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A simple and general calculus for the sensitivity analysis of a feedforward
MLP network in a layer-wise form is presented. Based on the local opti-
mality conditions, some consequences for the least-means-squares learn-
ing problem are stated and further discussed. Numerical experiments
with formulation and comparison of different weight decay techniques
are included.

1 Introduction

There are many assumptions and intrinsic conditions behind well-known
computational techniques that are sometimes lost from a practitioner. In this
work, we try to enlighten some of the issues related to multilayered percep-
tron networks (MLPs). The point of view here is mainly based on the theory
and practice of optimization, with special emphasis on sensitivity analysis
(computation of gradient), scale balancing, convexity, and smoothness.

First, we propose a simplified way to derive the error backpropagation
formulas for the MLP training in a layer-wise form. The basic advantage
of the layer-wise formalism is that the optimality system is presented in a
compact form that can be readily exploited in an efficient computer realiza-
tion. Moreover, due to the clear description of the optimality conditions, we
are able to derive some consequences and interpretations concerning the
final structure of trained network. These results have direct applications to
different weight decay techniques, which are presented and tested through
numerical experiments.

In section 2, we introduce the algebraic formalism and the original learn-
ing problem. In section 3, we compute the optimality conditions for the
network learning and derive and discuss some of their consequences. Fi-
nally, in section 4 we present numerical experiments for studying different
regularization techniques and make some observations based on the com-
putational results.
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2 Preliminaries

Action of the multilayered perceptron in a layer-wise form is given by (Ro-
has, 1996; Hagan & Menhaj, 1994}

o’=x, o= f-"(wfa“—n) fori=1,...,L. (2.1)

We have placed the layer number (starting from zero for the i_l;lpul‘) as an
upper index. By " we indicate the addition of bias terms, and F'(:) denotes
the usual componentwise activation on the /th level. The dimensions of the
weight matrices are given by dimWh =m x i +D, I=1,..., L. wheie
np is the length of an input vector x, n, the length of the output vector 0%,
and 1,0 < I < L, determine the sizes (number of neurons) of the hidden
layers.

We notice that the activation of m neurons can be equivalently repre-
sented by using a diagonal function matrix 7 = F(-) = Diag{fi()}i, of the
form

A ... 0
F=| : . . (2.2)
0 ... fu®

A function matrix supplied with the natural way to define the matrix vector
producty = F(v) & y; = 3/ f(v)) yields the usual activation approach.
However, any enlargement of the function matrix to contain nondiagonal
function entries as well offers interesting possibilities for generalizing the
basic MLP architecture. This topic is out of the scope of the work presented
here, although both the sensitivity analysis and its consequences in what
follows remain valid in this case too. N

Using a given training data {x,-, y;]}zv x; € B™ and y; € R™, the un-
known weight matrices {W/)l-_| are determined as a solution of the opti-
mization problem

min J({W'), (2.3)
W,
where
1 J 1 2
TAWY) = o2 3 INAW Do — il (29

i=1

is the least-mean-squares (LMS) cost functional for a simplified architectu.re
of MLP containing only a linear transformation in the final layer. That is,

fly=xforalll <i<np, and oF = N((WHix) = WLV The relation
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between this choice and the original form, equation 2.1, will be considered
in sections 3.3 and 3.4, In equation 2.4, || - || denotes the usual Euclidian
norm, which is induced by the /> inner product (v, w) = wl v,

Preprocessing of the training data {x;, y;} has been extensively consid-
ered, for example, by LeCun, Bottous, Orr, and Miiller (1998). From the
optimization point of view, an essential property of any problem is to have
all unknowns on the same scale, because gradient with components of dif-
ferent orders of magnitude can yield nonbalanced updates in the training
algorithm (Nocedal & Wright, 1999). This usually leads to nonconvergence
or large deviation of weights, decreasing the fault tolerance of the trained
network (Cavalieri & Mirabella, 1999). Therefore, we require that all acti-
vation functions {#'} have the same range, and all of the training data are
prescaled into this range. Then all layers of the network treat vectors with
components of the same order of magnitude. Notice, however, that using
tanh activation and the proposed prescaling, the average of minimum and
maximum values of each feature in {x;} is transformed to zerc. Then all
records containing the zero value become insensitive to the corresponding
column in the weight matrix W'. Hence, for features having symmetric and
peak-like distribution, the prescaling may result in the nonuniqueness of W'
(and subsequent matrices W/, 1 < [ < L). Naturally, one can study the exis-
tence of such problems through the distribution (histogram) of individual
prescaled features.

3 Sensitivity Analysis

An essential part of any textbook on neural networks consists of the deriva-
tion of error-backpropagation formulas for network training (Bishop, 1995;
Reed & Marks, 1999; Rohas, 1996). What makes such sensitivity analysis
messy is the consecutive application of the chain rule in an index jungle.
Here, we describe another approach that uses the Lagrangian treatment
of equality constraint optimization problems (Bertsekas, 1982) and circum-
vents these technicalities, allowing one to derive the necessary optimality
conditions in a straightforward way. The idea behind our treatment is to
work on the same level of abstraction, layer-wise form, that is used for the
initial description of MLP.

There are many techniques for solving optimization problems like equa-
tion 2.3 without the need of precise formulas for the derivatives. One class
of techniques consists of the so-called gradient-free optimization methods
as presented, for example, in Osman and Kelly (1996) and Bazaraa, Sherali,
and Shetty (1993). The computational efficiency of these approaches, how-
ever, cannot compete with methods using gradient information during the
search procedure. Another interesting possibility for avoiding explicit sen-
sitivity analysis is to use automatic differentiation (AD), which enables the
computation of derivatives as a (user-hidden) by-product of cost function
evaluation (Griewank, 2000). AD allows fast and straightforward develop-
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ment and simulation of different architectures and learning problems for
MLPs, but at the expense of increased storage requirements and computing
time compared to the fully exploited analytical approach (see the discussion
after theorem 2 in section 3.2). Moreover, clear and precise description of
optimality conditions is necessary to be able to analyze the properties of
trained networks (cf. sections 3.3 and 3.4).

3.1 MLP with One Hidden Layer. Tosimplify the presentation, we start
with MLP with only one hidden layer. Then any local solution (W'", W2") of
the minimization problem, equation 2.3, is characterized by the conditions

- Vi J (W W2* 0]
Vo e T (WS, WP = [vl%wl*,wﬁﬂ = [0] 31)

Here, Vi J = (%) , 1=1,2, are givenina similar matrix form as the
if

unknown weight matrices. Hence, our next task is to derive the derivatives
with regard to these data structures (cf. appendix B in Diamantaras & Kung,
1996; Hagan & Menhaj, 1994). For this analysis, we presuppose that all
activation functions in the function matrix F = F! are differentiable.-

We start the derivation by stating some simple lemmas for which the
proofs are given in appendix 4.2. We note that the proposed approach is not
restricted to the LMS error function. For other differentiable cost functionals
like softmax and cross-entropy, one can use exactly the same technique for
simple derivation of the necessary optimality conditions in a layer-wise
form.

Lemmal. Letv € R™ and vy € R™ be given vectors. The gradient matrix
Vw J(W) € R™X for the functional [(W) = 1 |[Wv — y||? is of the form

VW] (W) = [Wv —y]v’.

Lemma2. Let W € R"™2*™ be g giver matrix, y € R™ a given vector, and F =
Diag{fi(-)1;_ 17 agwendmgom!funchon matrix. The gradient vector Vy J(u) € R™

for the functional J(u) = 5 LiwFu) — yl]2 reads as
. T _ .
V@ = (WF (W) [WF() - y] = DiaglF ()} W [W F(u) ~y].

Lemma3. Let W e R™*™ pe g given matrix, F = Diag(fi(-)}i2y a given
diagonal function matrix, and v € R™, y € R™ thn vectors. The gmdzenf
matrix Vw[(W) e R"5™ for the functional [(W) = 3 iIW F{Wv) — )7|12 is of
the form

V(W) = Diag{F (W)} WY [W F(Wv) — y] vl
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Now we are ready to state the actual result for the perceptron with one
hidden layer.

Theorem 1. Gradient matrices Vy: T (W', W2) and Yy T (W', W?) for the
cost functional, equation 2.4, are of the form

I\T

Ve T (W', W2) = % S IWEFW! ) — il [FW )] i
i=1

1 i vl 2317
== e[FW x)]".
N i=1 t
_vWIJ(wl.WZ)— ZDlag{f’ W) (WD [W2F W' %) —yil%]
§ , o
=g > Diag{F (W'} (WD e; ]
i=1

In formula ii, W3 is the submatrix (WZ) Li=1,...,m,j=1,..., 1, whichis

obtained from W? by removing the first cofumn W% contaim’ng the bias nodes.

Proof. Formulaiis a direct consequence of lemma 1. Moreover, due to the
definition of the extension operator ™ we have, forall1 <7 < N,

. 1
w2 F(Wl Xx) —-yi= [W%W%] [F(WI ix)} - ¥i
= Wi+ WIF(W'R) — ys. (32)

Using equation 3.2 and lemma 3 componentwise for the cost functional,
equation 2.4, shows formula ii and ends the proof.

3.2 MLP with Several Hidden Layers. Next, we generalize the previous
analysis to the case of several hidden layers.

Lemma4. Let W e R™>™ gnd W e R™2X" pe given matrices, F = = Diagf fi
(N and F = Diag| il Wiy given diagonal function matrices, and v ¢ R,

y € R‘"3 given vectors. The gmdﬁ:ﬂ-n‘ matrix Vw (W) € IR"™ =™ for the functional
JOW) = LW F W F(Wv)) — ylI1% is of the form
V] (W) = Dm;.,{f'(Wv)}W DiaglZ (W F(Wv))
WT W E(WE(Wv)) -~ ylv'
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Theorem 2. Gradient-matrices Vya J(W')), | = L, .oy 1, for the cost func-
tional equation 2.4 read as

Y T (W) =

Z |

N
Z eI,
where

dl =e; = Who{l"D — y, (3.3)
d! = Diag{(F)) W 6{~ 1y} (W) T gf+b, (3.4)

Proof. Apply lemma 4 inductively.

The definition of d} contains the backpropagation of the output error in
a layer-wise form. The compact presentation of the optimality system can
be readily exploited in the implementation. More precisely, computation of
the activation derivatives (F') (W! ﬁf_l)) can, when using the usual logistic
sigmoid or hyperbolic tangent functions, be realized using layer outputs
o} without additional storage. Hence, in the forward loop, it is enough to
store the outputs of different layers for the backward gradient loop, where
these same vectors can be overwritten by d} when the whole operation in
equation 3.4 is implemented using a single Ioop In modern workstations,
such combination of operations yielding minimal amount of loops through
the memory can decrease the computing time significantly (Kérkkiinen &
Toivanen, 2001).

3.3 Some Corollaries. Next, we derive some corollaries of the layer-
wise optimality conditions. All of these results follow from having a linear
transformation with biases in the final layer of MLF. Moreover, whether one
applies on-line or batch training makes no difference if the optimization
problem 2.3 is solved with high accuracy, because then both methods yield
Vo J ((W''}) = O for the local solution {W'}.

Corollary 1. For locally optimal MLP network satisfying the conditions in the-
orem 2:

i. The average error 5 Ll 1€} is zero.

ii. Correlation bettween the error vectors and the action of layer L — 1 is zevo.

Proof. The optimality condition Vy: J(W'D) = £ TN ef [6{ V)" = O

(L1 A(L
!

(with the abbreviation 6; D%y in theorem 2 can be written in the
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nonextended form as
1 N . (E=iint -0 3.5)
ﬁZe;[l(oJ y1=0. :

i=1

By taking the transpose of this, we obtain
Bl - gl T3]
— i-n | €)' == =1 T | = - (3.6)
N; 0; N; 0; (e}) 0 |

This readily shows both results.

In the next corollary, we recall some conditions concerning the final
weight matrix W, We note that the assumption on nonsingularity below
can be relaxed to pseudo-invertibility, which has been widely used to gen-
erate new training algorithms for the MLP networks (Di Martino, Fanelli,
& Protasi, 1996; Wang & Chen, 1996).

Corollary 2. If the autocorrelation matrix A = & N %i%7 of the (extended)
final layer inputs v, = oV is nonsingular, W can be recovered from the formula

j
WE=BA™' for B:ﬁZwaT. (3.7)

i=1

Furthermore, if A* for a minimizer (W' YL, of equation 2.4 is nonsingular, then
WL s unique.

Proof. WL satisfying the system
1 ¢ ot
5 2 IWhe Y — w6 =0 (38)
=1
is independent of . Hence, equation 3.8 can be written as
L s 597 La_
w ——Zv,vi NZ & W-A=B. (3.9)

Multiplying both sides from right with A~! gives equation 3.7 and ends the
proof.
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Let us add one further observation concerning the above result. Be-
cause dim(span(V;)) = 1, each matrix ¥;¥/ has only one nonzero eigen-
value , = V] ¥; with the corresponding eigenvector ¥;. This means that
1 < dim{span(A)) < min(N, n;_1 4+ 1). Hence, if N < snz_j +1. then A must
be singular and W-" cannot be unique. On the other hand, if N > ;1 + 1,
then all vectors ¥; cannot be linearly independent. This shows that there
exists a relation between the amount of learning data and an appropriate

size of the last hidden layer for the LMS learning problem.

3.4 Some Consequences. We conclude this section by giving a list of
observations and comments based on the previous results.

3.4.1 Final Layer with or Without Activation. If MLP also contains the
final layer activation F* (WYY, then it follows from lemma 3 (choose
W = I that equation 3.3 replaced with

d} = Diag{(F-) (WEo{ 1)) &; = Dje; (3.10)

gives the corresponding sensitivity with regard to W-. In this case, we have
in corollary 1 instead of equation 3.6,

L] (e _[o
N & [o,@-v (es‘)’"] Pi= [O] |

i=]

Hence, the two formulations with and without activating the final layer
yield locally the same result for the zero-residual problem ef = 0 for all
1 < i < N. This slightly generalizes the corresponding result derived by
Moody and Antsaklis (1996), where bijectivity of the final activation J*
was also assumed.

The use of 0-1 coding for the desired output vectors in classification
enforces the weight vector of 1-neuron to the so-called saturation area of a
sigmoidal activation where the derivative is nearly zero (Vitela & Reifman,
1997). For this reason, the error function with the final layer activation has
a nearly flat region arcund such points, whereas the final linear layer has
no such problems. This is also evident from equation 3.10, which holds
independently on ef and 0" for D; = O. Indeed, the tests reported by
Gorse, Shepherd, and Taylor (1997) (see also Figure 8.7 in Reed & Marks,
1999; de Villiers & Barnard, 1992) suggest that the network with sigmoid
in the final layer has more local minima than when using a linear final
layer. Furthermore, Japkowicz, Hanson, and Gluck (2000) pointed out that
the reconstruction error surface for a sigmoidal autoassociator consists of
multiple local valleys on the contrary to the linear one.
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3.4.2 The Basic Interpretation. We recall that the transformation before
the last linear layer with biases had no influence whatsoever on the previous
formal consequences. This suggests the following interpretation of the MLP
action with the proposed architecture: nonlinear hidden layers produce the
universal approximation capability of MLF, while the final linear layer com-
pensates the hidden action with the desired output in an uncorrelated and
error-averaging manner (cf. Japkowicz et al., 2000).

3.4.3 The Basic Consequence. The simplest model of noise in regression
is to assume that given targets are generated by

yi = (X;) + &, (3.11)

where ¢(x) is the unknown stationary function and ¢;’s are sampled from
an underlying noise process. For equation 3.11, it follows from corollary 1i
that a locally optimal MLP network A ({W''}) satisfies

N N
% 3 [N (W D) — o0 = % > e (312)
i=1

i=1

Hence, this shows that every A/({W''}) treats optimally gaussian noise with
zero mean (and enough samples). This resultis not valid for other error func-
tions or with final layer activation (except in the impractical zero-residual
case), but it remains valid for networks with input enlargements (e.g., Flake,
1998), output enlargements (Caruna, 1998), hidden layer modifications (e.g,.,
the linearly augmented feedforward network as proposed by van der Smagt
& Hirzinger, 1998), and convex combinations of different locally optimal net-
works {averaged ensemble, e.g., Liu & Yao, 1999; Horn, Naftaly, & Intrator,
1998) for all cases when the final bias is left untouched in the architecture.

3.4.4 Implicit Prior and Its Modification. Many authors writing on ANNs
note that changing the prior frequency of different samples in the fraining
data to favor the rare ones may improve the performance of the obtained
network (e.g., LeCun et al., 1998; Yaeger, Webb, & Lyon, 1998). Corollary 1i
gives a precise explanation how such a modification alters the final result.
For stochastic on-line learning, the prior frequency can be altered by con-
trolling the feeding of examples, but for batch learning, one needs an explicit
change in the error function for this purpose. For example, consider the clas-
sification problem with learning data from K different classes {Cy} le 50 that
N =X | N, where N; denotes the number of samples from the class Cy.
To have an equal prior probability ¢ for all classes in the classifier (instead
of Ni/N for the kth class), one needs to adjust the LMS cost functional to

K
1 .
TEWH_) =) 5 D IWHS-Y — il
= 2KNk iz,
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Hence, using nonconstant weighting of the learning data in the cost func-
tional incorporates prior information into the learning problem. For exam-
ple, a time-series prediction could be based on larger weighting of the more
recent samples, especially if one tries to simulate a slowly varying dynami-
cal process (Park, El-Sharkawi, & Marks, 1991). It is also straightforward to
improve the LMS learning problem when more knowledge on the variance
of the output data is available (MacKay, 1992; van de Laar & Heskes, 1999).
Finally, alocally weighted linear regression also adaptable for MLP learning
is introduced by Schaal and Atkeson (1998).

3.4.5 Relation to Early Stopping. A popular way to try to improve the
generalization power of MLP is to use early stopping {(cutting, termination)
of the learning algorithm (Bishop, 1995; Tetko & Villa, 1997; Prechelt, 1998).
In most cases, early stopping (ES) is due to a cross-validation technique,
but basically it also happens every time when a learning problem is solved
inexactly, for example, because of a fixed number of epochs or abad learning
rate.

Formulation of general and robust conditions to stop different optimiza-
tion algorithms prematurely is problematic and usually leads to a very large
number of tests for validating different networks (Gupta & Lam, 1998}
Morecver, Cataltepe, Abu-Mostafa, and Magdon-Ismail (1999) showed that
if models with the same training error are chosen with equal probability,
then the lowest generalization error is obtained by choosing the model cor-
responding to the training error minimum,. This result is valid globally for
linear models and locally, around the training error minimum, for nonlinear
models.

The success of ES is sometimes argued as due to producing smoother re-
sults when the network is initialized with small random numbers in the al-
most linear region of a sigmoidal activation function. This is certainly vague
because different optimization methods follow different search paths, and
nothing guarantees that even an overly hasty stopped training algorithm
produces smocth networks. Hence, we believe that the role of ES is more re-
lated to equation 3.12, which for an inexact solution is not valid. Namely, for
a nengaussian error distribution, ES may decrease the significance of heavy
error tails and, due to this fact, produce a result that generalizes better. Es-
pecially in this case, ES and weight decay (WD) are not alternatives to each
other, because ES may improve the learning problem and WD can favor
simpler models during learning. Notice, however, that because the usual
bias-variance decomposition (Geman, Bienenstock, & Doursat, 1992) of the
expected generalization error is also based on the least-squares estimation,
the least-squares-based cross-validation technique may not be appropriate
for anongaussian error in the validation set. Changing the underlying gaus-
sian assumption on noise should instead lead to the derivation of new cost
functionals for the learning problem {(Chen & Jain, 1994; Liano, 1996).
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4 Numerical Results

Here, we describe numerical experiments based on the proposed tech-
niques. All experiments are performed on an HP9000/J280 workstation
(180 MHz PA80C0C CPU), and the implementation is based on F77 (opti-
mization and MLP realization) and Matlab for data pre- and postprocessing.
{More comprehensive coverage of the computed examples is presented in
Karkkdinen, 2000.)

Asanoptimization software, we apply the limited memory quasi-Newton
subroutine L-BFGS (Byrd, Lu, & Nocedal, 1995), which uses a sparse ap-
proximation of the BFGS-formula-based inverse of the Hessian matrix and
is intended for solving large nonlinear optimization problems efficiently. As
a stopping criterion for the optimization, we use

Jfr__jk+1
=1
max {| ¥, 1751, 1} ~

0° s epsmch,

where epsmch is the machine epsilon (~ 107'® in the present case). This
choice reflects our intention to solve the optimization problem with (unnec-
essary) high precision for test purposes. The main ingredient in the L-BFGS
software is that due to the limited-memory Hessian update, the computa-
tional complexity is only O(n), where n is the total amount of unknowns.
For ordinary quasi-Newton methods, the O(n?) consumption due to full
Hessian has been cne of the main reasons preventing the application of
these methods for learning problems with larger networks.

There exists a large variety of different tests comparing backpropaga-
tion {gradient descent with constant learning rate), conjugate gradient, and
second-order methods (Gauss-Newton, Levenberg-Marquart, Hessian ap-
proximation, and quasi-Newton) for MLP training (e.g., Bishop, 1995; Ha-
gan & Menhaj, 1994; Magoulas, Vrahatis, & Androulakis, 1999; McKeown,
Stella, & Hall, 1997; Wang & Lin, 1998). The difficulty of drawing reliable
conclusions between the quality of different methods is that in addition to
how to solve if (training methed), as (or even more) important is also to
consider what to solve (learning problem) to connect our approach to an
application represented by a finite set of samples. According to Gorse et al.
{1997), a quasi-Newton method can survey a larger amount of local minima
than the BP and CG methods, but to truly enforce search through differ-
ent minima when using a local gradient-based method, one must either
start the training using multiple initial configurations or apply some global
optimization strategy as on outer iteration.

In the numerical experiments, we consider only simple examples, be-
cause the emphasis here is on testing the algorithms and different formu-

lations rather than on complex applications of MLPs, Therefore, we also
restrict ourselves to the perceptron with only one hidden layer. Concern
ing the discussion between one or more hidden layers, we refer (o Reed
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and Marks (1999) and Tamura and Tateishi (1997). Finally, notice that more
complex {nonconvex) optimization problems with an increased number of
local minima must be solved when training a network with several hidden
layers.

In order to generate less regular nonlinear transformations without af-
fecting the scale of weights when the hidden layer is enlarged, we choose
k-tanh functions of the form

i'k(a)zl_i_ex;m—l, k=1,...,m, (4.1)
to activate the hidden neurons (McLean, Bandar, & OShea, 1998). Although
we at the same time introduce some kind of ordering for the hidden layer by
using different activation functions for each neuron, the symmetry problem
related to the hidden neurons (e.g., Bishop, 1995) remains, as can be seen
by a simple rescaling argument. Use of an even more general mixture of
different activation functions in the hidden layer is suggested by Zhang
and Morris (1998). Finally, by increasing the nonsmoothness of the hidden
activation functions, and hence the whole MLP mapping, decreases the
regularity of the learning problem and thus also the convergence rate of
first- and second-order optimization methods (Nocedal & Wright, 1999). |

4.1 Approximation of Noisy Function.

Example 1. Reconstruction of function f(x) = sin2rx), x € I = [0, 27],
which is corrupted with normally distributed (quasi-jrandom noise. The
input data {x;} result from the uniform discretization of the interval I with
the step size = 0.1. Points in the output data are taken as y; = f{x;) +3d&;
for 8§ = 0.3 and & € N(0, 1). Altogether, we have in this example N = 63
and s = np = 1.

In the following experiments we have solved the optimization problem,
equation 2.3, with prescaled learning data into [1, 1] starting from 10 ran-
dom initial guesses from the range (—1, 1) for the weight matrices (W1, W2y,
For an overview and study of different initialization techniques we refer to
Thimm and Fiesler (1997) and LeCun et al. {1998).

Let us make some comments based on Table 1:

Local minima: Even for the smallest network {n; = 2} and especially
for larger cnes, there exist a lot of local minima in the optimization
problem. Moreover, the local minima are strict in the sense that they
correspond to truly different values of the cost functional and not just
different representations (symmetries) of the same ML transforma-
tiomn.

Condition i in Cerollary 1: Is valid with a precision related to the
stopping criterion.
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Table 1: Computational Results in Example 1 Without Regularization.

Its

J&

Minimum Maximum Mean

Maximum Mean

Minimum

Minimum  Maximum  Mean

Minimum Maximum Mean

My

2e-6
de-6
4e-6
0.64
0.66
0.80

de-6
2e-5
Be-6
0.76
0.75
0.95

2e-8
47
le-6
0.55
0.51
0.67

0.018

0.014

0.013
430
466
927

0.032

0.024

(0.014
804
737
1541

0.014 (2)
0.013
0.012 (2)
237
183
440

0.39
0.60
0.54
6e-6
Be-6
7e-6

0.52
0.80
0.60
Ze-h
3e-5
2e-hH

0.23
0.42
047

-7
3e-7
2e-7

126

427

250
0.012
0011
0.010

234
1079
341
0.013

0.13

0.013

41
120
153

0.010
0.010
0.0086

o ofy =H 1 Db

alues correspond to the 10 solutions of the optimization problem for the following quantities:

minimum or maximum value (with tolerance &£ = 107%) is scored more than once, the number of

Notes: The minimum, maximum, and average mean v
J* is the final value of the cost functional. If the

S

as stated in corollary 1i. [ts

absolute value of the average output error over the learning data

instances is included in parentheses. [g¥] denotes the

ys computed together). CFU = time in seconds for solving the optimization problem.

total number of function /gradient evaluations (alwa
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Efficiency: CPU time is negligible in this small example, but the num-
ber of iterations in the optimization varies a lot.

Generalization: Visually (Kérkkainen, 2000) the best result is obtained
using the MLP corresponding to the minimal value of J* for 1y = 2.
However, MLP corresponding to the maximal value of J* forn, =7
also gives a good result. This illustrates the difficulty of naming the
optimal network even in a simulated example. Moreover, from the
large variation of the number of iterations, we conclude that when a
fixed number of iterations is taken in the learning algorithm, one has
no knowledge on the error between the obtained weights and the true
(local) solution of the optimization problem.

4.1.1 Regularization of MLP Using Weight Decay. Weight decay (WD) is
a popular technique for pruning an MLP (Goutte & Hansen, 1997; Gupta
& Lam, 1998; Hintz-Madsen, Hansen, Larsen, Pederson, & Larsen, 1998;
Ormoneit, 1999; Reed & Marks, 1999). In WD, the basic LMS error function
is augmen’ced with a WD term ’R(Wij), which imposes some restriction on
the generality (universality) of the MLP transform to prevent overlearning.
Here we start with the simplest possible strictly convex form with regard
to the unknown weights by considering initially R(Wﬁ-j) =8/2%; ;-(W;-jz,
where § is the WD parameter. '

The choice of having only a single coefficient makes sense, because the
network inputs and outputs of the hidden layer are enforced in the same
range. Moreover, for the gaussian noise with known estimate of variance,
B is actually the inverse of the Lagrange multiplier for the corresponding
equality or inequality constraint and therefore single-valued (Chambolle &
Lions, 1997). In general the “best” value of § is related to both the complexity
of the MLP transformation and the (usually unknown) amount of noise
contained in the learning data (Scherzer, Engl, & Kunisch, 1993). There exist,
however, various techniques for obtaining an effective choice of § (e.g.,
Bishop, 1995; Rohas, 1996; Régnvaldsson, 1998).

In addition to strict convexity, some particular reasons for choosing the
proposed form of WD with the quadratic penalty function p(w) = [w|* are:

e This form improves the convexity of the cost functional and therefore
makes the learning problem easier to solve. '

e The proposed form forces weights in the neighborhood of zero (simi-
larly to prior distributions with zero mean suggested by Neal, 1996),
thus further balancing their scale in a gradient-based optimization al-
gorithm (Cavalieri & Mirabella, 1999). The smoothing property is due
to the fact that the activation functions (1) are nearly linear around
zero, although the size of the linear region is decreasing as k is in-
creasing. Furthermore, first derivatives of the activation functions are
most informative around zero, so that the propesed form of WD is
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i I.~a.n helpful to prevent saturation of weights by enforcing them in the
neighborhood of this transient region (Kwon & Cheng, 1996; Vitela &
Reifman, 1997).

One drawback of quadratic WD is that it produces weight matrices with
groups of small components even if a choice of one large weight instead
could be sufficient. This can yield unnecessarily large networks, even if the
overlearning can be prevented. On the other hand, this property increases
the fault tolerance of the trained network due to the so-called graceful degra-
dation (Reed & Marks, 1999).

Let us comment on some of the difficulties of other forms of WD for indi-
vidual weights suggested in the literature (Goutte & Hansen, 1997; Gupta
& Lam, 1998; Saito & Nakano, 2000):

I'—formulation: Each weight w is regularized using a penalization
p(w) = |w|. This function is convex but not strictly so. A severe diffi-
culty is that because the derivative of p(w) is multivalued for w = 0, the
resulting optimization problem is nonsmooth, that is, only subdiffer-
entiable (Makeld & Neittaanmaiki, 1992), In general, function |w|? for
1 < p < 2belongs only to the Hélder space C17~1 (Gilbarg & Trudinger,
1983), so that assumptions for convergence of gradient descent (on
batch-mode Lipschitz continuity of gradient, for on-line stochastic it-
eration C? continuity), CG (Lipschitz continuity of gradient), and es-
pecially quasi-Newton methods (C2-continuity) are violated (Haykin,
1994; Nocedal & Wright, 1999). As documented, for example, for MLP
by Saito and Nakano (2000) and for image restoration by Kérkkiinen,
Majava, and Mékeld (2001), this yields nonconvergence of ordinary
training algorithms, when the cost functional does not fulfill the re-
quired smoothness assumptions. Furthermore, even if a smoothed
counterpart +/w? + ¢ for ¢ > 0 is introduced, this formulation is either
(for small ¢) too close to the nonsmooth case so that again the conver-
gence fails, or otherwise (for larger &), the smoothed formulation differs
substantially from the original one. To conclude, for such nonsmooth
optimization problems, one needs special algorithms (Karkkdinen &
Majava, 2000z, 2000b; Karkkéinen et al., 2001). Finally, these same dif-
ficulties also concern the so-called robust backpropagation where the
error function is defined as 3; [N ({(W'})(x;) — yill;, (Kosko, 1992).

Mixed WD: Each weight s regularized using mixed penalization p(w) =
w? /(1 4+ w?). This form is nonconvex, producing even more local min-
ima to the optimization problem, and it favors both small and large
weights, thus destroying the balance in scales of different weights.

The num.er.ical results reported by Saito and Nakano (2000) emphasize
thfe al::ove difficulties. Whereas the combination of the quasi-Newton opti-
mization algorithm and quadratic WD drastically improved both the con-
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vergence of the training algorithm and the generalization performance of
the trained MLE, the /y-penalized problem was not convergent, and the
mixed form of WD was very unstable.

However, corollary 1 and the role of bias terms as a shift from the origin
raise the question: Which components of the weight matrices {W' }Ll should
be regularized and which not? Certainly, if condition i in corollary 1 is
required for the resulting MLP, one should exclude the bias terms of the
final layer W* from WD. Similarly, for both conditions to hold, one should

Jeave out all components of W from WD.
Hence, we apply the quadratic WD only to selected components of the
weight-matrices (W', W?). We distinguish four cases:

I Regularize all other components except the bias terms W3 in the
weight matrix W2,
I Exclude all components of W? from the regularization.
III Exclude all bias terms of (W, W?) from the regularization (Holm-
strom, Koistinen, Laaksonen, & Oja, 1997).
IV Exclude all components of W? and bias terms of W' from the regu-
larization.

Remark. Let us state one further observation concerning the nonregular-
ization of W2, Using the error-average formula & it ef = O of corollary 1
and the expression for e} according to equation 3.2 yields (cf. Bishop, 1995)

#* 1 - & 3
Wt = —EZ[W%" FW“ %) — yil.

i=1

Hence, increased coercivity and thereby uniqueness with regard to (Wi, Wh
immediately affect the uniqueness of the bias Wj as well.

The results corresponding to the above cases are presented in Tables 2
through 5. For all experiments, we have chosen f = 10~3 according to some
prior tests, which alsc indicated that the results obtained here were not very

sensitive to the choice of 8.
Let us state some cbservations based on Tables 1 through 5:

Local minima: For regularization methods I and III, the minimal cost
function values are scored more than once when #; is small. However,
there still exist a lot of local minima for larger networks.

Condition i in corollary 1: Is valid for all regularization methods with
a precision related to the stopping criterion.

Efficiency: By means of the number of iterations and the CPU time,
regularization methods I and III improved the performance, whereas
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Table 2: Computational Results in Example 1 for Regularization I.

CPU

Its

B

Mean

Minimum Maximum Mean

Mean

Maximum

Minimum

Minimum Maximum Mean

Hy

Minimum Maximum

030

0.35
0.43
0.51
0.55
0.63
0.65

0.25
0.33
0.38
0.46

047

84
149
208
245
382

48

le-6
2e-6

de-6

3e-8

0.023
0.0197

0.025 (5)
0.0199 (2)

0.022 (5)
0.0195
0.017

2
3
4

037

101
146
183
244

327

76

be-6
de-6

Je-8

3

=

88
142
145
227

0.018 1le-7 266
7e-6

0.019

50

22

0
i}

0.017 le-7 2e-5
S5e-7

0.018
0.017 (2}

0.017

0.01a

6e-6

le-5

0.017

0.62

0.57

0.016 2e-7 2e-5 5e-6

0.017

0.016

7

Note: Here and in the sequel, .7, 7 refers to the value of the cost functional containing the regularization term.

Table 3: Computational Results in Example 1 for Regularization I

CPU

Its

l2*]

Minimum Maximum Mean Minimum Maximum Mean

Minimum Maximum Mean

Maximum Mean

Minimum

0.49
0.59
0.61
0.75
0.88
0.96

0.67
0.75
0.79

0.87

0.33
0.44
0.48
0.61
0.72
0.86

231

854
1009
963

67
131
257
329

0.016 0.015 2e-6 8e-5 2e-5

0.015

2
3

383

414

0.015 2e-7 1e-5 3e-H
2e-5

0.015

0.014

Be-6

0.015 Be-8

0.015
0.015 (2)

0.014

8§32
1331

1283
2402
2472

le-5
le-5

3e-5
3e-5

2e-6
3e-6

0.014

0.014

5

10

1.

607
1213

0.014

0.014

0.013

6

1.13

1599

0.014 0.014 le-7 le-5 4e-6

0.013

7
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o methods [T and IV made it worse compared to the unregularized ap-
AELEY 38 g IRBEDR proach.
[ e =
- o Generalization: All regularization approaches improve the general-
E g © o S ization compared to the unregularized problem by preventing oscilla-
= 5 £ERNRE 2% § a il A tion in the final mapping generated by the MLP. When #; is increased,
Gl|g|°°°="" J|s regularization methods I and III seem to be more stable and thus more
robust than methods IT and TV.
g 0 eeg g DakEYg Conclusion: From the four regularization methods tested, I and I1I are
E|e83333 é ocosoS preferable to I and IV in every respect. One cannot make a difference
= between I and III, and we note that centering the input data already
" . & | g0 3 8 decreases the significance of the hidden bias.
S | <2 0FED L s R
3 RS B e gt 4.2 Classification,
g §
2 | E e e PR Eo i Example 2. We consider the well-known benchmark to classify Iris flowers
=|E|on=aR3 g Setetaies (cf. Gupta & Lam, 1998) according to measurements obtained from the UCI
= repository (Blake & Merz, 1998). In this example, we have 1, = 3 (number
b g of classes), 1y = 4 (number of features), and initially 50 samples from each
E ey g eSEILH of the three classes. Due to the choice of the k-tanh activation functions
g | b =i - R prescaling of the output data {y;} into the range [~1, 1] destroys the linear
= . independence between different classes.
= Eloveww e ! Hloweewow
g é LR TR .5. 3|2 CET LY In Tables 6 through 11, we have solved the classification {(optimization)
5 g problem again 10 times using 40 random samples from each class as the
g £ E" _ § o o 16 learning set and the remaining 10 samples from each class as the test set.
B OR[E[Iii%iel B & % debdda These two data sets have been formed using five different random per-
4 g RS o = mutations of the initial data realizing a simple cross-validation technique.
5 _ 8 i Hence, we have N = 120 and the remaining 30 samples in the test set for
s E = - each permutation.
2 E SEanwl %, é 38844 In Tables 9 through 11, we have added noise to the inputs in permuted
% SR s HERT 5 = learning sets. First, means with regard to each four features within the three
& _ s classes have been computed. After that, the class mean vectors have been
& Floaenne = § g g g ‘E* ‘S" g multiplied component-wise with a noise vector §¢ for § = 0.3 and & ¢
& S e e % p- === === N0, 1), and this has been added to the unscaled learning data.
% ) &“3 . . To this end, we derive some final observations based on the computa-
E g - , .
DTi |z ? geans| F |es E T % o tional results, especially in example 2:
8 é 233333 | £ g =g g S < Local minima: In all numerical tests for unregularized and regularized
= = 8 learning problems, the L-BFGS optimization algorithm was conver-
2 = SR 24 g gent. This suggests that by using the proposed combination of linear
E EleZE8rngy| & Elg3Z22s final layer, prescaling, and mixed activation, we are able to deal with
“ £ g g E Sps U é s8s3se the flat error surfaces during the training. Furthermore, because usu-
2 g|S8s9 E ally in all 10 test runs of one learning problem, a different value of the
E "g ol
= S | et en =0 b = & | olen = e

cost functional is obtained, the different results are revealing “true”
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local minima instead of just some symmetrical representations of the
same MLP transformation.

Efficiency: By comparing the number of iterations and the CPU time,
the unregularized problem seems to be easier to solve than the reg-
ularized one (with given 8) for the clean learning data. On average,
there is no real difference between the unregularized and regularized
problems for the noisy learning data, but the variation in the number
of iterations is significantly larger for the unregularized approach.

Comparison: There seems to be no significant difference between the
quality of perceptrons resulting from the unregularized and regular-
ized problems, with or without additional noise. This suggests that the
iris learning data are quite stable and contain only a few cases with
nongaussian degradations. Moreover, according to the observations in
example 1, one reason for the quite similar behavior can be the size of
11, which is not very large compared to ny and ;. Finally, we cannot
favor either of the two regularization methods I and III according to
these results.

Generalization: The amount of false classifications in the test set is
between 0 and 3, that is, between 0% and 10% in all test runs. A single
preferable cheice (an ensemble, of course, is another possibility) for
an MLP classifier would probably be the one with median of false
classifications in Cr obtained by using permutation 1 or 4, even if for
the fifth permutation, an optimal classifier was found according to the
given data. Notice that the amount of variation in Cr over the different
permutations provides useful information on the quality of the data.

Appendix A: Proofs of Lemmas

Proof of Lemma 1. Functional J(W} in a component-wise form reads as

2
my oy
JW) = Z (Z Wity — Wi .

II j=1

where { represent the row and j the column index of W, respectively. A
straightforward calculation shows that

aj’ T
— W T — Iy i — U T
aw,-k (; v Y k BWI Z v Y

:[WV—YLV #%’;— [Wv —y]v!. (A1)

Here we have used Matlab-type abbreviations for the ith row vector w;. of
matrix W,
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Proof of Lemma 2. As above, consider the component-wise form of the
functional

Ju) = : ZZ (Z wy filw) — J}) Z,T;(u) (A.2)

Jr._

where Ji(u) = 3 Zml (wii fi(u) — yp? = W F(u) — Y]ﬁ Then

3 i , ,
I} = |:Z wjtfr(ut H;} Wi fk(“k) = Wi fk(”k) [WF(u) — Y])I (A.3)

Remember here that u is a vector with mz components. As in lemma 1, we
get the derivative of J(u) with respect to u by treating k as row index and §
as column index. Proceeding like this, we obtain from equation A.3

wn fi1) ... W fr (1)
VaJ() = ‘ | _ WF@ —y]
Winn f:m (Mmq) - Uhpann f:nl (“-?m)
- (WFw) Wra -yl (A4)

which is the desired result when (W F (u))” is replaced for Diag{F (u)) W',

Proof of Lemma 3. Here we introduce the basic Lagrangian technique to
simplify the calculations. As the first step, we define the extra variable u =
Wv and instead of the original problem consider the equivalent constraint
optimization problem,

(mw) Ja, Wy = % W Fiu) — yll2 subjectto u=Wv, (A.B)

where u and W are treated as independent variables linked together by
the given constraint. The Lagrange functional associated with equation A.5
reads as

L, W, 0 = J(u, W)+ A (u— W), (A.6)

where A € R™ contains the Lagrangian variables for the constraint.

Noticing that the values of functions JFu(u, Wjinequation A.5and £(u, W,
A) in equation A.6 coincide if the constraint u = W v is satisfied, it follows
that a solution of equation A.5 is equivalently characterized by the saddle-
point conditions VL{u, WL A\) = 0. Therefore, we compute the derivatives
VL, VwL, and V) £ (in a suitable form) for the Lagrangian.



1476 Tommi Kdrkkiiinen

The gradient vector ¥V, L(u, W, A) is, due to lemma 2, of the form
Vul = Vyf(u) + A = Diag{F (w)} W [W Fu) — y] + A. (A7)

Other derivates for the Lagrangian are given by VwL = —Av’ and V) £ =
u — Wv. Using formula —A = Diag{F (w)} W’ [W F(u) — y] due to equa-
tion A.7 and substituting this into Vyw.L, we obtain

VwL = Diag{F (u)} W [W F(u) — y]v’. (A.8)

Due to the equivalency of equations A.5 and A 6 with the original problem,
the desired gradient matrix is given by equation A.8 when Wv is substituted
for u.

Proof of Lemma 4. To simplify the calculations, we now introduce two
extra variables u = Wv and it = W F(u) = W F(Wv). As in the previous
proof, we first consider the constraint optimization problem:

(m'm)f(u, i, W)=% W F(i)—y|* stu=Wv,ia=WFw). (A9)
w1, W

The Lagrange functional associated with equation A.9 reads as

Llw, i, W, A, A)=](u, @, W)+x1‘(u—wv)+f(ﬁ—ﬁr Fy). (A.10)

Using similar techniques as in the previous proof, derivates for the saddle-
point conditions of the Lagrangian are given by Vo £ = —[W F w)]" A +
A, Vil = [WF@I [WF@ -yl + X, Vwl=-Av, V3L =u—Wy,
and V)—\ﬁ =it — W F(u). From Y, 5 £ = O we obtain

A=WF" A= -WF @ WF@ WF@ -yl (A1)
which, substituted into Vw., yields

VwL = Diag{F (u)) WT Diag{F' ()} WT [W F(@) — y]v". (A.12)

This, together with the original expressions u = Wv and i = W F(u),
proves the result.
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