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Abstract

We apply break lines from technical drawing as an alter-
native to the ubiquitous rectangular frames in user inter-
faces. When showing a piece of a larger canvas, the non-
photorealistically torn edges naturally indicate where the
content extends. We show how the shape of the jagged
edge can be tied to its location on the paper; this creates a
natural rippling motion when the edge moves in relation
to the paper. The jagged edge is also visually less ambigu-
ous than the straight horizontal and vertical lines and can
be used to provide a sense of scale to the user.

We show how suitably rippling break lines can be im-
plemented on the NV10 and NV25 architectures, and
show screenshots of example user interfaces.

1 Introduction

In this article, we apply break lines or break out sections
from technical drawing to viewports in computer user in-
terfaces. Break lines or break out sections (see Fig. 1) are
freehand lines drawn to indicate that an object extends be-
yond the part drawn in the diagram. These lines work by
implying to the reader that it is not possible that the wavy
line is actually the shape of the machine part, it has to be
an artifact of the drawing.

Instead of framing a rectangular viewport to the can-

vas, we similarly “tear” a part of the canvas non-
photorealistically, using break lines to indicate the torn
edges.

In the following sections, we first describe related
work, then the reasons and design issues and which fea-
tures are desirable. Next, we describe a mathematical so-
lution to the geometric problem and discuss a hardware-
accelerated implementation. Finally, we discuss some ex-
ample applications.

2 Related work

2.1 Viewports

As discussed in [23], viewports, i.e. regions of the screen
(usually framed), showing part of a larger 2D plane
(called canvas from here on), have been used in user in-
terfaces since Sutherland’s Sketchpad system[45].

Viewports are usually rectangular and parallel to the
bounding rectangle of the canvas. (we shall not be con-
cerned with occlusion by other graphical objects: we shall
only concentrate on the basic characteristics of the view-
port).

Even in systems that modify the conventional win-
dowing model, the viewports appear to be mostly rect-
angular; for example in the 3D window manager Task
Wall[42], Data mountain[40], Elastic Windows[19, 20],
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Figure 1: An example of break lines in a NASA drawing
for the Mercury 5 (some text has been erased for clarity).
Freehand lines have been long used in engineering draw-
ings to indicate that an object extends beyond the shown
part (that the part shown in the diagram is “torn” from its
context).

3D WebBook[10], LifeStreams[13, 14], mUltimo3D[29],
SPI hyperdocument presentation interface[17], PAD[37],
its descendants PAD++[6, 4, 5] and Jazz[3], flip
zooming[28], BookMap[18], the continuous zoom sys-
tem in [2] and the Document Lens[41]. The Perspective
Wall[31] simply folds the rectangular basic shape. As
an extreme example of this, in [11], dealing with fisheye
magnification, non-rectangular regions are magnified, but
only rectangular regions are “lifted off” the original plane
to become their own viewports,

This list is not intended as a criticism of the above
work; we are only trying to demonstrate the dominance
of rectangular, framed viewports. Indeed, the only ref-
erences we found in the literature where non-rectangular
viewports are actually used are [7] and [23]. In the
toolglass system[7], a round magnifying glass is used.
In Kramer’s work on translucent patches[23], the non-
rectangular windows are actually not viewports but rather
complete regions, without a separate underlying canvas.

Non-rectangular window shapes are technically
possible[35] but not used except for some special effects
such as a round clock, and amusements such as shooting

holes in windows or animated “agents”[1] such as the
Office Assistants of Microsoft Office.

However, in all these cases, the irregular shape of the
window matches the shape of an actual irregular object
(magnifying glass, clock, shooting hole etc.). The irregu-
lar windows are not used as viewports, since they always
show the whole irregular object, not only part of it.

2.2 Non-photorealistic rendering

Non-photorealistic rendering is a relatively new subfield
of computer graphics. The principal ideas are presented
by Saito and Takahashi[43]: creating images that emulate
artistic drawings instead of photographs can clarify the
images greatly.

Non-photorealistic rendering is able to focus user at-
tention on the relevant details and also convey mood
and semantic information (e.g., “this is not a finished
design”[44]).

The recent work on non-photorealistic rendering has
been concentrated more on rendering polygonal 3D mod-
els in ways which resemble paintings or drawings of
real-world objects by human artists. However, we must
point out that windowing systems are also usually non-
photorealistic. Of course, this is not originally a UI de-
sign but a technical decision: lines were easier to draw
than shaded surfaces.

The development of non-photorealistic algorithms and
user interface components has been motivated by exam-
ples from illustration and technical drawing/design, for
example silhouette and feature line rendering[43], cool to
warm and metallic shading[16], and fillets[30].

3 Tearing

In this section, we introduce the use of non-photorealistic
rough, torn shapes as break lines instead of the usual rect-
angular, clipped and framed viewports.

In the following subsections, we first discuss why tear-
ing is desirable and how it differs from the usual view-
ports, then the details of the design and finally an algo-
rithm with the required properties.
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a)

b)

Figure 2: The metaphors: a) conventional viewports and
b) torn viewports.

3.1 Rationale “Why?”

In a situation with several overlapping viewports (e.g. the
type of focus+context view shown below), when the con-
tents of the viewports have strong horizontal and vertical
components, the irregular edges make it easier to under-
stand where a viewport ends and where there is simply a
line inside a viewport; see e.g. Fig.1.

One thing that we hope to achieve is that instead of
having to perceive two objects, the “hole” of the viewport
and the the canvas behind, the user would have to per-
ceive only the torn piece, as in Fig. 2. Whether this can is
achieved remains the subject of further study.

Additionally, the motion of the uneven edge can be
used to give the user a cue about the motion of the view-
port, and the style and size of the ripples can give a cue
about the scale of the view (window frames have also been
used for visualization previously[8]).

Now, from a purely physical perspective the tearout is
not really a good metaphor[24]: a real torn piece of paper
cannot change the place from where it is torn, with the
edges rippling etc. However, the idea of break lines in
technical drawings is well established and therefore the
motion should be comprehensible.

3.2 Detailed design “What?”

In order to create and maintain the illusion: “we see
a piece of the canvas”, instead of “we see the canvas
through an irregularly shaped hole”, the motion must be
carefully designed. The shape of the torn piece should not
be translation-invariant but should change in an appropri-
ate way with location and zooming.

To get the correct picture, imagine an animation where
the first frame is a given torn piece of paper, the next frame
is what would have happened if we had torn the paper
slightly differently etc. Since the paper would have the
same weak points, the shapes of the nearby tears would re-
semble each other. In particular, if the edge moves paral-
lel to the (overall) direction of the edge, the shape should
remain the same: see Fig. 3.

Figure 3: A diagrammatic representation of the motion
of a torn viewport. The edges parallel to the direction of
motion remain still while the moving edges change their
shape.

As to the graphical appearance of the torn viewports,
there are two main reasons to go for non-photorealistic
rendering: firstly, to imply to the user that the viewport
does not behave exactly like a real paper; to make the
overall view clearer. Drawing only the silhouette edge[43]
of the paper is therefore appropriate.

If the usual shape of the viewport extends outside the
edge of the underlying canvas, the metaphor of tearing
demands that we only draw the intersection of the two;
see Fig xxx.
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Finally, there are several design questions that are less
important and which are best left as options in the al-
gorithms, to be tailored to the particular application and
taste. For example, whether the edge should only rip-
ple without altering the topology or whether we should
allow unconnected islands to appear (scattered edge);
whether adding something to the roughly defined region
to be viewed should always only move edges outwards
or whether they may move back inwards at some point
(“ebbing”).

3.3 Algorithm “How?”

In this subsection, we formulate the design criteria of the
preceding section mathematically and discuss simple al-
gorithms for drawing shapes with the desired properties.
The drawing of the silhouette lines is deferred to the later
section on hardware-accelerated rendering.

We assume that we are given an undistorted shape A in
paper coordinates, such as a rectangle or an ellipse, and
we want to draw all pixels of B, the torn shape in pa-
per coordinates. The transformation from A to B should,
in accordance to the criteria in the previous section, be
relatively local and depend continuously on the location
with respect to the paper — but should not be translation-
invariant.

The most obvious choice is to use an offset: if a(p) is
the indicator function for the shape A, i.e. 1 if p is inside
A and 0 otherwise, then

b(p) = a(p + f(p)). (1)

This is the way Perlin[36] create marble out of lines.
The limitation of this approach is that there is no ebbing

because it is based on the points inside A, not its border. A
different approach is to displace the border of A: if a(t) is
the parametrized curve of the border of the original shape,
then

b(t) = a(t) + f(a(t)).

This technique is commonly called displacement map-
ping. There are variations to this such as displacing along
the normal direction.

The important point w.r.t. both of of these common
techniques is that the displacement depends on location
in canvas coordinates, not in the coordinates relative to
the undistorted shape. This is what produces the correct
illusion.

4 Hardware-accelerated implemen-
tation

We shall concentrate on OpenGL and NVIDIA extensions
(due to their availability in the Linux environment), but
the feature sets of other manufacturers and proprietary
APIs are quite similar.

OpenGL allows non-rectangular viewports through the
stencil buffer, which can be used to create the stencil in a
first pass by just drawing into the pixels and then in the
second pass set to mask only those pixels to be allowed to
be drawn that were touched in the first pass.

There are two basic alternatives for drawing the shape:
either by using geometry to draw the jagged edge seg-
ment by segment, or by using a texture to draw a longer
stretch at one time. We have chosen the latter approach as
the more likely one to yield an acceptable performance.
Also, it is easier to avoid aliasing artifacts in the texture
approach. This approach, generating shape through tex-
ture, is similar to the one used by Perlin in [21] for syn-
thesizing solid shapes.

4.1 Drawing the shape

When the tear-out reaches the edge of canvas, the smooth
canvas border should be drawn instead of the parts of
the tear-out shape extending outside the canvas. This
can be implemented with stencil operations: First the full
tear-out shape including the border is drawn to the sten-
cil buffer. Then the canvas with its borders is drawn on
screen using stencil test, and another bit is written to the
stencil buffer for each canvas pixel ending up on screen.
That stencil bit is then used to draw borders for the torn
edges.

4.1.1 2D offset texture

The type of offsetting in Eq.(1) is implemented in modern
texture shading hardware, such as the NV25 architecture.
The image of the undistorted shape can be stored in a tex-
ture and accessed with texture coordinates offset by (read
from) another texture. This is called an offset (dependent)
texture access.

On hardware without texture shading capabilities, such
as the NV10, we can obtain a suitable shape by constrain-
ing the offset in the direction of the normal. This can

4



be done by rendering into a texture a function which is
1 inside the undistorted shape and falls off linearly with
distance. The hardware is capable of adding the value of
such a texture and a noise texture and using that (through
alpha test) as a condition for drawing the fragment.

We stress that this implementation is not necessarily
any worse than the offset texture implementation: all its
effects are within the options described in Section 3.2.

4.1.2 Explicit undistorted shape

Naturally, the undistorted shape can also be drawn by
OpenGL primitives, by drawing polygons enveloping the
widest variation in the torn shape and using the smooth
shading interpolation in OpenGL to obtain the linearly
falling value. This avoids the use of the second texture
unit.

In this approach, we can also obtain ebbing with a kind
of displacement mapping: instead of accessing the noise
texture at the pixel location of the paper, the noise tex-
ture is accessed at the location of the undistorted edge by
calculating the texture coordinates appropriately.

Corners can cause problems in this approach: for small
curvature, the deviation from the normal direction is not
noticeable but for angles approaching 90 deg, the results
are not satisfactory. There are at least two possible solu-
tions: rounding the corners or using the stencil buffer to
render the two edges separately and taking the intersec-
tion.

4.2 Drawing the edge

Most work to date on NPR silhouette edges concerns
either polygon-based 3D models[9, 38, 32, 34, 39] or
image-based approaches[43]. In our case, the edge is
defined implicitly, as the solution of an equation, which
makes it hard to obtain consistent border width. Mathe-
matically, the border of an irregular tear-out is defined as
the set of points whose distance from the tear-out is less
than or equal to the desired line width. In the following,
we consider different ways for approximating the border.

4.2.1 The oldest trick in the book

The oldest and conceptually simplest way to draw a black
edge around a shape is to first draw the shape with black

a) b)

c) d)

e) f)

g) h)

i) j)

Figure 4: The algorithms a) 2D offset b) original texture
that was offsetted c) 1D offset d) noise texture + undis-
torted shape texture e) undistorted shape texture f) noise
texture g) explicit undistorted shape, ebbing case h) tex-
ture access results + color i) color j) texture access results
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color several times shifted slightly to different directions
before drawing the correctly colored, unshifted instance
We have no idea when this approach has first been used
or proposed.

Shifting to the four screen axis directions is simple and
produces good results for narrow border widths (1 or 2
pixels). However, diagonal edges are drawn slightly too
narrow, and the border around small features may end up
sprinkled if the line width is more than one pixel. In such
cases, a more complete set of shifted shapes is needed.

This method is general, but requires drawing the shape
multiple times. With multiple texture units, it is possible
in some circumastances to do the texture accesses corre-
sponding to different shifts for each fragment at the same
time.

Also, since we know that the center of the shape is
solid, that part doesn’t need to be drawn for the shifted
shapes.

4.2.2 Pre-computed borders

Drawing thick (≈ 10 pixels) borders by shifting gets to be
inefficient due to the large number of shifts required for
good quality. In this section, we present an algorithm that
is able to approximate the shape well in a single pass.

The algorithm works by precalculating the displace-
ment or offset of the outer edge of the black line, assum-
ing that the inner edge is defined as the edge of the area
drawn by the algorithms of Section 4.1. The precalculated
edge shapes are different for different angles, but can be
approximated by storing the offsets at a discrete set of ori-
entations in different components of a texture and interpo-
lating by calculating dot products. This approximation is
not completely free of artifacts, but is sometimes accept-
able and is fast to draw.

Non-photorealistic line width scaling can be obtained
by computing each mip-map[46] level of the outer edge
textures separately with the desired line width for that
scale. This method of computing mip-maps is similar to
the art maps used in [22]. Because the textures store off-
set/displacement values, the mip-map levels interpolate
seamlessly. However, zooming above the highest level of
detail in the mip-map will fall back to the linear scaling.

4.2.3 Image-space algorithms

Image-space algorithms for drawing edges[43] work
somewhat analogously to the previous section; the differ-
ence is that instead of rendering the shape several times, a
filter is applied to the depth buffer where the shapes have
been rendered to extract the discontinuities.

The advantage of image-space algorithms is that their
performance does not depend on the complexity of a
scene; however, it appears that only the NV30/R300 gen-
eration of graphics chips is flexible enough to support
image-based operations well, due to the number of tex-
ture accesses and floating point operations needed. Also,
it is more difficult (although possible) to adjust the width
of the border based on depth in this approach.

4.2.4 A silly hack with offset texture mipmapping

The border can be drawn by offsetting a texture with an
image of a straight line. However, a sloped offset reduces
the width of the distorted line. This narrowing can be
compensated by using scale-invariant constant line width
(in texels) for the mipmaps of the image of the line.

The trick is that the computed level of detail for each
fragment (at least on the NV25) is lower for a sloped off-
set, and the lower detail texture with thicker line will ex-
actly compensate the reduced line width. Note that this
only holds when offsetting in the normal direction. Also,
derivative discontinuities are sometimes visible as spikes
in the border, if the border is more than a few pixels wide.

This trick only works if the line texture is 2D, but its
other dimension can be 1.

5 Example applications

In this section, we discuss the screenshots of our user
interface designs using tearouts (Fig. 5). The overall
appearance is somewhat similar to the hyperbolic tree
browsers[26, 25, 27]. The floating tearouts, which we
call buoys, are somewhat similar to the child relation in
the hypercept system of Milgram and Cowan[33] or the
layout of links in the PAD++ web browser[4]. The dif-
ference is that the bidirectional links are elevated to first-
class citizenship: the structure is not embedded to a 2D
space before browsing. An example Also seen in Fig. 1
The connection structure somewhat similar to [12],
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Figure 5: Screenshots of user interfaces using tearouts. Top: browsing PDF files of scientific articles, where the
articles are bidirectionally connected. Each torn viewport represents a complete article to where the user can jump by
clicking. The different background textures of the articles help the user know which article is shown in a tearout. the
tearout. Bottom left: an interface where the user can change the zoom factor on the infinite plane. Bottom right: same
view, zoomed. The ripples of the edge indicate the new scale, along with the background texture..
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The interface is a focus+context[15] interface for
browsing (editing is under construction) a structure of 2D
planes between which there are bidirectional connections.
The links connect particular regions of the planes, and the
targets of the links are shown in tearouts. If a link target is
clicked, the view animates, bringing the link target to full
zoom and the current focus moves to a similar tearout..
For the link targets, rectangular frames would be less vi-
sually distinct; the tearouts shows clearly that they are not
part of the focused document.

If the focused document is large, it is also shown with
break lines, whose shape helps keeping track when pan-
ning and zooming.

We emphasize that this is only a prototype, about which
we intend to publish a more detailed description later.

6 Conclusions

We have presented a new way of displaying viewports in
computer user interface, based on break lines in techni-
cal drawings. The method can present a visually clearer
appearance in situations with several viewports and also
help perceiving viewport scale and motion.

http://linuxjournal.com/modules/NS-lj-
issues/issue93/5574f3.png

6.1 Possible objections

One possible objection to the torn lines might be that they
could take up more space than just the normal frames.
However, the rounder shapes free some space, and in
some cases, the uneven edge could even be seen as be-
ing used twice, i.e. providing extra space, because a wider
context from both sides of the edge is shown, partially oc-
cluded.

Another objection is that the methods presented here
are incompatible with some standard GUI elements and
paradigms. For example, fitting scrollbars onto a tearout
would be ridiculous. However, in a proper focus+context
UI they should not be necessary: a click on the tearout
would expand it and then the current location within the
canvas could be shown in other ways, e.g. through a fish-
eye distortion. It is only natural that changing such a basic
user interface element as the viewport will cause changes

in the other elements that have adapted to the rectangular
viewport for decades.

In its current form, the method is not suited for in-
finitely Zoomable User Interfaces (ZUIs)[37, 6].

6.2 Further work

The next generation of graphics chips brings interest-
ing new possibilities with displacement mapping, floating
point textures, longer fragment programs and more tex-
ture accesses per pass.

Carrying out usability tests adjust the parameters and
to evaluate the potential of tearouts is a high priority.
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