in Figure 5 and the ratio between odd and even states in
Figure 6.

As is obvious from the Figures, GO-MCMC converged much faster for this
problem, as expected: it can move through the state space far more rapidly by
not having to mount the potential energy barrier of the “illegal” states in order
to travel between the maxima.

6 Conclusions

A new method, GO-MCMC, for applying genetic operators in MCMC calcula-
tions has been presented. The crux of the method lies in accepting or rejecting
the offspring of a reversible genetic operation all together as opposed to one by
one. This ensures detailed balance so that no bias is introduced to the MCMC
process by the genetic operators. The algorithm converged much faster than
ordinary MCMC without genetic operators on a discrete example problem.

The algorithm is clearly related to earlier MCMC speedup algorithms like
the Swendsen-Wang algorithm, as it makes it easier for the system to travel
between local maxima, but the present algorithm is likely to be applicable to a
greater variety of models because it is not tied to a particular problem. There
are, of course, problems that this algorithm is unsuited for — the canonical
example of a difficult problem is a distribution of many variables where the
variables are very strongly correlated. In such problems, most algorithms will
fail — the representation of the problem needs to be changed. However, the
class of functions for which genetic algorithms are applicable is quite wide so
there are likely to be several problems in which the current algorithm will be
useful.
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Figure 3: Special histograms (see Section 5) representing the distribu-
tions of the 2™ observed bit-vector frequencies (right scale) at times T =
40000, 160000, 640000, 2560000 in the qualitative model of an ideal fully decom-
posable system. The frequency scale is normalized so that 1 corresponds to the
expected frequency of 1/2". In addition, there are curves showing the Kullback-
Leibler distance from the equilibrium distribution (left scale) as a function of
time (note that the time scale is logarithmic). The three graphs represent di-
rect sampling, GO-MCMC, and trad-MCMC algorithms. As the run length
increases, the distributions of the three cases all get sharper and converge to
the point mass of 2" at 1. By comparing adjacent histograms one can see that
GO-MCMC mixes better than trad-MCMC even when trad-MCMC is run for
four times as long as GO-MCMC. Similarly, direct sampling converges about
four times as fast as GO-MCMC. The graphed data is measured as an average
of 10 test runs with the parameters a = 0.9, n = 12, and 100000 burn-in.
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Figure 4: Frequency histograms and Kullback-Leibler distance curves as in Fig-
ure 3, representing convergence as a function of the autocorrelation parameter
a. The three graphs correspond to GO-MCMC, trad-MCMC, and as a refer-
ence, direct sampling. As autocorrelation increases, the distribution obtained
by the trad-MCMC sampler deteriorates. This indicates that fewer states are
visited and a stronger correlation between variables is observed when the same
states repeat over and over again. Using recombination keeps the distribution
closer to the ideal case and greatly reduces the spurious correlations. The effect
of recombination gets stronger as a gets closer to 1. The data is measured as an
average of 10 test runs with 7' = 40000 time steps, 100000 burn-in, and n = 12

variables.
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Figure 5: Convergence graphs for the approximately decomposable model
with n = 3-8 and n = 3 - 12 variables as in Figure 3. The histograms
show the distributions of the 2("/3) bit-vector frequencies at times T =
125000, 500000, 2000000, 8000000 and the curves show the Kullback-Leibler dis-
tance from the equilibrium distribution. The graphs show the average of 10 test
runs.
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Figure 6: Ratio between states of odd and even parity as a function of time for
n = 3-8 (left) and n = 3-12 (right) variables in the approximate decomposable
model. The solid line represents one run of the GO-MCMC algorithm and the
dotted line one run of the traditional MCMC.
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