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Abstract 

This paper shows the importance of the use of class 
information in feature extraction for classification and 
inappropriateness of conventional PCA to feature extraction 
for classification. We consider two eigenvector-based 
approaches that take into account the class information. The 
first approach is parametric and optimizes the ratio of 
between-class variance to within-class variance of the 
transformed data. The second approach is a nonparametric 
modification of the first one based on local calculation of the 
between-class covariance matrix. We compare the two 
approaches with each other, with conventional PCA, and with 
plain nearest neighbor classification without feature 
extraction. 

1. Introduction 
Data mining is the process of finding previously unknown 
and potentially interesting patterns and relations in large 
databases. A typical data-mining task is to predict an 
unknown value of some attribute of a new instance when 
the values of the other attributes of the new instance are 
known and a collection of instances with known values of 
all the attributes is given.  

In many applications, data, which is the subject of 
analysis and processing in data mining, is 
multidimensional, and presented by a number of features. 
The so-called “curse of dimensionality” pertinent to many 
learning algorithms, denotes the drastic raise of 
computational complexity and the classification error in 
high dimensions (Aha et al., 1991). Hence, the 
dimensionality of the feature space is often reduced before 
classification is undertaken. 

Feature extraction (FE) is a dimensionality reduction 
technique that extracts a subset of new features from the 
original set by means of some functional mapping keeping 
as much information in the data as possible (Fukunaga 
1990). Conventional Principal Component Analysis (PCA) 
is one of the most commonly used feature extraction 
techniques, that is based on extracting the axes on which 
the data shows the highest variability (Jolliffe 1986). 
Although  this  approach “spreads” out the  data in the new 
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basis, and can be of great help in regression problems and 
unsupervised learning, there is no guarantee that the new 
axes are consistent with the discriminatory features in a 
classification problem. Unfortunately, this often is not 
taken into account by data mining researchers (Oza 1999). 
There are many variations on PCA that use local and/or 
non-linear processing to improve dimensionality reduction 
(Oza 1999), though they generally are also based solely on 
the inputs. 

In this paper we consider two eigenvector-based 
approaches that use the within- and between-class 
covariance matrices and thus do take into account the class 
information. In the next section we consider conventional 
PCA and give a simple example of why PCA is not always 
appropriate to feature extraction for classification.  

2. Conventional PCA 
PCA transforms the original set of features into a smaller 
subset of linear combinations that account for most of 
variance of the original set (Jolliffe 1986). 

The main idea of PCA is to determine the features, 
which explain as much of the total variation in the data as 
possible with as few of these features as possible. In PCA 
we are interested in finding a projection w:   

xwy T= , (1) 
where y is a  transformed data point, w is a  
transformation matrix, and x is a  original data point. 
PCA can be done through eigenvalue decomposition of the 
covariance matrix S of the original data: 
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where n is the number of instances, xi is the i-th instance, 
and m is the mean vector of the input data. 

Computation of the principal components can be 
presented with the following algorithm: 
1. Calculate the covariance matrix S from the input data. 
2. Compute the eigenvalues and eigenvectors of S and 

sort them in a descending order with respect to 
eigenvalues. 

3. Form the actual transition matrix by taking the 
predefined number of components (eigenvectors). 



4. Finally, multiply the original feature space with the 
obtained transition matrix, which yields a lower- 
dimensional representation. 
The necessary cumulative percentage of variance 

explained by the principal axes should be consulted in 
order to set a threshold, which defines the number of 
components to be chosen.  

PCA has the following properties: (1) it maximizes the 
variance of the extracted features; (2) the extracted features 
are uncorrelated; (3) it finds the best linear approximation 
in the mean-square sense; and (4) it maximizes the 
information contained in the extracted features. 

Although PCA has a number of advantages, there are 
some drawbacks. One of them is that PCA gives high 
weights to features with higher variabilities disregarding 
whether they are useful for classification or not. From 
Figure 1 one can see why it can be dangerous not to use the 
class information (Oza 1999). The first case shows the 
proper work of PCA where the first principal component 
corresponds to the variable with the highest discriminating 
power, but from the second case one can see that the 
chosen principal component is not always good for class 
discrimination. 

 x2 y1 y2 
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Fig. 1. PCA for classification: a) effective work of PCA, b) an 
irrelevant principal component was chosen wrt. to classification. 

Nevertheless, conventional PCA is still often applied to 
feature extraction for classification by researchers.  

3. Parametric Eigenvalue-based FE 
Feature extraction for classification is a search among all 
possible transformations for the best one, which preserves 
class separability as much as possible in the space with the 
lowest possible dimensionality (Aladjem, 1994). The usual 
decision is to use some class separability criterion, based 
on a family of functions of scatter matrices: the within-
class covariance, the between-class covariance, and the 
total covariance matrices. 

The within-class covariance matrix shows the scatter of 
samples around their respective class expected vectors: 
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where c is the number of classes, ni is the number of 
instances in a class i,  is the j-th instance of i-th class, 
and m

)(i
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(i) is the mean vector of the instances of i-th class. 

The between-class covariance matrix shows the scatter 
of the expected vectors around the mixture mean: 
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where c is the number of classes, ni is the number of 
instances in a class i, m(i) is the mean vector of the 
instances of i-th class, and m is the mean vector of all the 
input data. 

The total covariance matrix shows the scatter of all 
samples around the mixture mean. It can be shown 
analytically that this matrix is equal to the sum of the 
within-class and between-class covariance matrices 
(Fukunaga 1990): 
 . (5) WB SSS +=

One possible criterion based on the between- and 
within-class covariance matrices (3) and (4) to be 
optimized for feature extraction transformation (1) is 
defined in Fisher linear discriminant analysis: 

 
wSw
wSww

W
T

B
T

J =)( . (6) 

A number of other criteria were proposed in (Fukunaga 
1990). The criterion (6) and some other relevant criteria 
may be optimized by the following algorithm often called 
simultaneous diagonalization (Fukunaga 1990): 

1. Transformation of X to Y: , where  
and  are the eigenvalues and eigenvectors 
matrices of S .  

XΦΛY T1/2−= Λ
Φ

W

2. Computation of S  in the obtained Y space. B

3. Selection of m eigenvectors of S , , which 
correspond to the m largest eigenvalues. 

B mψψ ,...,1

4. Finally, new feature space , where 
, can be obtained. 
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It should be noted that there is a fundamental problem 
with the parametric nature of the covariance matrices. The 
features extracted with the parametric approach are 
suboptimal in the Bayes sense. The rank of the between-
class covariance matrix (4) is at most c-1 (because it is the 
summation of c rank one matrices and only c-1 of them are 
independent), and hence no more than c-1 of the 
eigenvalues will be nonzero. The nonparametric method 
for feature extraction overcomes the above-mentioned 
problem. 

4. Nonparametric Eigenvalue-based FE 
The nonparametric method tries to increase the number of 
degrees of freedom in the between-class covariance matrix 
(4), measuring the between-class covariances on a local 
basis. K-nearest neighbor (kNN) technique is used for this 
purpose. 

A two-class nonparametric feature extraction method 
was considered in (Fukunaga 1990), and it is extended in 
this paper to the multiclass case. The algorithm for 



nonparametric feature extraction is the same as for the 
parametric extraction (Section 3). Simultaneous 
diagonalization is used as well, and the difference is only 
in calculation of the between-class covariance matrix. In 
the nonparametric between-class covariance matrix, the 
scatter of the samples around the expected vectors of other 
classes’ instances in the neighborhood is calculated: 
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where  is the mean vector of the nNN instances of j-th 

class, which are nearest neighbors to . The number of 
nearest instances nNN is a parameter, which should be set 
in advance. In (Fukunaga 1990) it was proposed to use 
nNN equal to 3, but without any justification. The 
coefficient w
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ik is a weighting coefficient, which shows 
importance of each summand in (7). The goal of this 
coefficient is to assign more weight to those elements of 
the matrix, which involve instances lying near the class 
boundaries and thus more important for classification. We 
generalize the two-class version of this coefficient 
proposed in (Fukunaga 1990) to the multiclass case: 
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where is the distance from to its nNN-
nearest neighbor of class j, and 
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α  is a parameter which 

should be set in advance. In (Fukunaga 1990) the 
parameter α  equal to 1 was used, but without any 
justification. 

In the next section we consider our experiments where 
we analyze and compare the described above feature-
extraction techniques. 

5. Experiments 
The experiments were conducted on 21 data sets with 
different characteristics taken from the UCI machine 
learning repository (Blake et al., 1998). The main 
characteristics of the data sets are presented in Table 1, 
which includes the names of the data sets, the numbers of 
instances included in the data sets, the numbers of different 
classes of instances, and the numbers of different kinds of 
features (categorical and numerical) included in the 
instances. The pre-selected values for the α and nNN are 
included in the table as well. In (Tsymbal et al., 2001) we 
have presented results of experiments with several feature 
selection techniques on these data sets. 

In the experiments, the accuracy of 3-nearest neighbor 
classification based on the heterogeneous Euclidean-
overlap metric was measured to test the feature extraction 
approaches. Categorical features were binarized as it was 

done in the correlation-based feature selection experiments 
in (Hall et al., 2000). Each categorical feature was replaced 
with a redundant set of binary features, each corresponding 
to a value of the original feature. 

Table 1. Characteristics of the data sets 
Features

Data set Instances   Classes 
Categorical Numerical 

α
 

nNN 

Balance 625 3 0 4 1/3 255 
Breast  286 2 9 0 5 1 
Car 1728 4 6 0 5 63 
Diabetes 768 2 0 8 1/5 127 
Glass 214 6 0 9 1 1 
Heart  270 2 0 13 1 31 
Ionosphere 351 2 0 34 3 255 
Iris Plants 150 3 0 4 1/5 31 
LED 300 10 7 0 1/3 15 
LED17 300 10 24 0 5 15 
Liver  345 2 0 6 3 7 
Lymph 148 4 15 3 1 7 
MONK-1 432 2 6 0 1 1 
MONK-2 432 2 6 0 20 63 
MONK-3 432 2 6 0 1/3 1 
Soybean 47 4 0 35 1 3 
Thyroid 215 3 0 5 3 215 
Tic-Tac-Toe 958 2 9 0 1 1 
Vehicle 846 4 0 18 3 3 
Voting 435 2 16 0 1/3 15 
Zoo 101 7 16 0 1/20 7 

For each data set 70 test runs of Monte-Carlo cross 
validation were made, first, to select the best α  and nNN 
parameters, and after to evaluate the classification accuracy 
with the three feature extraction approaches and without 
any feature extraction. In each run, the data set is first split 
into the training set and the test set by stratified random 
sampling to keep class distributions approximately same. 
Each time 30 percent instances of the data set are first 
randomly picked up to the test set. The remaining 70 
percent instances form the training set, which is used for 
finding the feature-extraction transformation matrix (1). 
The test environment was implemented within the MLC++ 
framework (the machine learning library in C++) (Kohavi 
et al. 1996). 

First, a series of experiments were conducted to select 
the best α  and nNN coefficients for the nonparametric 
approach. The parameter α  was selected from the set of 9 
values: { }20,10,5,3,1,3//1,10/1,20/1 1,5∈α , and the 
number of nearest neighbors nNN from the set of 8 values: 

, . 
The parameters were selected on the wrapper-like basis, 
optimizing the classification accuracy. For some data sets, 
e.g. LED and LED17, selection of the best parameters did 
not give almost any improvement in comparison with the 
considered in (Fukunaga 1990) 

8,...,1,12 == i ,31,15,7,3,1∈−inNN { }255,127,63nNN

α =1 and nNN=3, and the 
classification accuracy varied within the range of one 
percent. It is necessary to note that the selection of the 
α and nNN parameters changed the ranking of the three 
feature extraction approaches from the accuracy point of 
view only on two data sets, thus demonstrating that the 
nonparametric approach is robust wrt. the built-in 
parameters. However, for some data sets the selection of 
the parameters had a significant positive effect on the 



classification accuracy. For example, on the MONK-2 data 
set, accuracy is 0.796 when α =1 and nNN=3, but it 
reaches 0.974 when α =20 and nNN=63. 

After, we have compared four classification techniques: 
the first three were based on the three considered above 
feature extraction approaches, and the last one did not use 
any feature extraction. For each feature selection 
technique, we have considered experiments with the best 
eigenvalue threshold of the following set {0.65, 0.75, 0.85, 
0.9, 0.95, 0.97, 0.99, 0.995, 0.999, 1}. 

The basic results of the experiments are presented in 
Table 2. First, average classification accuracies are given 
for the three extraction techniques: PCA, the parametric 
(Par) and nonparametric (NPar) feature extraction, and no 
feature extraction (Plain). The bold-faced and underlined 
accuracies represent the approaches that were significantly 
better than all the other approaches; the bold-faced only 
accuracies represent the approaches that were significantly 
worse on the corresponding data sets (according to the 
Student t-test with 0.95 level of significance).   Then, the 
corresponding average numbers of extracted features are 
given. The remaining part contains the average extraction 
and the total expended time (in seconds) for the 
classification techniques. All the results are averaged over 
the 70 Monte-Carlo cross-validation runs. 

Each row of Table 2 corresponds to one data set. The 
last two rows include the results averaged over all the data 
sets (the last row), and over the data sets containing 

categorical features (the row before the last one). 
From Table 2 one can see that the nonparametric 

approach has the best accuracy on average (0.824). 
Comparing the total average accuracy with the average 
accuracy on the categorical data sets, one can see that the 
nonparametric approach performs much better on the 
categorical data, improving the accuracy of the other 
approaches (as on the MONK data sets, and the Tic-Tac-
Toe data set). The parametric approach is the second best. 
As we supposed, it is quite unstable, and not robust to 
different data sets’ characteristics (as on the MONK-1,2 
and Glass data sets). The case with no feature selection has 
the worst average accuracy.  

The parametric approach extracts the least number of 
features on average (only 2.3), and it is the least time-
consuming approach. The nonparametric approach is able 
to extract more features due to its nonparametric nature 
(9.9 on average), and still it is less time-consuming than 
the PCA and Plain classification. 

Still, it is necessary to note that each feature extraction 
technique was significantly worse than all the other 
techniques at least on one data set (e.g., the Heart data set 
for the nonparametric approach), and it is a question for 
further research to define the dependencies between the 
characteristics of a data set and the type and parameters of 
the feature extraction approach best suited for it. For each 
data set, we have also pairwise compared each feature 
extraction   technique   with   the  others  using   the  paired 

Table 2. Results of the experiments 
Accuracy Features Extraction time, sec. Total time, sec. 

Data set 
PCA Par NPar Plain PCA Par NPar Plain PCA Par Npar PCA Par NPar Plain 

Balance .827 .893 .863 .834 4.0 1.0 2.0 4.0 .00 .09 .21 3.11 1.02 1.87 2.55
Breast .721 .676 .676 .724 16.5 1.0 33.7 51.0 2.66 3.10 4.00 5.33 3.31 9.32 5.88
Car .824 .968 .964 .806 14.0 3.0 6.4 21.0 .38 .53 .64 12.02 3.08 6.43 12.07
Diabetes .730 .725 .722 .730 7.0 1.0 3.8 8.0 .22 .24 .30 6.73 1.38 4.15 7.14
Glass .659 .577 .598 .664 4.4 5.0 9.0 9.0 .11 .08 .13 .69 .69 1.19 1.01
Heart .777 .806 .706 .790 13.0 1.0 4.4 13.0 .13 .23 .31 2.63 .44 1.21 2.14
Ionospher .872 .843 .844 .849 9.0 1.0 2.0 34.0 1.52 1.50 2.08 3.49 1.77 2.55 6.09
Iris .963 .980 .980 .955 2.0 1.0 1.0 4.0 .01 .05 .04 .03 .13 .08 .20
LED .646 .630 .635 .667 7.0 7.0 7.0 14.0 .13 .39 .49 1.61 1.92 1.99 2.17
LED17 .395 .493 .467 .378 24.0 6.7 11.4 48.0 1.88 2.46 3.10 5.66 3.54 4.91 5.48
Liver .664 .612 .604 .616 4.9 1.0 3.1 6.0 .06 .15 .15 1.65 .53 1.17 1.88
Lymph .813 .832 .827 .814 31.4 3.0 32.0 47.0 1.58 2.04 2.50 3.39 2.23 4.39 1.96
MONK-1 .767 .687 .952 .758 10.0 1.0 2.0 17.0 .39 .55 .67 4.47 1.06 1.57 4.94
MONK-2 .717 .654 .962 .504 8.0 1.0 2.0 17.0 .40 .60 .70 3.76 1.08 1.60 4.96
MONK-3 .939 .990 .990 .843 11.0 1.0 1.9 17.0 .37 .55 .69 4.89 1.07 1.54 4.94
Soybean .992 .987 .986 .995 7.8 1.0 2.2 35.0 .17 .45 .44 .23 .46 .47 .07
Thyroid .921 .942 .933 .938 4.0 2.0 2.0 5.0 .05 .03 .05 .52 .35 .33 .69
TicTacToe .971 .977 .984 .684 18.0 1.0 2.0 27.0 .80 .96 1.21 11.45 1.68 2.50 11.24
Vehicle .753 .752 .778 .694 16.0 3.0 12.5 18.0 .55 .53 .67 10.34 2.39 8.02 10.42
Voting .923 .949 .946 .921 15.9 1.0 61.7 82.0 3.37 4.29 5.76 5.56 4.46 14.05 7.88
Zoo .937 .885 .888 .932 15.1 6.4 6.5 36.0 .62 .85 1.09 1.03 1.00 1.28 .78
Average (categoric) .787 .795 .845 .730 15.5 2.9 15.1 34.3 1.14 1.48 1.90 5.38 2.22 4.51 5.66
Average (total) .801 .803 .824 .766 11.6 2.3 9.9 24.4 .73 .94 1.20 4.22 1.60 3.36 4.50



Student t-test with 0.95 level of significance. Results of the 
comparison are given in Table 3. Columns 2-5 of the table 
contain results of the comparison of the technique 
corresponding to the row of the cell against the technique 
corresponding to the column using the paired t-test.  

Each cell contains win/tie/loss information according to 
the t-test, and in parenthesis the same results are given for 
the eleven data sets including categorical features. For 
example, PCA has 8 wins against the parametric extraction 
on 21 data sets, and 5 of them are on categorical data sets.  

Table 3. Results of the paired t-test (win/tie/loss information) 
 
 PCA Parametric Nonparametric Plain 

PCA  8/3/10 
(5/0/6) 

8/1/13 
(3/0/8) 

9/8/4 
(5/5/1) 

Parametric 10/3/8 
(6/0/5)  5/11/5 

(2/6/3) 
11/5/5 
(7/0/4) 

Nonparametric 13/1/8 
(8/0/3) 

5/11/5 
(3/6/2)  11/3/8 

(8/0/3) 

Plain 4/8/9 
(1/5/5) 

5/5/11 
(4/0/7) 

8/3/11 
(3/0/8)  

From Tables 1, 2 one can see that classification without 
feature extraction is clearly the worst technique even for 
such data sets with relatively small numbers of features. 
This shows the so-called “curse of dimensionality” and 
necessity in feature extraction.  

According to Table 3, among the three feature extraction 
techniques, the parametric and nonparametric techniques 
are the best on average, with the nonparametric technique 
being only slightly better than the parametric (3 wins 
versus 2 on the categorical data sets).  

Conventional PCA was the worst feature extraction 
technique on average, which supports our expectations, as 
it does not take into account the class information. 
However, it was surprisingly stable. It was the best 
technique only on four data sets, but it was still the worst 
one only on three data sets (the best result). 

On the categorical data sets the results are almost the 
same as on the rest of data sets. Only the nonparametric 
technique performs much better on the categorical data for 
this selection of the data sets, however, further experiments 
are necessary to check this finding. 

6. Conclusions 
PCA-based techniques are widely used for classification 
problems, though they generally do not take into account 
the class information and are based solely on inputs. 
Although this approach can be of great help in 
unsupervised learning, there is no guarantee that the new 
axes are consistent with the discriminatory features in a 
classification problem. 

The experimental results supported our expectations. 
Classification without feature extraction was clearly the 
worst. This shows the so-called “curse of dimensionality” 
and necessity in feature extraction. Conventional PCA was 
the worst feature extraction technique on average and, 

therefore, cannot be recommended for finding features that 
are useful for classification. The nonparametric technique 
was only slightly better than the parametric one on 
average. However, this can be explained by the selection of 
the data sets, which are relatively easy to learn and do not 
include significant nonnormal class distributions. Besides, 
better parameter tuning can be used to achieve better 
results with the nonparametric technique. This is an 
interesting topic for further research. The nonparametric 
technique performed much better on the categorical data 
for this selection of the data sets, however, further research 
is necessary to check this finding.  

Another important topic for further research is to define 
the dependencies between the characteristics of a data set 
and the type and parameters of the feature extraction 
approach best suited for it. 
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