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The connection between robust statistical estimates and nonsmooth
optimization is established. Based on the resulting family of op-
timization problems, robust learning problem formulations with
regularization-based control on the model complexity of the MLP-
network are described and analyzed. Numerical experiments for
simulated regression problems are conducted and new strategies for
determining the regularization coefficient are proposed and evalu-

ated.

1 Introduction

Multilayered perceptron (MLP) is the most commonly used neural network
for nonlinear regression approximation. The simplest model of data in re-

gression is to assume that the given targets are generated by

yi = ¢(x:) + €&, (1.1)
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where ¢(x) is the unknown stationary function and €;’s are sampled from
an underlying noise process. In [Kérkkiinen, 2002| (see also [Bishop, 1995],
Chapters 6 and 9) it was shown that for any MLP with linear final layer and
special regularization (weight decay without final layer bias) the usual least-
mean-squares (LMS) learning problem formulation corresponds to the Gaus-
sian assumption for the noise statistics in (1.1). In statistics, relaxation of
this assumption underlies the so-called robust procedures (e.g., [Huber, 1981,
Rousseeuw and Leroy, 1987, Rao, 1988, Hettmansperger and McKean, 1998,
Oja, 1999)).

In neural networks literature there have been some attempts to combine
robust statistical procedures with learning problem formulations and train-
ing algorithms for MLP-networks (e.g., [Kosko, 1992, Chen and Jain, 1994,
Liano, 1996]). Moreover, single layer (linear) perceptron for classification
and robust regression approximation has been extensively studied in a spe-
cial algorithmic setting by Raudys in the sequence of articles [Raudys, 1998a,
Raudys, 1998b, Raudys, 2000]. However, general combination of robustness
and MLP without focusing on special algorithms or architectures has, as far
as we know, not been considered on a solid basis.

Based on other initial settings than (1.1) there exists many techniques for
studying learning properties of feedforward neural networks, especially PAC-
learnability and VC dimension (e.g., [Mitchell, 1997]). The above mentioned
result concerning the LMS learning problem means that for every local solu-
tion of the learning problem the output is equal to the sample mean of the
given outputs. Hence, every locally optimal MLP provides an unbiased esti-

mate of the true mean. The main theoretical observation of this paper is the
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generalization of this result in accordance with the two most common robust
estimates of location - median and spatial median. This yields generalized
unbiasedness so that we can then concentrate to control the variance (i.e.
the complexity) of MLP. For this purpose, we apply the special quadratic
weight decay, which penalizes large values of weights using only a single hy-
perparameter and, being strictly convex, improves also the local properties
of the learning problem. Surprisingly, in addition to numerous practical and
theoretical studies the analysis of fat-shattering dimension (scale-sensitive
version of VC dimension more appropriate for studying neural networks)
also supports the utilization of such an approach [Bartlett, 1998|.

The main emphasis here is to describe, analyze, and test robust learn-
ing problem formulations for the MLP in a batch mode. For the numerical
comparisons, we need to utilize black box training algorithms for solving the
optimization problems which are based on these formulations. An essential
concept then is the convergence of an algorithm, which depends on the reg-
ularity of the optimization problem (|Nocedal and Wright, 1999]). Hence,
rigorous treatment of robust MLP requires us to establish a link between
the norms behind the robust statistics and the regularity of such problems
[Clarke, 1983, Mékeld and Neittaanmiki, 1992|. As far as we know this fun-
damental relation has not been explicitly established in other works.

Another basis for the present work is to treat the MLP-transformation
in a layer-wise form (|[Hagan and Menhaj, 1994, Kérkkdinen, 2002]). This
allows us to derive the optimality system in a compact form, which can be
utilized in an efficient computer implementation of the proposed techniques.

Together with the given new heuristics for controlling the model complex-
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ity the proposed approach allows a rigorous derivation of an MLP for real
applications with different noise characteristics within the training data.
The contents of the work are the following: First, in Section 2 we establish,
discuss and illustrate the connection between robust statistics and nonsmooth
optimization. There, we also present the layer-wise architecture and family of
learning problem formulations for training an MLP. In Section 3, we compute
the optimality conditions for the network learning and derive and discuss
some of their consequences. In Section 4, we report results of numerical
experiments for comparing different formulations and introduce two novel
techniques for determining the complexity of an MLP model. Finally, in

Section 5 we briefly make some conclusions.

2 Preliminaries

Throughout the paper, we denote by (v); the ith component of a vector
v € R". Without parenthesis, v; represents one element in the set of vectors

{vi}. The [,-norm of a vector v is given by

n 1/q
vl = (Z I(V)z'lq) , < oo (2.1)

=1
2.1 Nonsmooth optimization and robust statistics

In this section, we establish the connection between nonsmooth optimization
and robust statistics. More details and further references on nonsmooth opti-
mization can be found, e.g., in [Clarke, 1983, Mékeld and Neittaanméki, 1992],

while robust statistics is treated in [Huber, 1981, Rousseeuw and Leroy, 1987,
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Rao, 1988, Hettmansperger and McKean, 1998, Oja, 1999|.

Nonsmooth optimization concentrates on functionals and optimization
problems, which can not be described by using the classical (C!) differential
calculus. We consider the following unconstrained optimization problem

min J(u), (2.2)

ucRn

where J : R® — R is a given, Lipschitz continuous cost function.

Definition 2.1. The subdifferential 07 (according to [Clarke, 1983|) of J at
u € R" is defined by

0T () ={€ eR" | 7%u;d) > ¢'d vd e R"}, (2.3)

where J9(u; d) is the generalized directional derivative lim sup M, which

t\0
coincides with the usual directional derivative ' (u; d) when it exists. Notice

that 0J (u) defines a nonempty, convex, and compact set.

Theorem 2.1. Every local minimizer u* € R" for problem (2.2) is substation-
ary, i.e. it satisfies

0 € 8 (u*). (2.4)

Moreover, if J is convex, then the necessary optimality condition in (2.4) is

also sufficient.

To summarize, in nonsmooth optimization generalization of the direc-
tional derivative is the set-valued subdifferential and, correspondingly, gener-

alization of the smooth, local indication of an extremum point V.7 (u*) = 0
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is the existence of a substationary point 0 € 0J (u*).
Let us illustrate the above definitions with an example f(u) = |u| for

u € R. The subdifferential of f(u) is given by

.
-1, for u < 0,
Of(u) =sign(u) = { [=1,1], for u=0, (2.5)
1, for u > 0.
\

As can be seen, the subdifferential (i.e., generalized sign-function) coincides
with the usual derivative in the well-defined case u # 0, and contains the
whole set [—1,1] with endpoints of left/right converging directional deriva-
tives of the sequence f (u’) for v* — 0. Moreover, u* = 0 is the unique
minimizer of |u|, because 0 € df(u) only for u* = 0.

Next we turn our attention to robust statistics. Let {xi,...,xy} be a
sample of a multivariate random variable x € R". Consider the following

family of optimization problems

1 N

min J(u), for J7*(u) = — D flu =12 (2.6)

ucR”? .
=1

We restrict ourselves to the following combinations (cf. [Rao, 1988]):
g = a = 2 (average): In this case, problem (2.6) is the quadratic least-
squares problem, and the gradient of J is given by V.75 (u) = SN (u—x).

From V7}(u*) = 0 we obtain the unique solution a = u* of (2.6) in the form

1 N
a= N;xi, (2.7)
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which is the marginal mean (average) for the given sample.

g = a = 1 (median): This choice leads to the minimization of the sum
of l;-norms, which is a nonsmooth optimization problem. The subdifferential
of Ji(u) reads as

N

3711(11) = Zﬁz’a where (ﬁi)j = sign((u — Xi)j)' (2.8)

=1

In practice, median is realized by the marginal middle values of the feature-
wise ordered sample set. Hence, median is unique for odd NN, whereas, for N
even, all points in the closed interval between the two middle values satisfy
(2.8) (see, e.g., |[Karkkdinen and Heikkola, 2002]).

¢ = 2a = 2 (spatial median): By (2.3) the subgradient of 7, (u) is

characterized by the condition

N i)j = w’ for ||U—Xi||2 ?é 0’
073 (u) =) &, with [ = il (2.9)
= €], < 1, for lu—xl» = 0.

Thus, in this case solution of (2.6) is realized by the so-called spatial median
s, which satisfies 0 € 07, (s). In [Milasevic and Ducharme, 1987] it is shown
that if the sample {x;,...,xy} belongs to a Euclidean space and is not con-
centrated on a line, the spatial median s is unique. This result is generalized

to strictly convex Banach spaces in [Kemperman, 1987|.
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Figure 1: Scaled (scale 0.4) gradient fields of ||x||3 (left) and ||x||> (right).

Comparison of different estimators

In statistical context robustness refers to the insensitivity of estimators to-
wards outliers, i.e. observations which do not follow the characteristic dis-

tribution of the rest of the data. Sensitivity of the average a towards obser-

vations lying far from the origin (representing the mean-value estimator) is

illustrated in Figure 1 (left), where the gradient field V f(x) = (x1, X2) of 2d

function ||x||3 is given. As we can see, the size of the gradient vector increases

when moving away from the origin, so that those points are weighted more

heavily at the equilibrium V/|x||2 = 0. This readily explains why the (sym-

metric) Gaussian distribution with enough samples is the intrinsic assump-

tion behind the least-squares estimate a. On the other hand, an estimator

with equal weight of all samples is obtained by dividing the gradient (not

the samples!) by its length, and then we precisely get the spatial median s,

which is illustrated through the gradient field of function ||x||» in Figure 1
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Figure 2: Scaled (scale 0.4) gradient field of f(x) = ||x]|;-

(right). As stated, e.g., in [Hettmansperger and McKean, 1998]| (this is also
evident from (2.9)) the corresponding estimating function J, depends only
on the directions and not on the magnitudes of u — x;, + = 1,..., N, which
significantly decreases both the sensitivity towards outliers and requirements
concerning the necessary amount of data. Finally, in Figure 2 the gradient
field of a function ||x||; is depicted, where the insensitivity with respect to the
distance but also the lack of rotational invariance (due to different contour

lines of the unit ball in the 1-norm) are clearly visible.

2.2 MLP in a layer-wise form

A compact description for the action of the multilayered perceptron neural

network is given by ([Hagan and Menhaj, 1994, Kérkkéinen, 2002|)

o =x, o =FWeol) for 1=1,...,L. (2.10)
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Here the superscript | corresponds to the layer number (starting from zero
for the input) and by the circumflex we indicate the normal extension of
a vector by unity. F'(-) denotes the usual componentwise activation on
the [th level, which can be represented by using a diagonal function-matriz
F = F(-) = Diag{ fi(-) }i*, supplied with the natural definition of the matrix-
vector product y = F(v) = (y); = fi((v);). Notice though that the following
analysis generalizes straightforwardly to the case of an activation with non-
diagonal function matrix [Kérkkéiinen, 2002]. The dimensions of the weight-
matrices are given by dim(W') = n; x (n; 1 +1), I = 1,..., L, where nq is
the length of an input-vector x, n;, the length of the output-vector o”, and
ny, 0 < I < L, determine the sizes (number of neurons) of the hidden layers.
Due to the special bias weights in the first column, the column numbering
for each weight-matrix starts from zero.

Instead of precisely (2.10) we consider an architecture of MLP contain-
ing only a linear transformation in the final layer as of = N({W'})(x;) =
WL(A)Z(L_I). With a given training data {x,-,yi}i]il, x; € R and y; € R".,
the unknown weight matrices {W'}~ | are determined as solution of the op-

timization problem

: a l
i L3 ,({W), (2.11)

where the cost functional is of the general form

SUW) = o INAW e -yl o+ 5 D0 DT WL (212)

1=1 (i,j)e;

for > 0. Here, the index set I; contains all other indices of the unknown
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weight matrices except the ones corresponding to the bias-vector of W as
suggested by the test results in [Karkkéinen, 2002] (see also [Bishop, 1995],
Chapter 9).

All features in the training data {x;,y;} are preprocessed to the range

[—1,1] of the k-tanh functions

2
~ 1+exp(—2ka)

tr(a) —1 forkeN, (2.13)

which are used in the activation. In this way, we balance the scaling of
unknowns (components of weight matrices at different layers) in problem
(2.11) |Kérkkainen, 2002].

It is well-known (as suggested by (1.1)) that for a successful application
of MLP one needs to avoid overfitting, i.e. take into account both the model
complexity and errors in data. In (2.12) choosing the single hyperparameter,
the weight decay coefficient [ positive favors smaller weights thus further
balancing their scale for any iterative training algorithm. In addition, this
pushes the linear part of each neuron towards the linear region of the k-tanh
activation functions. However, because in our approach we let k in (2.13) to
run from 1 to n; in each layer thus diminishing the linear region, this kind
of penalization does not directly reduce the MLP to a linear transformation.
Function (2.12) is also related to Bayesian statistics with compatible choices
of the sample data and prior distributions (e.g., [Rognvaldsson, 1998]). More-
over, we consider the same three combinations for the parameters ¢ and «
as in the previous section, namely g = a =2, ¢ = a =1, and ¢ = 2a = 2.

Hence, we conclude that the considered family of learning problem formula-
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tions for the MLP results from a compound (though special) application of
robust and Bayesian statistics.

For solving the optimization problems in (2.11) we use generalizations of
gradient-based methods for nonsmooth problems known as bundle meth-
ods |Maikeld and Neittaanméki, 1992]. We recall from |Kérkkdinen, 2002]
that for &« = 1 the assumptions of convergence for ordinary training algo-
rithms like gradient-descent (on batch-mode Lipschitz continuity of gradi-
ent, for on-line stochastic iteration C? continuity), CG (Lipschitz continuity
of gradient), and especially quasi-Newton methods (C?-continuity) are vi-
olated [Haykin, 1994, Nocedal and Wright, 1999]. As documented, e.g., for
SLP in [Raudys, 2000], for MLP in [Saito and Nakano, 2000], and for image
restoration with similar functionals in |[Kérkkéinen et al., 2001] this yields
nonconvergence of ordinary training algorithms, when the cost function does
not fulfill the required smoothness assumptions. Furthermore, results in
[Kéarkkainen et al., 2001] indicate that simple smoothing techniques like re-
placing a norm ||v||; for v € R? by /¥? + v + ¢ for ¢ > 0, are not sufficient

to restore the convergence of ordinary optimization methods.

3 Sensitivity Analysis and its Consequences

Next we apply a useful technique, also presented in [Kérkkainen, 2002], to de-
rive the optimality conditions for the network training problem (2.11). From
now on, for any vector v € R", the notation sign[v] means a componentwise

application of the sign-function in (2.5) and the abbreviated notation v/||v||2
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actually refers to the existence of vector £ such that

(€)= M for [vll2 # 0, [[€lla < 1, for [|v]ls = 0. (3.1)

vl

For simplicity, we assume that the activation functions in all function-matrices
F(-) are differentiable, although the analysis below can be extended and given
algorithms applied also to nondifferentiable activation functions. Note that
the use of nonsmooth activation functions (step-function or a/(1 + |a|), e.g.,
[Prechelt, 1998]) makes the learning problem nonsmooth even for ¢ = a = 2,
and, therefore, ordinary gradient-based optimization algorithms can not be

used for solving.

3.1 MLP with One Hidden Layer

For clarity, we start with MLP with only one hidden layer. Then, any local
solution (W'*, W?2") of the minimization problem (2.11) is characterized by
the conditions

o]

* * [awl ‘Ca (Wl*’WQ*)-I
{ J € dwi w2y L2 5 (W, W) = P
0

{awz o W2*)J . (3.2)

Here, Ow: L5, | = 1,2, are subdifferentials presented in a similar matrix-
form as the unknown weight-matrices.

We begin the derivation with some lemmata. The proofs are omitted here,
because they follow exactly the same lines as the proofs of the corresponding
lemmata in |Kérkkéinen, 2002, using the already introduced results on sub-

differential calculus in Section 2.1. We also assume that, except the unknown
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variable defined in each cost function, other fixed quantities (matrices and
vectors) are given with appropriate dimensions. Furthermore, to compress

the presentation we introduce the following notation

e

v, forg=a=2,

€, (v) = {sign[v], forg=a=1,
v

, forq=2a=2.
V2

Lemma 3.1. For the functional J(W) = 1||W v — y||¢ the matrix of subdif-

T«

ferentials is of the form dw J(W) = £5(Wv —y)v".

Lemma 3.2. For the functional J(u) = X||W F(u) — y||2 the subgradient

T«

reads as
0,7(w) = (W (w) € (W F(u)-y) = Diag{F (w)} W& (W F(u) ).

Lemma 3.3. For the functional J(W) = 1||W F(Wv) — y||% the matrix of

subdifferentials is of the form
Ow J(W) = Diag{F (Wv)} W £2(W F(Wv) —y) v".

Now we are ready to state the actual results for the perceptron with one

hidden layer. In what follows, we denote by W7 the submatrix (W?), ;, i =

1,...,n9, j = 1,...,n, which is obtained from W? by removing the first
column W32 containing the bias nodes. Furthermore, the error in the ith

~

output is denoted by e; = W2 F(W!x;) — y;.
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Theorem 3.1. Matrices of subdifferentials dw2 LS 3(W?', W?) C Rm*(m+D)
and Ay L2 5(W?, W?) C R *(0) are of the form

Ow> L5 5(W, W?) = Zs &) [F(W',)]" + B0 W3, (3:3)
Ow L2 5(W!, W?) = ZDlag{}" (Wi%,)} (WD €2 (e;) %] + BW.
(3.4)

3.2 MLP with Several Hidden Layers

Next, we generalize the previous analysis to the case of several hidden layers.

Lemma 3.4. For the functional J(W) = 1[|W F(W F(Wv)) — y||g the ma-

trix of subdifferentials is of the form
dw J(W) = Diag{F (Wv)} W’ Diag{F (W F(Wv))} W'¢r(e)vh

where e = W F(W F(Wv)) —y.
Theorem 3.2. Matrices of subdifferentials dw: L3 ;({W'}), I = L,...,1, read

as
1 N

~(1—-1 A7
N 2 &ilel I+ B WY,

i=1

Ow: LG{W'}) =

where

& = €(e), (3.5)
& = Diag{(F)) (W'e{" ")} (W{T)T gl (3.6)

2

Furthermore, W = [0 WL] for I = L, and coincides with the whole matrix
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Wi for1 << L.

The compact presentation of the optimality system in Theorem 3.2 can
be readily exploited in the implementation, which practically consists of a
few basic linear-algebraic operations realizing (3.5) and (3.6). Moreover, the
following result concerning every local minimizer O € dwi L3 z({W''}) of

problem (2.11) holds.

Corollary 3.1. For locally optimal MLP-network {W'"} satisfying the con-

ditions in Theorem 3.2:

| XN
NZe}‘zO, forg=a =2,

N
10¢€ Zsign[e;‘], forg=a =1,

i;l e*
0c T forg=2a=2
\ Z ez’ 1 ’

for all 5 > 0.

Proof. The optimality condition

O € dw: L2 ,({W" ) Zs“ 6" V" + g0 W

(L-1)

(with the abbreviation 6, HlL—1)”

= 0, ) in Theorem 3.2 can be written in

the non-extended form as

st”‘u )]+l W
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By taking the transpose on the right-hand-side we obtain

1 L 1 : o’ 1 (&)"
< &)+ =N
NZ 0" B (W) NZ of V(&) + B (W)

Finally, by using the definitions in (3.5) for £~ in the first row shows the

results. n

The result of Corollary 3.1 shows that by means of the error distribution
the local optimality conditions for the three learning problem formulations
coincide with the conditions satisfied by the three statistical estimates in

(2.7)-(2.9). Hence, we draw the following conclusions:

e We are able to generate robust MLP’s using the two nonsmooth norms
for fitting. This also suggests that other good properties of robust
estimates like smaller amount of learning data needed could be a further

benefit when training a network.

e The result of Corollary 3.1 quantifies precisely the fault tolerance of

neural networks by means of erroneous data according to (1.1).

e The proof of Corollary 3.1 reveals that by means of the regression model
the role of MLP is suppressed: we only needed linear final layer with a
separate bias. Therefore, these results are actually valid for all kind of

regression approximators having these two properties.



4 NUMERICAL EXPERIMENTS 18

4 Numerical experiments

4.1 Univariate single-valued regression

In the first test setting, we study the use of the MLP-network in the recon-
struction of a given single-valued function of one variable, which is disturbed
by random noise. We train the network by solving the optimization prob-
lem (2.11) both with @ = ¢ = 2 and @ = ¢ = 1, and we compare the
results given by these two approaches. We remark that in this case np = 1,
and thus, the functionals £;, and Lj 4 are identical. The minimizations
are performed by the proximity control bundle method, which is applicable
both to the smooth functional ,C%”B and to the nonsmooth functional ‘C%,ﬁ

[Mikeld and Neittaanmaki, 1992].

Definition of the test problem

We consider the reconstruction of the function f(z) = sin(z) in the in-
terval € [0,27]. The input-vectors of the training data are chosen to
be N uniformly spaced values x; from the interval [0,27] given by x; =
(1 — 1) 27 /(N — 1). The samples of function values involve two types of ran-
dom noise: Low-amplitude normally distributed noise affects the values over
the whole interval [0, 27], while at some isolated points, the values are dis-
turbed by high-amplitude uniformly distributed noise (outliers). Hence, we
choose

yi = sin(x;) + 0 ¢; + (i, (4.1)
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where &; ~ N(0,1), i € O°, and 1; ~ U(-1,1), i € O. Here, U(—1,1)
denotes the uniform distribution on (—1,1) and O is an index set of outliers
such that O C {1,2,..., N}. O¢ denotes the complement of O.

We use the MLP with one hidden layer (i.e., L = 2) considered in Section
3.1. The activation is performed with the k-tanh functions (2.13) such that
F(-) = Diag{t;(-)}:2,. The input and output dimensions are both equal to
one (ng = ny = 1), and we use the values 5, 10, and 20 for the dimension n;
of the hidden layer. The size N of the training data is 30 or 120 (N = 60 is
given in [Kérkkidinen and Heikkola, 2002|), and, correspondingly, the index
set O is chosen to contain 3 or 10 randomly selected indices between 1 and .
The amplitudes of the normally and uniformly distributed noise are § = 0.3
and ( = 2, respectively. The training dataset {x;,y;} in the case N = 30,
created according to the definitions above (before scaling to the range of the

activation functions), is illustrated in Figure 3.

Comparison of formulations

Our goal is to estimate the approximation capability of the MLP-networks
corresponding to the minimization of the two functionals L] 5 and L3 5 with
different values of the parameters IV, n{, and . For this purpose, we define
a validation set of input-values by x; = (1 — 1) 2n/(NV; — 1), N; = 257, which
does not coincide with the input-values x; of the training data. The difference

between the MLP-approximation and the exact function f is then calculated
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25

15+ x 4

Figure 3: The training dataset {x;,y;} in the case N = 30 and the exact
graph of function f. The circled markers involve also uniformly distributed
noise.

by using the norm

Ny

1
err (W W?) = — Z

N, 2 W2 F(W'x) — f(%)]. (4.2)

Let us emphasize that the choice of error measure is not based on favoring
E%,/B but on the fact that this form weights equally both small and large
deviations from the exact function.

We performed a series of tests with the three different values for N and
ny. For fixed N and n,, the value of the regularization parameter g varied in
the interval [0, 1], and for each 3, we repeated the optimization algorithm 100
times with randomly created initial values for the weight matrices {W?!, W2}

and computed the minimum and average values of the errors (4.2). We
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Lis L3

N | ng B* err™ B* err*
30| 5 | 2.0e-2 | 1.2e-1 | 7.7e-3 | 1.6e-1
10 | 4.1e-2 | 1.2e-1 | 2.0e-2 | 1.6e-1
20 | 1.0e-1 | 1.3e-1 | 4.1e-2 | 1.6e-1
120 | 5 | 1.9e-3 | 4.3e-2 | 1.2e-4 | 5.7e-2
10 | 1.3e-2 | 4.7e-2 | 6.4e-4 | 5.9e-2
20 | 3.1e-2 | 4.8¢-2 | 2.6e-3 | 6.2e-2

Table 1: Optimal values 5* of the regularization parameter for different values
of N and n; with the functionals £jz and L3, Column err* gives the
minimum error obtained with the value 8* over 100 tests.

remind that it is well-known and tested that the optimization problems to
be solved for training the MLP are nonconvex, and thus, there is a large
number of local minima (all satisfying Corollary 3.1) in the error surface to
be explored by random initialization.

We monitored the value of the regularization term g Zle dGi)en (W, ,[?
of the functional L7, corresponding to the MLP with minimum error in
(4.2) for finding an effective way to choose the parameter 3. This computa-
tion was motivated by the fact that our previous studies in image restora-
tion with similar functions to be optimized have shown a strong correla-
tion between the reconstruction error and the value of the regularization
term [Kéarkkdinen and Majava, 2000]. In addition to the well-known cross-
validation techniques, simpler heuristics for this purpose have been proposed
and tested with the backpropagation-algorithm, e.g., in [Rognvaldsson, 1998|.

The computational results are illustrated in Figures 8-15. Each figure
includes three graphs corresponding to the three dimensions n; of the hidden

layer. For certain functional and fixed value of N, the graphs represent

either the average value of the errors in the 100 tests or the value of the
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regularization term. In each case, the norm (4.2) obtains minimum value at
certain 3, and these optimal points and minimal values of ’err’ are listed in
Table 1. The optimal points are marked also in the graphs by vertical dashed
segments.

We see that in each test case the MLP-network based on the minimization
of the functional [,i s+ leads to a better approximation of the exact function
f than the MLP based on E%jﬂ. We can also make the natural conclusion
that the error is reduced by increasing N. The figures show that with larger
dimension of the hidden layer the overall values of the error become smaller,
but the minimum value remains essentially the same. Moreover, with larger
value of ni, the error of the MLP-approximation becomes less sensitive to
the choice of the regularization parameter. However, there is a remarkable
difference in the behaviour of the two learning problem formulations for n; =
20 (i.e., with high representation capability of MLP): When § grows from §*,
the average error for [,}ﬁ essentially stays on the same level whereas for E%jﬂ
there is approximately a linear increase. In addition, for Eg, 5 small deviations
from the optimal regularization parameter 5* may lead to a large increase
in the error. Interestingly this suggests that the well-known approach in
statistics “to integrate over the nuisance parameters” like 8 would here yield
a poorer results (especially for Egﬁ) than choosing an appropriate single
value.

From the graphs of the regularization term we conclude that the strong
oscillation indicates that the value of 5 is smaller than the optimal value g*.
In other words, the MLP is too complex with unnecessary variance. How-

ever, otherwise the reconstruction error and the regularization term are not
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clearly correlated, and thereby our first approach does not contain enough
information to choose the parameter 8 exactly. For ¢ = a =1 and ny = 20
there seems to be some similarity in the graphs for different values of N to

indicate 8*, although this visual information is difficult to quantify precisely.

4.2 Bivariate vector-valued regression

In the second set of experiments, we consider the reconstruction of a vector-
valued function from noisy data. We use again the MLP-network with one
hidden layer and k-tanh activation and train the network by minimizing the
functional L7 ; with the three choices of ¢ and a.

The test function is formed as a sum of a global term, which affects the
function values over the whole domain, and a local term, which is nonzero
only in a small part of the domain. It is well-known that MLP is ef-
ficient in approximating the global behaviour of a function, but due to
its structure it tends to ignore the local variations. Another commonly
used neural architecture is the radial basis function network (RBFN) (e.g.,
[Broomhead and Lowe, 1988]), which builds approximations with local basis
functions. Therefore, when properly focused, RBFN can catch the local term
but gives poor approximations to the global term.

A simple idea to combine the advantages of locally and globally approxi-
mating networks is to augment the input of the MLP by the squares of the
input-values. Flake refers to such MLP-networks as SQUARE-MLP (square
unit augmented, radially extended, multilayer perceptron) [Flake, 1998] (see

also [Sarajedini and Hecht-Nielsen, 1992]). Such networks retain the ability
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to form global representations, but they can also form local approximations

with a single hidden node.

Definition of the test problem

We define the vector-valued function f : R? — R?, f(z,y) = (fi(z,y), f2(z,v))

as

(‘T - $0)2 + (y B y0)2> 2 (43)

f =4 — - 1
() xp ( 0.7 1 + exp(—61) +h

and f5(x,y) = £ (y, —z) with zo = yo = 2.5. The function (4.3) is an example
of a “Hill-Plateau” surface [Sarle, 1997], which is a sum of a local Gaussian
and a global tanh-function. The approximation of such a function is known
to be difficult for both MLP and RBFN.

We attempt to reconstruct the function f in II = [—5,5] x [—5,5]. The
input-vectors of the training data are obtained by first constructing a uniform

grid in IT with the grid points given by

@iny) = ((i =V h—5G -1 h=5), 4,j=1,....ny  (4.4)

where h = 10/n,. For the tests, we choose n, = 21 as in [Flake, 1998|. These
coordinate values are then prescaled to the range [—1, 1] of the activation
functions, and they are included in the input-vector together with the squares
of the scaled coordinates.

As in the previous section, all output-vectors involve low-amplitude nor-

mally distributed noise, while some isolated outputs are also disturbed by
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Figure 4: The components of the output-vectors in the training data (f; left,
f2 I‘lght)
high-amplitude outliers. More precisely, the output corresponding to the

input x"7 = (z;,y;,z7,y5)" is of the form y*™/ = (yo? yoT with
yi! = fulai, y) + S eig + Cmiy, (4.5)

where g, ; ~ N(0,1), (3,7) € O°, and n; ; ~ U(—1,1), (i,5) € O. In the tests,
the index set O is chosen to include approximately 0.05 ng randomly selected
elements, 6 = 0.1, and {( = 2. The training data created according to the
definitions above (before prescaling to the range of the activation function)

is illustrated in Figure 4.

Comparison of formulations

We performed tests by using the values 5, 10, and 20 for n; with the three
different training formulations (2.11), initially without regularization (i.e.,
B = 0). The error of the MLP-approximations was measured using a uni-

form 49 x 49 validation grid over II. Let us denote the input-vectors of the
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validation data by %/ and the corresponding grid points by (&;, 9;). Then,

the error is calculated by

49 49
1 ~ y
err (W, W?) = - 375~ | W2 F(W! ) — £(3,3)

i=1 j=1

‘2 . (4.6)

With fixed n,, we again repeated the optimization algorithm 100 times with
random initialization and computed the minimum and average values of the
errors (4.6).

The results are collected in Table 2. We conclude that the functionals E%,o
and [,5,0 are more accurate and clearly more robust with respect to the initial
guess than the smooth functional £3,. In all cases, the smallest minimum
error is achieved with the choice ¢ = 2o = 2, while the dimension n; does
not have a strong effect on the accuracy. The best reconstruction, given by

the functional L3, is illustrated in Figure 5.

Determination of the regularization parameter

In the previous section, the regularization parameter § was equal to zero.
However, as already pointed out by the results in Section 4.1, the value of

B has a strong effect on the accuracy of results, and thereby, it is important

L3g Lig Lyg

ny | err* err err* err err* err
5 | 9.6e-2 | 2.8e-1 | 3.7e-2 | 1.7e-1 | 3.4e-2 | 1.6e-1
10 | 1.2e-1 | 2.4e-1 | 4.0e-2 | 1.5e-1 | 3.6e-2 | 1.4e-1

20 | 1.1e-1 | 2.3e-1 | 4.7e-2 | 1.4e-1 | 4.4e-2 | 1.4e-1

Table 2: Minimum and average errors with the functionals £3 5, Li 5, and
L.
B
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Figure 5: The components of the best reconstruction, which was obtained
by minimizing [,%”3 with n; = 5 (f; left, f5 right).

to be able to choose the value correctly. Next, we describe another strategy
for choosing the value of § and estimate the quality of the resultant MLP
network.

The dimension of the hidden layer is fixed to n; = 20 and we use the
choice ¢ = 2a = 2. The learning data is exactly the same as in the previous
tests, and it is first divided into two disjoint parts C; and C5 of equal sizes.
More precisely, for N = 441 the randomly chosen sets C; and C5 contain
N; = 221 and Ny = 220 elements, respectively. Only the input-output pairs
(x®7,y"7) in the set C) are used in the functional (2.12), while the set Cy
is reserved for testing. This choice originates from the relaxed requirements
concerning the necessary amount of data for robust training. We define the

two errors

. k=1,2, (4.7)

2

1 ~ - .
e (W' W) = = 3 W2 (w59 -yt

(Xi’j 5yi’j)eck

while err; refers to the already defined validation error in (4.6).
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We search for an optimal nonzero 3 in the interval [107° 107%], which
can be determined by monitoring the value of the regularization term as
described within the univariate test. The interval is covered with a predefined
set of values [ - 107°, [ = 1,2,4,6,8;s = 9,8,7, and, for each fixed 3, the
optimization algorithm is repeated 50 times with random initialization. We
compute the errors err; and erry in all 50 tests and choose the MLP network
with the smallest err, to be the best one. For this MLP, we compute also
the error errs.

The results of the first stage of our strategy are illustrated by the graphs in
Figure 6. We see that all three curves have similar behavior, which suggests
that the errors err; and errs, which can be computed without knowing the
exact function f, contain the same information as the true error errs. Based
on err; and erry we now limit the complexity of MLP by choosing 8 = 1078.

After choosing the value of the regularization parameter we proceed to
the second stage of our strategy, which is the determination of the final MLP
network. Because the model complexity of MLP is now fixed along with
B, we are able to use the whole data in the learning problem. We perform
the minimization 100 times and choose the final MLP to be the one which
corresponds to the smallest value of local minima for £} 4 (i.e., the best
candidate for global minimum).

We evaluated the quality of the obtained MLP by computing the corre-
sponding errs, which was approximately 0.05. By comparing this value to the
graph of Figure 6 we see that approximation is improved from the first stage
and we obtain a very good overall error level. We also computed errz in each

100 tests and compared these values to the local minima of ‘Cé,ﬂ' To study
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Figure 6: Graphs of the three errors err; as functions of 3.

the correlation of these values and thus the validity of the final choice, we
then sorted the 100 tests in ascending order according to £j ;. The results
of this procedure together with the corresponding values of errs are given in
Figure 7. The increase of errs from its smallest value stresses the importance
of the final choice, which recovered almost the best alternative among the

100 candidates.

5 Conclusions

We considered robust learning problem formulations for the MLP network
with regularization-based pruning. The MLP-transformation was presented
in a layer-wise form, which yielded a compact representation of the optimality

systems and allowed a straightforward analysis and computer implementation
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Figure 7: The minimal value of £; 5 and err; in the final 100 tests.

of the proposed techniques.

Different learning problem formulations were tested numerically for study-
ing the effect of noise with outliers. We also proposed and tested two novel
strategies for blind determination of the regularization parameter and thus
the generality of MLP. Altogether, combination of robust training, square
unit augmentation of input and effective control of model complexity yielded

very promising computational results with simulated data.
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Appendix: Error and regularization graphs
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Figure 9: Regularization term with the functional E%,B and N = 30.



REFERENCES

0.34

0.32

0.3

0.28

o
)
)

average error
o
)
N

0.22

‘== nl=5 i
= nl=10
— n1=20

0.05 0.1 0.15 0.2 0.25

B

Figure 10: Average error with the functional Eg,ﬂ and N = 30.

0.035 >
0.03
0.025
0.02

0.015

regularization term

0.01}i*

0.005

m.enl=5 ||
- ni=10
— n1=20
L
0 0.05 0.1 0.15 0.2 0.25

B

Figure 11: Regularization term with the functional Lg,ﬁ and N = 30.



REFERENCES

0.2
== nl=5 .
- = nl=10 P

018} | — n1=20 . |

0.16

0.14

average error
o
o
N

=
[

0.08

1
0.06

0.04L— - ‘ - ‘
0 0.02 0.04 0.06

B

Figure 12: Average error with the functional Eiﬂ and N = 120.

0.06 T
ey == nl=5
ka Ay - = nl=10
i \ — n1=20
e, A
ke \
! v
! \
’ ‘s
0.04f ‘ N J
e
= U ~ AY
e ~, ’ ,' S \
c P Se ’ So
2 K < , N
S Y Il s
£ , ,
S ’ ol
g r< R4 4
= 0.02+ T P4 e i
. I < .
1
1
1

0 0.02 0.04 0.06

B

Figure 13: Regularization term with the functional ﬁ%,/a’ and N = 120.



REFERENCES

0.3

0.25

o
)

average error
o
o
[6;]

0.1

/== nl1=5
n1=10
oo — n1=20
0.055— : :
0 0.02 0.04 0.06
B
Figure 14: Average error with the functional £2 s and N = 120.
0.012
0.01 4
g 0008 .
2
c
el
T 0.006 1
N
s
>
(o))
(O]
= 0.004 .
‘== nl=5
nl=10
—_— n1=20
0.002 % .
0 P
0 0.02 0.04 0.06
B
Figure 15: Average error with the functional £2 5 and N = 120.

39



