
Bridging Javadoc and design documentation via UML
diagram image maps

Asko Soukka, Tuukka Hastrup, Tuomas J. Lukka and Benja Fallenstein
Hyperstructure Group

Agora Center, University of Jyväskylä
P.O. Box 35, FIN 40014

humppake@iki.fi, Tuukka@iki.fi, lukka@iki.fi, b.fallenstein@gmx.de

ABSTRACT
We present a navigational aid for documentation used in software
development. Based on using readily-authored UML diagrams as
multi-ended links, we hypertexturally connect two distinct areas of
documentation: design documents and javadoc program code doc-
umentation. Connecting the distinct areas is essential because it
could help new developers in getting productive and supports de-
velopment processes where both design and implementation change
continuously.

We also describe the lightweight implementation as a supplement
to a Free Software toolchain. To achieve bi-directional linking, the
implementation after-treats HTML pages generated by other tools,
injecting into referred pages links back to the referring imagemap
of each UML diagram. Each diagram also servers as a spatial con-
text for navigation within target nodes.

The software is currently a part of and in use at our software project.
We mention how the scopes of the navigation system and software
could be widened to hypertext document types outside the needs of
our software project.

Categories and Subject Descriptors
H.5.4 [Information Interfaces and Presentation]: Hypertext/Hy-
permedia—Navigation

; D.2.2 [Software Engineering]: Design Tools and Techniques—
Evolutionary prototyping

General Terms
Design,Documentation,Human Factors

Keywords
imagemap,maps,bi-directional linking,link authoring,UML,spatial
hypertext

1. INTRODUCTION
Software projects manage a large base of evolving documentation,
which is inter-related on many levels. Design documentation gives
architectural views on a more general level, while the program
code source files contain minute interface specifications and often
also embedded documentation giving details on how the interfaces
should be used. Although these two parts of documentation are
semantically dependent, linking them by hand is tedious and error-
prone when they are authored using different software.

In this article, we present a navigational aid for software documen-
tation. Based on using UML diagrams as multi-ended links, our
tool connects two distinct areas of software engineering documen-
tation: the general design documents and the detailed method-level
javadoc documentation.

In the following sections, we first discuss the role of documenta-
tion in software engineering in general, then bring the problem of
the separate documentation bodies into focus and present our so-
lution to linking and its implementation. Finally, we discuss our
experience from using the tool and conclude.

2. BACKGROUND

2.1 Software engineering process
In their article “A rational design process: how and why to fake it”
[?] Parnas and Clements argue that rational software design process
is not generally possible, but acceptable results could be achieved
by faking “the ideal process”. Their ideal software design process
contains the following steps [?, pp. 252-255]:

• establish and document requirements

• design and document the module structure

• design and document the module interfaces

• design and document the use hierarchy

• design and document the module internal structures

• write programs

• maintain (redesign and redevelopment, keeping documenta-
tion up to date)

It should be clear that documentation plays a major role in the ideal
software design process, and at different levels of abstraction the
type of documentation varies. The steps listed above should pro-
duce documentation which records requirements and design deci-
sions, and could be referenced throughout the building of the soft-
ware [?].

A programmer joining a project may need a lot of mentoring by
other group members before being able to contribute productively
to the project. This results in the Mythical Man Month effect [?, p.
16]: adding a new member into the software design process delays
rather than speeds up the project.

“Men and months are interchangeable commodities only
when a task can be partitioned among many workers
with no communication.” [?, p. 18]

“The added burden of communication is made up of
two parts, training and intercommunication. Each worker
must be trained in the technology, the goal of the ef-
fort, the overall strategy, and the plan of work.— —
Intercommunication is worse.” [?, p. 18]

Obviously, the greater the amount of programmers or the higher the
turnover rate, the more important it is to have good documentation.
When new programmers join the project they shouldn’t have to de-
pend completely on the old staff for finding their way around. An
up to date and rational set of documents available for them could
ameliorate the Mythical Man Month effect [?, p. 255]. Improv-
ing the learning curve of new programmers may have significant
effects.

In our own development effort, Gzz, different parts of the system
have different needs for the development process: the core parts
of the system are frozen and require a more formal process for
changes, as in Boehm’s Spiral Model of software development and
enhancement [?]. On the outer edges of the system, new research is
taking place and should not be hampered by requiring formal pro-
cess or documentation beyond the immediate needs of the group
members involved in the development of that particular part. For
this reason we have adopted some conventions from Extreme Pro-
gramming, such as continuing analysis of design objectives along
the implemention progress [?]. This calls for cross-linkage between
design and program code documentation, as they both evolve con-
tinuously.

2.2 UML diagrams
The Unified Modeling Language (UML) is the standard way to vi-
sually describe software architectures and constructs in diagrams
[?]. It was originally developed for descriptions on an abstract level
(many constructs of it cannot be directly expressed in any program-
ming language) [?, p. 12], but the current trend in research is to use
it also on the concrete level, as to fully unify the architectural docu-
mentation and program code: the program code might be generated
from highly detailed diagrams [?], or diagrams may be produced
directly from the source code [?].

In this article we focus on the more conventional use of UML to
plan and document software architecture on a general level. UML
can function as a common language for communication within a

Table 1: Comparing design documentation to Javadoc.

Design documentation Javadoc
good overall picture easy to find a given class, easy to

check all methods

little detail detailed

may be slightly outdated at any
particular time

methods and classes always up to
date (generated from source), doc
comments also usually

hard to find explanations for a par-
ticular class

no overall picture of classes’ roles

UML diagrams —

written and organized by humans written by humans, organized
rigidly by package structure

software development team, and for this purpose we prefer human-
drawn (non-autogenerated) diagrams that show the semantically
meaningful features at the right level of abstraction:

“You draw diagrams to visualize a system from dif-
ferent perspectives, so a diagram is a projection into a
system. For all but the most trivial systems, a diagram
represents an elided view of the elements that make up
a system.” [?, p. 24]

3. THE PROBLEM
In our software engineering project [?], as probably in most projects
that use the Java programming language [?], the software develop-
ment documentation is divided into two major domains: the de-
sign documentation and Javadoc [?]. The design documents cover
the most important architectural features and are written either be-
fore coding (for design) or after (for exposition of the architecture
or refactoring design). Javadoc, on the other hand, is a detailed
and fully generated documentation from javadoc comments of each
class and method in the Java source code. The two types of docu-
mentation are complementary, as demonstrated in Table 1:

During coding, the Javadoc documentation is often necessary, but
the design documentation is easily left in the dark reaches of the
filesystem. It could be argued that the reason for design documents
being left unused is that parts related to ongoing work are hard to
find.

For example, when referring to the Javadoc on how to use some in-
terface, one often would like to know how to obtain an object which
implements said interface, but unless someone has explicitly writ-
ten the instructions into the doc comments, the Javadoc will only
explain how the interface is used. What exasperates this situation is
the certainty that in the design document there surely is a diagram
and a section which talks about the issue, but finding them will take
time.

The distinct pieces (Javadoc and the design documentation) cannot
seen as a whole. The obvious question, then, is: can we increase
the overall value by hyperlinking the two distinct pieces of docu-
mentation?

When looking at a design document, jumping to the Javadocs to get
the details would be useful, and when looking at a Javadoc, it would

Table 2: Linking possibilities from items in different kinds of
UML diagrams to Javadoc.

Conceptual Specification Implementation
probably no links to
javadoc

can link to Java inter-
face and some classes

can link to all classes

the design docu-
mentation packages
can be linked to the
architectural doc-
uments discussing
those packages

can link to Java pack-
ages

can link to Java pack-
ages

be most useful to be able to see if any design documents discuss
that class or package. We believe that the design documentation
would be read more if made easily reachable from relevant parts of
Javadoc.

This is the starting point for the Free Software toolchain we devel-
oped: a toolchain for bidirectional linking between design docu-
mentation and Javadoc, using UML diagrams as multi-ended links.

4. THE SOLUTION

4.1 Usability considerations
The usability of hypertext-based documentation may suffer from
user’s disorientation: the tendency to lose one’s sense of location
and direction in a nonlinear document [?, pp. 38-40]. This means
that users don’t know where they are in the documentation network
or how to get to some other place that they know to exist in the
network.

Edwards and Hardman [?] argue that the most appropriate types of
navigation devices would be based on spatiality. According to their
research, individuals appear to be attempting to create cognitive
representations of hypertext structures in the form of a survey-type
map. They conlude that users should be allowed to develop a cog-
nitive map of one view of the data structure before being given the
opinion of navigating through the data some other way [?, p. 123].

In our case, UML diagrams are the obvious candidate for a common
navigational metaphor to unify the two distinct pieces. The UML
diagrams include graphical objects representing Java classes, UML
diagrams not only show the readers a map of documentation but
also perform as spatial navigation menus.

4.2 What could be linked
To see which possibilities we have when linking from diagrams,
we use Cook and Daniels’s classification of UML diagrams into
three classes [?]: conceptual diagrams, specification diagrams and
implementation diagrams. Looking into the items available in each
of these classes, we come to the conclusion shown in Table 2.

The UML diagrams enable navigation in various purposes. Apply-
ing Trigg’s taxonomy of different link types [?], we could identify
several semantic meanings of the links, shown in Fig. 1. Links
from the diagram to documentation pages are expressed in HTML

imagemaps, and bi-directionality is ensured by injection of HTML
IMG tags to all referred pages. As web browsers generally embed
the IMG-linked diagram to the documentation nodes, the diagram
creates spatial links between all the referred pages. Further, each
documentation node creates spatial links between all the diagrams
it refers to, allowing the reader to see which alternate spatial views
are available for the current node.

4.3 Reader’s point of view
Before reaching its current state, our documentation evolved through
several distinct steps, which will be viewed first from the reader’s
and then from the developer’s point of view.

Step 0; The beginning. In the beginning we had a distinct design
documentation with UML diagrams and Javadoc generated from
the sourcecode — probably the most common case. Both could be
comprehensive and well navigable by their own, their information
is difficult for the reader to combine because there is no crosslink-
ing between them.

Step 1; UML to Javadoc links. Now there are imagemap links
from the UML diagrams in the design documentation to the rele-
vant Javadoc pages. However, after moving to Javadoc the context
in design documentation is lost, and there are no links from Javadoc
to design documentation.

Step 2; Relevant UML diagrams embedded in Javadoc. The
UML diagrams are now embedded into the Javadoc pages they re-
fer to, and they function as imagemaps also on the Javadoc pages.
The diagrams function as menus between the objects that appear
in diagrams. While this step provides more context for the actual
classes, the design documentation relevant to a given javadoc page
is still unreachable.

Step 3; From Javadoc through a UML diagram to a design doc-
ument. Even though the design documents were not included in
the original UML diagrams, they are included in the final image on
top of the diagram 7. Including all the contexts where the diagram
appears as links in the graphical image creates a consistent whole
- a spatial focus+context menu. The element that represents the
current hypertext node is emphasized (colored and also circled) for
clarity.

Because the original location on the diagrams is easily reachable
from its every implicit occurerrence in Javadoc or in design doc-
umentation, the size of the implicitly embedded diagram could be
reduced by 50%. The name of diagram object is also shown, hover-
ing the pointing device over diagram - also on diminished diagrams.

4.4 Authors’s point of view
On the developer side, creating diagrams within the design doc-
umentation should be as easy and natural as possible; we want to
minimum the barrier of drawing even only a small diagram to make
documentation more clear.

For Step 1, we keep it best to demand explicit links in the UML
diagrams. Author has to decide for each object in UML diagram
whether it should be linked, for example, by giving a fully-qualified
java class name or a relative path to design documentation page

referred class

architectural documentation

program code documentation nodes

including page including page

diagram

generalizationspecification

continuation

summary details

formalization application

continuation

referred class

another
diagram

another
diagram

alternate-view

alternate-view

 other pages

other classes
and packages

Figure 1: Semantic meanings of traversing the bi-directional links of a diagram. The dashed curves mean linkage by spatial relation.

2. After Step 1 from author’s perspective, the computer has all
the information needed to complete also steps 2 and 3, so no fur-
ther changes should be required. For example javadoc comments
should not need changes at all.

During steps 2 and 3 computer simply embeds diagrams into pre-
viously linked documentation pages and creates backlinks to the
initiating documentation pages.

5. THE IMPLEMENTATION
Eventually, we found no Free Software tools which would fulfill
our needs. Therefore, we decided to proceed with our own im-
plementation. In addition to the previously discussed goals of the
documentation as whole, there were also several implementation
related goals to be achieved. The tool had to:

• be tidy and light-weight

• be built on existing Free Software tools and be a part of Free
Software toolchain

• support easy re-editing (from the source)

• provide a plugin interface for different documentation tools

Up to this article, all steps except the last one are implemented.
The existing tools we selected as the basis for our documentation
tool are: Javadoc, Docutils [?], and our own UML diagram de-
scription tool. Further, the UML tool uses several free utilies to

convert each lexical UML diagram description into final Portable
Network Graphics (PNG) diagram files. Such utilies are MetaPost
[?] (mpost), which implements a language for picture drawing, and
Netpbm image file manipulation toolkit. Besides Javadoc, all tools
used are Free Software. The current linking tool is implemented to
support Javadoc, but after the plugin interface is ready, switching
Javadoc to any free alternative or using them as parallel should be
possible with only minor plugin programming.

The javadoc format is the standard way to include documentation in
Java source code [?]. Generating the WWW pages is not a compli-
cated process, and at the moment GNU Classpath Tools [?] is de-
veloping a Free Software implementation called gjdoc. Also many
other Javadoc like Free Software tools for exists - many of them
supporting multiple programming languages including Java.

5.1 UML tool
Our UML diagram description tool was already implemented be-
fore the documentation linking tool, which finally enabled the bi-
directional linking between distinctdocumentations. In the follow-
ing we discuss shortly, how we ended up to use this our own lexical
UML language instead of using already existing free direct ma-
nipulation diagram drawing tools like Dia [?], or CASE-tool like
ArgoUML [?].

There exist also such Javadoc like tools, which generate some em-
bedded diagrams into documentation. Doxygen [?] ,for example,
generates diagrams of class inheritance tree. Also proprietary Ra-

tional Rose could be used to reverse engineer UML diagrams and
build up to date documentation (with support of Rational Soda)
from source code [?]. Of course, generated documentation may
give well detailed information from the current implementation, but
the design documentation should also cover the future and be rather
well abstracted than well detailed. Therefore, we want to avoid be-
ing bloated by a large amount of too detailed diagrams (meanless
for us) and prefer fully human created diagrams in our design doc-
umentation.

As we want to remove the barrier of drawing at least small dia-
grams within the documentation to make it more understandable,
the drawing method should be easily integrated into current work-
ing customs. Because in small softaware development group pro-
grammers also write the documentation, the documentation tools
shouldn’t be gap to change the programming tool to document writ-
ing tools. Even better would be that the programming tool could be
used as documentation tool. Lexical UML diagram description for
our UML drawing tool, of course, can be written with any text ed-
itor. At least for a programmer, who are used to describe objects
lexically, describing also the UML diagrams lexically could be even
more efficient than using distinct direct manipulation drawing tool.

“It’s as if we have thrown away a million years of evo-
lution, lost our facility with expressive language, and
been reduced to pointing at objects in the immediate
environment.— —We have lost all the power of lan-
guage, and can no longer talk about objects that are
not immidiately visible.” [?, p. 74]

Direct manipulation user interface do not necessarily improve per-
formance: users must learn the meaning of the graphical compo-
nents, graphic presentation could be misleading and graphical pre-
sentation could take excessive screen display space [?, p. 64]. Di-
rect manipulation interfaces could be also rather slow to use, since
in a such interface user may have to directly manipulate everything.
Instead of an executive who gives high-level instructions, the user
is reduced to an assembly line worker who must carry out the same
task over and over [?, p. 74]. The UML langage has a large amount
of different symbols and different connection types between them
[?]. It could be quite challanging for a direct manipulation inter-
face to make all these alternatives as easily available as they could
be just typed when using lexical description.

In our UML tool the describtion of UML diagram is divided in two:
into a description of all the elements in diagram 2 and description
their graphical layout 3. The final diagram 5 is compiled

4 from the element and layout descriptions. The description of ex-
isting elements is easily done using our UML tools’ lexical descrip-
tion language and the description is readable even without compil-
ing the graphical diagram. The graphical layout is more difficult to
express lexically without exceptional spatial imagination. Usually
the intended results need several compilation trials. We admit that
after all elements for a diagram are selected using lexical descrip-
tion, the graphical placing for them could be done much easier by
direct manipulation.

5.2 Docutils

���������	��
�������������	����

 jlink
 package-design.html

�������	��������	�������	���� ����������	��!�

 jlink����#"�$	%��

 void first()

�������	�'&�	���#(��%)� ��������	���	��!�

 jlink� ��"�	���	����������	���	��
����#"�$	%��

 void second()

�������	�+*	���������	���,�#�����������	�����

 jlink����#"�$	%��

 void third()(�$���%,��$�-����#"/.10

�������	���#�	������������������$��

 jlink��	�����	2�3&���	� (��%
��	�����	2�'*	�!�	�����	���
���	��$	����$�����$��+��-��	���4.65�0,7

 multi(*) role(part_of)
 Component

�������	�38�$�����$�������

 jlink

���������	��
�������������	����

�������	��������	�������	���� ����������	��!�
����#"�$	%��

 void first()

�������	�'&�	���#(��%)� ��������	���	��!�
� ��"�	���	����������	���	��
����#"�$	%��

 void second()

�������	�+*	���������	���,�#�����������	�����
����#"�$	%��

 void third()(�$���%,��$�-����#"/.10

�������	���#�	������������������$��
��	�����	2�3&���	� (��%
��	�����	2�'*	�!�	�����	���
���	��$	����$�����$��+��-��	���4.65�0,7

 multi(*) role(part_of)
 Component

�������	�38�$�����$�������

Figure 2: An example of UML tool element description without
and with link information for linking tool.

 # Places "Derived" object into absolute
 # coordinates (100, 100). Coordinate (0,0)
 # is the lower left corner.
 Derived.c = (100, 100)

9;:�<#=�>�?�@BA	C1D	?�E+A#F�G�?�>�C�@HD�A�E�I�J#A�K�C#=	<�<1LMA�E

 # vertically relatively to absolutely
 # placed "Derived" object.
 horizontally(50, interface_h, Interface, Derived, Abstract);
 vertically(50, interface_v, Derived, Implementation);

 # Places "Component" object into absolute
 # coordinates (300, 0).
 Component.c = (300, 0);
 horizontally(50, component_h, Component);

 # Finally the package object is stretched
 # around classes.
 pad = 30;
 Example.nw = Interface.nw + (-pad,pad);
 Example.se = Component.se + (pad,-pad);

Figure 3: An example of UML tool layout description.

Because Javadoc is generated from special doc comments in the
source code, it is almost always up to date. The design documen-
tation, though, is updated manually. Of course, it should be up-
dated regularly during every design cycle, but in practise that won’t
always happen. To avoid out-of-date design documentation, the
treshold of writing the design documentation and explaining the
design using UML diagrams should be as low as possible.

A more difficult issue is to select tools for writing the design doc-
umentation and drawing diagrams into it. The solution should be
cheap, and as a Free Software project we would prefer other Free
Software. Also the solution should fit well to our current working
customs.

As a natural continuum for UML tool we started to use reStruc-
turedText (reST) plaintext syntax with Docutils parsering system
[?] for writing our design documentation. The UML tool already
shared some of the main goals of reST syntax [?]: it was read-
able also raw form, the most common elements had very simple
markup, it was writable with any text editor and the UML markup
was highly extensible (by enlarging the preprocessor and MetaPost
UML macro libary 4). ReST syntax itself is extensible easily by
inventing new directives and adding parsers for them into Docutils.
The extensibility of reST syntax and Docutils parsing system made

UML
elements

UML
layout

UML
preprocessor

MetaPost

image
converter

utils

preprocessed
UML elements

UML diagrams
in desired format

general MetaPost code
for UML diagrams

MetaPost
UML macros

Figure 4: The process of compiling UML diagram using our
UML tool.

Note: Because the layout description is passed directly to
MetaPost as it is, any additional MetaPost code is allowed
to enter within it. This is a small bonus for using MetaPost,
since it allows drawing of of arbitrary decorations into dia-
grams.

Example

«interface»

Interface
void first()

«interface»

Derived
void second()

«abstract»

Abstract
void third()
void fourth()

Implementation Component
1

 *

part_of

Figure 5: An example of UML tool diagram output.

it possible to write embedded markup of our umltool into design
documentation. That way a lexical description of UML diagram is
also easily reachable and editable when updating the documenta-
tion including the diagram description.

Even reST syntax is somehow WYSIWYG (what-you-see-is-what-
you-get). Gentner and Nielsen [?, p. 75] argue that a document has
a rich semantic structure that is poorly captured by its appearance
on a sceen or printed page, which many WYSIWYG tools assumes
to be the only one useful representation of the information. WYSI-
WYG seem to assume that people want always paper-style reports
to be read from top to bottom, when we already live within an in-
formation flood, where the overloaded reader should be allowed
to affect the final representation of document [?, p. 75]. ReST
and Docutils parser won’t make such assumptions, but tehy clearly
distincts the semantic structure and rules for converting the text and
semantics into printable page. ReST syntax has umambiguous rules
to parse document into structural form and after parsing it could be
written into multiple output formats [?].

5.3 Linking tool
Using reST syntax for design documentation, lexical description
for UML diagrams and extensible Docutils parser for generating
the final representation, we was allowed to embed also UML di-
agram description within the design documentation reST sources.
When converting the reST document into final representation, our
custom directive for Docutils passed the embedded UML diagram
description to our UML tool and added a reference to the compiled
diagram into Docutils’ document tree structure. This was a promis-
ing base to build our linking tool on.

In the current implementation we have two docutils directives to
use for embedding UML diagrams into reST based design docu-
mentation. The first one is used to describe a new UML diagram,
the second is used to refer to an already existing diagram. The
correct reference is done simply by diagram name, so it could be
spoken about UML diagram namespace, where all diagrams are
distincted by unique naming.

To enable linking elements in UML diagram a “jlink” command
after each linkable element is added into lexical UML diagram de-
scription 2. If “jlink” has no attributes it is linked to Javadoc page
of the package or class determined from the element’s name. Oth-
erwise element is linked into file determined by the attribute fol-
lowing “jlink”.

The documentation [?] is created in two distinct phases. In the
first phase 6 all reST sources are parsed and compiled into HTML
and lexical UML diagram descriptions are extracted into temporary
storage Also the paths for reST documents explicitly referring par-
ticular diagrams are stored with that diagram source. In the second
phase all compiled reST documents are processed again:

• Focused versions of UML diagram with list of
all explicitly referring reST documents are cre-
ated and embedded into compiled documentation
pages.

• Image maps targeting all linked elements appear-
ing in UML diagrams are generated and embed-
ded into compiled documentation pages.

2nd phase

Java sources
reST sources with

embedded UML sources

Javadoc HTML reST HTML UML sources

Javadoc

Java source

HTML data

reST source

HTML data UML source

UML
tool

HTML
image maps

UML diagrams
(in PNG format)

Javadoc HTML
with UML
diagrams

reST HTML with
UML diagrams

diagram
embedder

HTML data

HTML data

HTML data HTML data

HTML data

filename

a request to compile personalized diagram

UML source

HTML data

PNG data

1st phase

GLUE

Docutils and
UML directive

Figure 6: The two distinct phases of generating Javadoc and
design documentation bridged via UML diagrams.

• Finally focused versions of UML diagrams are
created and implicitly embedded into targets of
all linked elements appearing in UML diagrams.

6. EXPERIENCES
The UML and linking tools are currently in everyday use in the
Gzz project [?]. For now, the documentation covers about 380 Java
classes and over 80 pages of design documentation exist [?]. We
have only about 30 human-drawn UML diagrams embedded within
the design documentation pages, but the number is continuously
growing. For all those diagrams, the linking tool generates more
than 150 separate differently focused versions, and by simple cal-
culation the linking tool has embedded each diagram implicitly on
average into four different design documentation or Javadoc pages.
The UML tool description language covers currently 26 different
types of diagram items and is extended regularily as necessary.

7. DISCUSSION
In this article we have discussed the hypertextualization of docu-
mentation in our software project. Using existing Free Software
tools and a little new glue code we have made UML diagrams into
contextual menus for switching between the design documentation
and the detailed Javadoc documentation. The current implementa-
tion is a part of and in use at our Free Software project [?], where it

generates the publicly web-browsable hypertext [?] of the project’s
documentation.

The software automatically creates multidirectional links based on
simple directives in the UML diagram source code in our documen-
tation. Only web pages generated during the documentation build
process are affected, which makes the task of our software easier
than that of some other web augmentation tools [?].

Earlier concept-based navigation and map-based navigation have
added horizontal links on top of hierarchical hypertext [?]. The
structure we discussed in this paper is similar as the diagram be-
comes a navigational node, but we don’t rely on keywords or heuris-
tics in link creation. Further, as the diagram is shown inside a web
page, it functions as a multi-target link.

There are a number of areas in which the current prototype needs to
be improved. For example, currently the only links are from UML
classifiers (i.e. classes, packages, objects, ...) to Java classes and
packages and other documents. Methods (and fields) should also be
linked, especially in interaction diagrams, as well as associations,
whenever there is a suitable object in the code documentation.

The layout of the diagram is also currently more difficult than it
should be. While the creation of the diagram structure is easier us-
ing written text than direct manipulation, the layout of the resulting
structure would benefit from a click-and-drag interface. However,
this approach would also lose some expressive power: in MetaPost
layout the user is now allowed to draw anything on the diagram.
This can possibly be solved by another stage after metapost, where
the locations of the nodes could be interactively defined into Meta-
Post variables. On the other hand, there are also arguments against
MetaPost: the error messages received on erroneous input to the
UML tool are difficult to decipher due to the translation layer be-
tween. Abandoning MetaPost might also speed up the compilation
process.

We plan, once some of these issues are resolved, to release the glue
code as a standalone Free Software package. A plugin interface
would allow linking to documentation in different format than the
ones we have used this far. As the UML description language de-
velops, it can support more diagram types, thus the tool would be
deployable in new kinds of documentation. Using some other maps
in place of UML diagrams, same kind of linking could be used in
other hypertext applications.

Finally, we’d like to point out that this tool could benefit from
a less limited presentation layer than currently supported by web
browsers. Ideally, hypertext browsers would directly support nav-
igation maps in their user interface, stabilizing the map positions
during browsing.

8. ACKNOWLEDGMENTS
The authors would like to thank Toni Alatalo for discussions re-
garding UML software and this manuscript.

9. REFERENCES
[1] K. Beck. Embraching change with extreme programming.

IEEE Computer, 32(10):70–77, October 1999.

[2] B. Boehm. A spiral model for software development and

b)

d)

a)

c)

Figure 7: A collage of screenshots from Gzz project documentation.

a The front page of our design documentation. Items with blue background act as links, the item in orange is the active document, and “BROKEN
LINK” marks that the item would be a link, but the target was unavailable.

b Moved to “Backend” documentation node. The diagram from the front page is implicitly included at the top of the page in small size. The item
representing this node is marked with rough circling in addition to orange background.

c Moved to “Space” Javadoc interface class node. A couple of implicitly embedded diagrams show the various contexts for this package.

d Moved to “Cell” Javadoc class node. All diagrams are split in two by horizontal lines. Below a line is the diagram itself, above is a list of
the documentation nodes where the diagram is explicitly included. Most of the diagrams in the current documentation is explitly included only
once. The diagram in this node is originally included in “Gzz Core APIs” documentation node.

b)

d)

a)

c)

Figure 8: A collage of screenshots from Gzz project documentation.

a Moved to “Gzz Core APIs” documentation node. The browser’s viewport is automaticly scrolled to show the diagram. Explicitly included
diagrams are always shown full scaled.

b Moved to the beginning of “Gzz Core APIs” documentation node. Already famous diagram is shown implicitly embedded at the top of the page
in small size.

c Moved to “Frontend” documentation node.

d The journey ends to “gzz.client” Javadoc package node. The rightmost of the implicitly embedded diagrams can be seen twice included explicitly
in documentation. The second explicit reference is done from node labeled “PEG: ViewTool”. “PEG” stands for “Proposals for Enchancing
Gzz” and it’s a crucial part of our design documentation for future improvements.

enhancement. IEEE Computer, 21:61–72, 1988.

[3] G. Booch, I. Jacobson, and J. Rumbaugh. The Unified
Modeling Language Reference Manual. Addison-Wesley
Object Technology Series. Addison-Wesley, 1998.

[4] G. Booch, I. Jacobson, and J. Rumbaugh. The Unified
Modeling Language User Guide. Addison-Wesley Object
Technology Series. Addison-Wesley, 1998.

[5] F. P. Brooks. Essays on Software Enginering. Reading, MA:
Addison-Wesley, 1975.

[6] P. Brusilovsky and R. Rizzo. Map-based horizontal
navigation in educational hypertext. In Proceedings of the
thirteenth conference on Hypertext and hypermedia, pages
1–10. ACM Press, 2002.

[7] S. J. Cook and J. Daniels. Designing Object Systems:
Object-oriented Modelling with Syntropy. Prentice-Hall,
unknown 1994.

[8] D. Edwards and L. Hardman. Lost in hyperspace: Cognitive
mapping and navigation in a hypertext environment. In
R. McAleese and C. Green, editors, Hypertext: Theory into
Practice, pages 105–125. Oxford: Intellect Limited, 1989.

[9] GNU Classpath-tools.
http://www.gnu.org/software/cp-tools/ Free
Software Foundation, Inc, 2002.

[10] L. Friendly. The design of distributed hyperlinked
programming documentation, 1995. Presented at the
International Workshop on Hypermedia Design ’95.

[11] D. Gentner and J. Nielsen. The Anti-Mac interface.
Communications of the ACM, 39(8):70–82, 1996.

[12] D. Goodger. An Introduction to reStructuredText.
http://docutils.sourceforge.net/spec/rst/ , 2002.

[13] J. Gosling, B. Joy, G. Steele, and G. Bracha. The JavaTM

Language Specification. Addison-Wesley, second edition,
2000.

[14] W. Harrison, C. Barton, and M. Raghavachari. Mapping
UML designs to Java. In Proceedings of the conference on
Object-oriented programming, systems, languages, and
applications, pages 178–187. ACM Press, 2000.

[15] J. D. Hobby. A METAFONT-like system with PostScript
output. TUGboat, 10(2):505–512, 1989.

[16] A. Larsson, C. Chplov, L. Clausen, and H. Breuer. Dia - a
drawing tool.
http://www.lysator.liu.se/~alla/dia/ , 2003.

[17] P. D. Lebling, M. S. Blank, and T. A. Anderson. Hypertext:
An introduction and survey. IEEE Computer, 20(9):17–41,
1987.

[18] T. J. Lukka et al. Gzz. http://gzz.info/,
http://savannah.gnu.org/projects/gzz.

[19] T. J. Lukka et al. Gzz documentation.
http://himalia.it.jyu.fi/ .

[20] D. L. Parnas and P. C. Clements. A rational design process:
How and why to fake it. IEEE Transactions on Software
Engineering, 12:251–257, 1986.

[21] R. Pierce and S. Tilley. Automatically connecting
documentation to code with rose. In Proceedings of the 20th
annual international conference on Computer
documentation, pages 157–163. ACM Press, 2002.

[22] B. Shneiderman. Hypertext: An introduction and survey.
IEEE Computer, 17(8):57–69, 1983.

[23] ArgoUML - a modelling tool for design using UML.
http://argouml.tigris.org/ Tigris.org - Open Source
Software Engineering, 2002.

[24] R. H. Trigg. A network-based approach to text handling for
the online scientific community.
http://www.workpractice.com/trigg/thesis-chap4.html

Department of Computer Science, University of Maryland,
1983.

[25] D. van Heesch. Doxygen - a documentation system.
http://www.doxygen.org/ , 2003.

[26] H. Weinreich and W. Lamersdorf. Concepts for improved
visualization of web link attributes. In Proceedings of
International World Wide Web Conference, 2000.

http://www.gnu.org/software/cp-tools/
http://docutils.sourceforge.net/spec/rst/
http://www.lysator.liu.se/~alla/dia/
http://gzz.info/
http://savannah.gnu.org/
projects/
gzz
http://himalia.it.jyu.fi/
http://argouml.tigris.org/
http://www.workpractice.com/trigg/thesis-chap4.html
http://www.doxygen.org/

	Introduction
	Background
	Software engineering process
	UML diagrams

	The problem
	The solution
	Usability considerations
	What could be linked
	Reader's point of view
	Authors's point of view

	The implementation
	UML tool
	Docutils
	Linking tool

	Experiences
	Discussion
	Acknowledgments

