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Abstract 
  Temporal representation and reasoning has been applied so far to many areas of AI, 
including temporal diagnostics, where identification of temporal patterns plays an important 
role. Temporal scenarios of different device failures, their causes, and symptoms preceding the 
failure provide important additional information for making decisions concerning operation of 
the device. In this paper we propose an application of algebra of uncertain temporal relations 
to diagnostic problems. We represent uncertain temporal relations within a temporal scenario 
graph using the probabilities of the basic relations that can hold between two temporal 
primitives. Also in the paper we show how:  (a) to generate temporal scenarios by integrating 
appropriate relational networks from already diagnosed cases; (b) to classify a new case using 
the measure of the distance between a network and a scenario. 
 
1  Introduction 
 
Temporal diagnostics is one important area of application of temporal representation and 
reasoning formalisms. It includes medical and industrial diagnostics, diagnostics in field device 
management, etc. Automated diagnostic reasoning about technical systems was overviewed in 
[1]. In that paper, the focus was on two main issues: (1) any serious, general solution has to 
address fundamental AI problems; (2) the nature of the task constrains these problems such that 
solutions become possible. In overall, the field of diagnostics was underlined as an important 
environment for assessing the actual utility of existing AI methods. 
 
 In [2] two generations of diagnostic systems are characterized and their advantages and 
limitations are discussed. There is a widespread opinion that first generation diagnostic systems 
work quite efficiently, but are unreliable and incomplete, whereas model-based systems are 
complete and robust, but suffer from complexity of models and intractability of the incorporated 
algorithms. This is thought to happen because the first generation diagnostic systems use 
heuristics whilst the model-based ones do not, and combining the two types of systems may solve 
the problem. In his paper, Struss argues that the tension between heuristics and model-based 
reasoning is a non-problem, because model-based diagnosis involves certain heuristics and also 
requires them. A principled integration that is clearly and formally grounded on model-based 
diagnosis and does not require essential changes in the implementation is proposed. 
 
 A framework for model-based diagnosis of dynamic systems by using and expressing temporal 
uncertainty in the form of qualitative Allen's interval relations is described in [3]. That approach 
is based on a logical framework extended by qualitative and quantitative temporal constraints. It 
was also shown there how to describe behavioral models, how to use abstract observations and 
how to compute abstract temporal diagnoses. 
 



 Temporal reasoning can also be used in medical diagnostics. For example, in [4] it was applied 
to the Heart Disease Program (HDP). Temporal constraints (relationships) are used together with 
probabilistic formalism in order to model the processes of cardiovascular reasoning accurately. 
The HDP has temporal constraints on the causal relations specified in the knowledge base and 
temporal properties on the patient input provided by the user. In overall, that paper discusses the 
issues and solutions that have been developed for temporal reasoning integrated with a pseudo-
Bayesian probabilistic network in this challenging domain for diagnosis. 
 
 Another example of use of temporal diagnostics in medical domain is [5]. The example of 
hepatitis B was considered to describe a model-based framework for complex temporal behavior. 
The concept of abstract observations was introduced as an abstraction from observations at time 
points into assumptions over time intervals. This leads to a more intuitive representation and 
makes diagnosis independent of the number of actual observations and the granularity of time. 
 
 In [6] a template system is described that uses fuzzy set theory to provide a consistent 
mechanism of accounting for uncertainty in the existence of events, as well as vagueness in their 
starting times and duration. Fuzzy set theory allows the creation of fuzzy templates from 
linguistic rules. The fuzzy template system that is introduced in this paper can accommodate 
multiple time signals, relative or absolute trends, and obviates the need to also design a regression 
formula for pattern matching. The target application for the fuzzy template system was anesthesia 
monitoring. 
 
 In this paper we use Allen's interval algebra [7] to represent temporal uncertainty in abstract 
temporal diagnosis applications. Uncertain temporal relations are represented within a scenario 
graph using probabilities of the basic relations that can hold between two temporal primitives. In 
this paper we also propose: 
 (1) to generate scenarios as temporal graphs with uncertain temporal relations of some diseases 

by integrating appropriate relational networks from already diagnosed cases; 
(2) to classify a new case using the measure of the distance between network and scenario. 
 

 The following text is organized as follows. In Section 2 we introduce the basic concepts used 
throughout the paper. In Section 3 we define the measure of the distance between two uncertain 
temporal relations. Reasoning operations are discussed in Section 4. In Section 5 we show how to 
generate an uncertain temporal scenario combining a number of networks of temporal relations. 
In Section 6 we show how to compare the relational network representing the situation to be 
diagnosed with known scenarios using the special measure of the distance between a network and 
a scenario. Section 7 presents the discussion including the case from medical diagnostics area. 
Finally, Section 8 presents conclusions.  
 
 
2  Representation of uncertain relations 
 
Let us define the following time ontology. Time is linear, unbounded in both directions, and the 
time line is directed from the past to the future. Time model used is discrete meaning that the time 
axis is considered as a sequence of discrete temporal elements. Temporal points are the main 
ontological primitives isomorphic to natural numbers, i.e. each temporal point has a unique 
successor. Throughout this paper we will denote temporal points with small non-bold letters, i.e. 
a, b. Let us also denote a relation between two temporal points with a small bold letter r with 
subscript indicating the primitives, i.e. ra,b  is a temporal relation between points a and b.  
 



 Axiom 1. There are three basic temporal relations that can hold between two points: “before” 
(<), “at the same time” (=), and “after” (>). Let us define a set of these relations as A={<,=,>}. 
We will refer to an element of this set as α∈ A. 
 
 A temporal interval is represented as a pair of temporal points denoting the start and the end of 
this interval, where the starting point is always before the endpoint. Intervals are denoted as 
capital non-bold letter, i.e. A, B. The relation between two intervals is denoted with a capital letter 
R, i.e. RA,B. There are thirteen basic Allen’s relations [7] that can hold between two temporal 
intervals. The set of these relations is denoted as X={eq,b,bi,d,di,o,oi,m,mi,s,si,f,fi}. We will refer 
to an element of this set as χ∈ X. A relation between two intervals could also be represented as a 
conjunction of the four relations between the endpoints of these intervals, as it was shown, for 
example, in [8]. Considering all consistent (according to the definition of interval) pairs of these 
four values and keeping in mind Axiom 1, one can easily see that these thirteen relations are the 
only relations that can hold between two intervals. 
 
 Ryabov and Puuronen in [9] proposed to represent an uncertain relation between two temporal 
primitives as a set of probabilities of all basic relations that can hold between these primitives. In 
this paper will use that representation. The probability of a basic temporal relation between two 
primitives is further denoted using letter “e” with a superscript indicating this basic relation and a 
subscript indicating these temporal primitives. For example, ra,b{eαα∈ A} is the uncertain 
relation between temporal points a and b, including the probabilities e , , and . An 
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 Let us suppose that two temporal points p1 and p2 have been randomly selected on the time axis 
defined in terms of our time ontology. In this case, let us further assume that the probabilities of 
p1 < p2, p1 = p2, and p1 > p2 are , , and  correspondingly. We believe that the 
values of these probabilities vary depending on the particular application domain. For example, if 
no other information is available except for the mentioned above, it would be natural to guess that 
the value e  will tend to zero, whereas the other two values will tend to 0.5. Let us define 
these three probability values in the interpretation given above as the domain probability values 
for point relations, and let us denote them as , , and e . In this case, the general uncertain 
point relation r{e ,e , } is called a totally free distribution (TFD) of probabilities of the 
basic point relations. In a similar way let us define a TFD for probabilities of the basic 
interval relations, i.e. R{e χ∈ X}. 
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3  Distance between two uncertain relations 
 
One approach to estimate the distance between two temporal relations was proposed in [10]. In its 
physical interpretation the approach is based on the assumption that the two relations to be 
compared are distributed on the virtual lath, and where the basic relations within the uncertain 
ones are assumed to be physical objects. We extend that approach to be able to estimate the 
distance between the interval relations. 
  
 Let us consider as an example two uncertain interval relations RA,B  and RC,D (Figure 1). 
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Figure 1. Physical interpretation of the measure of the distance between  
uncertain temporal relations 

 
 The probabilities of Allen’s relations are represented as rectangles in Figure 1 with gray fill for 

 and with white fill for . For every relation we find out the balance point, which in 
physical interpretation is a moment of mass for the physical objects distributed on the lath. We 
assume that the distance between two neighbor objects on the lath is equal for all neighbor pairs. 
The module of the mathematical difference between the values of the balance points for these two 
relations is the value of the distance between these relations. 

BA,R DC ,R

 
 Let us suppose that Allen’s relations distributed on a virtual lath in Figure 1 have weights, 
denoted as wb, wm,…, and wbi. To simplify the notation of formulas further in the text, let us 
introduce the set of the weights as W={wb,wm,wo,wfi,wdi,wsi,weq,ws,wd,wf,woi,wmi,wbi} with a 
strict order of the relations within this set. We will refer to an element of the set W as wi, where 
the subscript 12,0i =  stands for the number of the particular relation within the set W, in a way 
that w0 is wb, w6 is weq, and w12 is wbi. The values of the weights are defined according to the 

formula 
12
iwi = . In this way, for example, wb=0, weq=0.5, and wbi=1. 

 
 The value of the balance point for the relation RA,B is denoted as Bal(RA,B) and is calculated as a 
sum of the multiplications of the weight of each Allen’s relation on the corresponding probability 
value of this relation within RA,B, divided onto the sum of all probability values within RA,B as in 
formula (1): 
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 Taking into account that the lower part of the indicated division in (1) represents the sum of all 
probability values within the uncertain relation RA,B{eχχ∈ X}, which equals to 1 according to 
the definition in Section 2, we obtained the final formula for the value of the balance point. 
The distance between two uncertain relations  and  is calculated as a module of the 
mathematical difference between their balance point values, as in formula (2): 
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 In a similar way, we derive the formula for the distance between uncertain point relations [10]. 
The value of the Dis function belongs to the interval [0,1]. When Dis (RA,B,RC,D) is equal to 0, this 
means that the values of the balance points Bal(RA,B) and Bal(RC,D) are equal, and this in its own 
turns suggests that the uncertain relations RA,B and RC,D are equal as it was defined in Section 2. 
The maximum value of the function Dis is 1, meaning that the relations RA,B and RC,D are 
maximally different. The examples of totally different relations are “<” and “>” for points and 
“before” and “after” for intervals. 
 
  
4  Reasoning operations 
 
In this section we briefly overview the reasoning mechanism including inversion, composition, 
and addition operations, proposed in [9]. The definitions for inversion and addition are presented 
using the notation for interval relations, and except for this, there is no difference between them 
and the corresponding definitions for point relations.  
 
 Definition (unary inversion for interval relations). The operation of inversion (~) derives the 
relation RB,A when the relation RA,B is defined, and RB,A = BA,

~R . We suppose that the probability 

values , where χ∈ X, are known. In this case, the probability values e  are calculated 

according to the inversion table for Allen’s interval relations [7], i.e. e =e . 
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 Definition (composition for point relations). The operation of composition (⊗ ) derives the 
relation ra,c, when the relations ra,b and rb,c are defined, and ra,c=ra,b⊗ rb,c. We suppose that the 
probability values , where α∈ A, and  are known. In this case, the probability values  
are calculated using the composition table [11] according to the formulas (3)-(5): 
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 In formulas (3)-(5) we used the values e , , and e  in two situations: when “<” is 
composed with “>”, and “>” with “<”. According to the composition table by Vilain an Kautz 
[11] in those situations the resulting relation is “?” (unknown relation). Therefore, the probability 

 needs to be distributed between , , and e  according to the TFD, i.e. e  
contributes to e , e  to , and e  to e . 
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 Definition (composition for interval relations). The operation of composition (⊗ ) derives the 
relation RA,C, when the relations RA,B and RB,C are defined, and RA,C=RA,B⊗ RB,C. We suppose that 
the probability values e  and , where χ∈ X, are known. In this case, the probability values 

 are calculated using the composition table [7] according to the algorithm in Figure 2. 
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Figure 2. Algorithm for the composition of uncertain interval relations 
 

 In the algorithm in Figure 2 we consider all possible combinations of the probability values 
from RA,B and RB,C similarly we have done for the composition of point relations. The set 
{χ1,χ2,…,χm} is a subset of X, and includes possible basic relations that can hold between A and 
C when χi and χj, both belong to X, are composed. For example, the result of the composition of 
“before” and “during” is {b,d,o,m,s}. After that, we distribute the probability  between 

the values from the set {χ

d
,

b
, CBBA ee

1,χ2,…,χm} according to the TFD values { }m
Deχ

DD ee χχ ,...,, 21  , which are 
supposed to be defined for each possible resulting subset in the composition table [7]. 
 
 Definition (multiple addition for interval relations). The operation of addition (⊕ ) derives the 
relation RA,B summing up two or more uncertain relations R , R ,…, , and  

R
1),( BA

( )
χ

1,BAe
2),( BA

( )
χ

2,BAe
n

R ),( BA

( )
χ

n
e BA,A,B =⊕ ( , ,…, ). We suppose that the values , ,…,  where 

χ∈ X, are known. In this case, the probability values e  are calculated using the formula (6): 
1),( BAR

2),( BAR
n

R ),( BA

χ
BA,

∑
∈χ

χ

χ
χ =

X
e

e
e BA, ,    

( )

( )∑

∏

=

χ

=

χ

χ = n

j

n

j

j

j

e

e

1
,

1
,

BA

BA

e .     (6) 

 
 The formula (6) is applied to each basic relation χ∈ X within the operands consequently, 
meaning that first χ is “before” and we calculate the probability of “before” in RA,B, then χ is 
“meets”, and so on. The physical interpretation of the proposed formula could be related to the 
formula of parallel resistance from the electrical division of physics. Finally, the obtained 
probability value  is neither smaller that the minimal one among the corresponding 
probability values within the operands, nor bigger that the maximum one. 
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5  Generation of uncertain temporal scenarios 
 
 Let us represent a network N(V,Ψ) of binary uncertain temporal relations as a directed graph, 
the nodes of which represent some symptoms and the arcs represent temporal relations between 
these events. We represent such a graph as a set V of n variables {v1,v2,…,vn} and the relations 



between these variables are represented as {e
ji

r vv ,
αα∈ A} or {e

ji
R vv ,

χχ∈ X}, where vi,vj∈ V. 

The set of all uncertain temporal relations for the network N is denoted as Ψ.  
 
 Let us consider k networks N1(V,Ψ1), N2(V,Ψ2),…, Nk(V,Ψk) of uncertain temporal relations. 
The set of nodes V={v1,v2,…,vn} is the same for each network. The sets of uncertain temporal 
relations Ψ1, Ψ2,…, Ψk are defined for each network. These sets of relations are such that an 
element included in one set is not necessarily included in other sets, for example, a relation 
rb,c∈Ψ 1, but rb,c∉Ψ 2. We suppose that an uncertain temporal scenario S(V,Ψs) is a network of 
uncertain temporal relations defined by the set of nodes V, and the set of relations  
Ψs=Ψ1∪Ψ 2∪ …∪Ψ k. The relations within Ψs are obtained using the multiple operation of 
addition of the corresponding relations between the same variables from all the sets Ψ1,Ψ2,…,Ψk 
according to the algorithm (the notation for point relations is used) in Figures 3, 4, and 5. 
 

1. for i=1 to n do 
2.   for j=i+1 to n do  
3.      if (∃ ∈∀ (Ψ

ji
r vv , 1,…,Ψk)) then   { 

4.         for g=1 to n do   
5. if (r ∉Ψ

ji vv , g) then Derive_Relation(r ,Ψ
ji vv , g) 

6.  (r ∈Ψ
ji vv , s) = ⊕  ( ∈Ψ

ji
r vv , t), where  t= k,1    } 

 
Figure 3. The main algortihm for generation of temporal scenarios 

 
1. procedure Derive_Relation (r ,Ψ

ji vv , g) { 

2.  , V ⊆  V  // The set of nodes derived using Dijkstra algorithm and { k21 vvvV ′′′=′ ,..,, } ′
     // representing the shortest path between vi and vj in Ψg as ; ji vv →′→→′→ k1 vv ...

3. Ω={r1,…,rn}; // the sequence of relations, such as r1 = r , …, r
1vv ′,i n = . 

j
r vvk ,′

4. if Ω={∅ } then ( ∈Ψ
ji

r vv , g)=TUR  else (r ∈Ψ
ji vv , g) = Compose_Sequence (Ω); } 

 
Figure 4. Procedure Derive_Relation 

 
1. function Compose_Sequence (Ω={r1,…,rn}– ordered set of relations, and n=|Ω|) { 
2.   if n=1 then return r∈Ω ; // the function returns r when it is the only relation in Ω 
3. k=1; Ω′ ={∅ }; 
4. for i=1 to mod(n/2) do { 
5. ; // r1kki +⊗=′ rrr k , rk+1 ∈Ω  
6. R′= R′ ∪ { } // the set Ω′ is ordered according to the value of the subindex “i”.  ir′
7. k=k+2;  } 
8. if n≠i×2 then Ω′= Ω′ ∪  {rn} // rn∈Ω  
9. Compose_Sequence (Ω′);  } 

 
Figure 5. Recursive function Compose_Sequence 

 
 In the main algorithm, presented in Figure 3, we have two nested loops within which we 
basically control the key condition (line 3): if there exists a relation r  in at least one of the 

ji vv ,



networks to be composed. In the case this condition is satisfied, we try to derive (the cycle at 
lines 4 and 5) the desired relation in those networks where it is not implicitly present. After that, 
we use the operation of multiple addition to sum up the present and the derived relations r  

from all the networks, obtaining in this way the relation for the resulting scenario graph. In 
the case the condition in line 3 is not satisfied (the relation is absent in all the networks), we 
proceed with the next iteration of the cycle. 

ji vv ,

ji
r vv ,

 
 The procedure Derive_Relation, presented in Figure 4, is intended for obtaining the desired 
relation  in the particular network N

ji
r vv , g(V,Ψg). Within this procedure, we first obtain the set of 

nodes representing the shortest path between the nodes vi and vj in Ng using Dijsktra algorithm 
(line 2). In the interests of space, we do not discuss in detail this process. An interested reader can 
easily find this algorithm in, for example, [12]. We represent this set of nodes as a sequence of 
relations Ω ={r1,…,rn} between these nodes in a way, that r1 = r , …, r

1vv ′,i n = r (line 3). After 

that, if Ω={∅ }, meaning that there is no a path between v
jvvk ,′

i and vj in Ng, we assign the desired 
relation the value TUR (line 4). In the opposite case, we call the function Compose_Sequence, 
where the sequence Ω is a parameter of this function. 
 
 Within the body of the function Compose_Sequence, we first check the number of relations 
within the sequence Ω. In the case there exist only one element in this set, we return it to the 
procedure Derive_Relation  as the desired result. Otherwise, we divide the elements into pairs, 
like r1 and r2, r3 and r4, …, until rn-1 and rn if n is even, and until rn-2 and rn-1 if n is odd. Using 
the operation of composition we combine the obtained pairs and achieve the new sequence set Ω′. 
In the case n is odd we need to add the final element rn to Ω′. The set Ω′ has at most twice less 
elements plus one element compared to Ω. Finally, we call the function Compose_Sequence 
together with the sequence set Ω′ as a new parameter. In this way, we will reach the situation 
when there would be only one element in the sequence set, and at this point we return to the 
procedure Compose_Sequence. 
 
 Let us consider an example of generating uncertain temporal scenario in Figures 6 a, b, and c. 
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Figure 6. Two networks and the generated scenario 
 
 For the network N1(V,Ψ1) in Figure 5a the set of temporal points is V={a,b,c,d} and the set of 
temporal relations between these points Ψ1={ra,b, rb,c, ra,c, rd,c}. Network N2(V,Ψ2) in Figure 5b is 
defined by the set V and Ψ2={ra,b, ra,c, rb,d}. The uncertain temporal scenario S(V,Ψs), presented in 
Figure 5c, is defined by the set V and the set of relations Ψ= Ψ1∪  Ψ2={ra,b, rb,c, rb,d, ra,c, rd,c}. 



6   Diagnostics through recognition of temporal scenarios 
 
The basic idea of our diagnostics is in comparison of the network, representing the case to be 
diagnosed, with known temporal scenarios. To perform the comparison we use the measure of the 
distance between two uncertain relations. We also propose one way to numerically estimate the 
distance between the network representing the case to be diagnosed and a scenario, taking into 
account and combining, using the proposed in this paper formula, the calculated distances 
between separate temporal relations within the scenario and the network. 
 
 Firstly, let us show how to compare the particular network with the particular scenario. Let us 
suppose that the relational network N1(V,Ψ1) represents the situation to be diagnosed. The set of 
nodes is V={n1, n2,.., nk} and the set of relations between them is Ψ1. Let us also suppose that the 
uncertain temporal scenario S(V,Ψs) describes the particular situation. We suppose that the sets 
Ψ1 and Ψs are equal at the symbolic level of representation of relations, i.e. {r1,r2,…,rm}, for 
example, both sets can include the relations ra,b, rb,c, rb,d, ra,c, and rd,c. At the same time, each of 
these relations is defined by the set of probability measures for the basic relations that can hold 
between two particular temporal primitives. For instance, the relation ra,b can be defined as 
{e =0.5,e =0.5,e =0} within Ψ<

ba,
=

ba,
>

ba, 1 and as {e =0, =1, =0} within Ψ<
ba,

=
ba,e >

ba,e s. 
  
 Let us assume that not all the relations with the set Ψs are equally important for the particular 
scenario. For example, it often happens that the importance of the relation between two particular 
symptoms prevails over the others. We propose to assign the temporal relations within each 
scenario with numerical weight values denoted as Wi, where i= m,1 , and Ψs={r1,r2,…,rm}. Each 
value Wi represents the weight of the corresponding uncertain temporal relation ri from Ψs. We 
do not propose in this paper any mean to define these values, supposing that it heavily depends on 
the specific of the application domain and subjective reasoning of the person performing control 
over the diagnostic system. 
 

To estimate the distance between N1 and the scenario S we propose the formula (7):   
 

∑

∑

=

=

∈∈
= m

m

1i
i

1i
si1ii

W

)Ψr,ΨrDis(W
),Dis( SN ,    (7) 

 
 We need to find the distances between the same relations (e.g., r1) taken from Ψ1 and Ψs using 
formula (2) proposed in Section 3. Then each obtained distance value should be multiplied on the 
weight (e.g., W1) of this relation in S. After that, we find the sum of all such multiplications, 
presented in the upper part of the indicated division in formula (7). The lower part of formula (7) 
includes the sum of all the weights among the scenario S.  
 
 In practice, the sets Ψ1 and Ψs are initially different. Therefore, before we can calculate the 
distance value Dis(N,S) we should include the additional relations within Ψ1 (if needed) in the 
following way. If a relation included in Ψs is absent in Ψ1, we try to derive it using the algorithm 
similar to the one presented in Figures 4 and 5. 
 
 In the situation, when we have several temporal scenarios S1, S2,.., Sn, we can estimate the 
distances between the network representing the situation to be diagnosed and each of the defined 



scenarios. In this way, we will obtain the values Dis(N1,S1),.., Dis(N1,Sn). Those scenarios, that 
are the closest to the network to be diagnosed, represent the most probable diagnoses for the 
situation observed. This corresponds to the minimal values of the calculated Dis functions. The 
derived values can also be represented as percentage values of similarity of the network N with 
every scenario. 
 
 
7   Discussion: medical diagnostics case 
 
Let us imagine that a patient has turned to a therapist when his unknown illness was already in a 
quite neglected form. In this case, the therapist asks about the dynamics of symptoms and often 
patients cannot describe it precisely. In such a way, the therapist has to deal with the uncertain 
temporal scenario of the disease’s dynamics. He also needs to estimate the probabilities of 
possible diagnoses in this case. The approach proposed in this paper could be used to formalize 
and process this situation. In a scenario graph we represent the symptoms as vertices (temporal 
events) similarly as it was discussed regarding industrial diagnostics, and the arcs between the 
vertices include the labels standing for the uncertain temporal relations between these events. 
 
  A brief overview of research efforts in designing and developing time-oriented systems in 
medicine during the past decade was presented in [13]. Other authors, for example in [14], 
underlined that the ability to reason with time-oriented data is central to the practice of medicine. 
In [15] the crucial role of the temporal-reasoning and temporal-maintenance tasks for modern 
medical information and decision support systems was shown. Monitoring clinical variables over 
time often provides information driving medical decision-making, e.g. [16]. The examples of 
diagnostic systems incorporating temporal dimension are [17], [6], and [3]. 
 
 
8   Conclusions 
 
In this paper we proposed an application of uncertain temporal relations algebra to abstract 
diagnostics. A network of uncertain temporal relations describes a particular course of events 
with the set of symptoms and temporal relationships between them. We have shown how to 
generate a temporal scenario combining a number of networks having the same set of symptoms. 
During further diagnostic a relational network describing a particular course can be compared 
with a number of scenarios using the formal criteria of distance between network and scenario. 
Some experiments with implementation of the proposed mechanism using artificial settings have 
proved that the formalism is reasonable. Experiments with real datasets are considered as one of 
the directions for further research. 
 
 
Acknowledgements 
 
The authors would like to thank InBCT TEKES Project of Academy of Finland (Agora Center, 
University of Jyväskylä), which had financially supported in part this research. This work was 
also supported by the grant (#55626) of the Academy of Finland. 



References 
 
[1] P. Struss, Knowledge-Based Diagnosis - An Important Challenge and Touchstone for AI, 

Proceedings of the 10th European Conference on Artificial Intelligence (ECAI-92),  
B. Neumann (Ed.), John Wiley & Sons, 1992. 

[2] P. Struss, An Amalgamation of Model-Based and Heuristic Reasoning for Diagnosis, 
Industrial Applications of Knowledge-Based Diagnosis, G. Guida, et al. (Eds.), Elsevier,  
311- 329, 1992. 

[3] W. Nejdl & J. Gamper, Model-Based Diagnosis with Qualitative Temporal Uncertainty, 
Proceedings of the 10th Conference on Uncertainty in AI, Seattle, USA, 432-439, 1994. 

[4] W. Long, Temporal Reasoning for Diagnosis in a Causal Probabilistic Knowledge Base, 
Artificial Intelligence in Medicine, Vol. 8, 193-215, 1996. 

[5] J. Gamper & W. Nejdl, Abstract Temporal Diagnosis in Medical Domains, Artificial 
Intelligence in Medicine, Vol. 10, No. 3, 209-234, 1997. 

[6] A. Lowe, R. Jones & M. Harrison, Temporal Pattern Matching Using Fuzzy Templates, 
Journal of Intelligent Information Systems, Vol. 13, No. 1-2, 27-45, 1999. 

[7] J. Allen, Maintaining Knowledge about Temporal Intervals, Communications of the ACM, 
Vol. 26, No. 11, 832-843, 1983. 

[8] V. Ryabov, Estimating Uncertain Relations between Indeterminate Temporal Points and 
Intervals, Proceedings of the 8-th International Symposium on Temporal Representation 
and Reasoning (TIME’01), IEEE Computer Society Press, 69-74, 2001. 

[9] V. Ryabov & S. Puuronen, Probabilistic Reasoning about Uncertain Relations between 
Temporal Points, Proceedings of the 8-th International Symposium on Temporal 
Representation and Reasoning (TIME’01), IEEE Computer Society Press, 35-40, 2001. 

[10] H. Kaikova & S. Puuronen, Reasoning Temporal Sequence from Multiple Temporal 
Sequences, Computational Intelligence for Modeling, Control & Automation: Intelligent 
Image Processing, Data Analysis & Information Retrieval, M. Mohammadian (Ed.),  
IOS Press, 215-220, 1999. 

[11] N. Vilain  & H. Kautz, Constraint propagation algorithms for temporal reasoning. In 
Proceedings of the Fifth National Conference of the American Association for Artificial 
Intelligence, AAAI Press, 377-382, 1986. 

[12] T. Cormen (Ed.), C. Leiserson & R. Rivest, Introduction to Algorithms, The MIT Press,  
2-d Edition, Massachusetts, USA, 2001. 

[13] C. Combi & Y. Shahar, Temporal Reasoning and Temporal Data Maintenance in 
Medicine: Issues and Challenges, Computers in Biology and Medicine, Vol. 27, No. 5, 
353-368, 1997. 

[14] J. H. Nguyen, Y. Shahar, S. W. Tu, A. K. Das & M. A. Musen, Integration of Temporal 
Reasoning and Temporal-Data Maintenance into a Reusable Database Mediator to 
Answer Abstract, Time-Oriented Queries: The Tzolkin System, Journal of Intelligent 
Information Systems, Vol. 13, No. 1-2, 121-145, 1999. 

[15] Y. Shahar, Dimension of Time in Illness: An Objective View, Annals of Internal 
Medicine, Vol. 132, No. 1, 45-53, 2000. 

[16] L. Console, A. J. Rivolin, D. T. Dupr'e & P. Torasso, Integration of Causal and 
Temporal Reasoning in Diagnostic Problem Solving, Proceedings of the 9th 
International Workshop on Expert Systems and Their Applications, 1989. 

[17] M. Dojat & C. Sayettat, A Realistic Model for Temporal Reasoning in Real-Time 
Patient Monitoring, Applied Artificial Intelligence, Vol. 10, 121-143, 1996. 

 


	Abstract Diagnostics Based on Uncertain Temporal Scenarios
	Abstract
	
	
	
	In a similar way, we derive the formula for the distance between uncertain point relations [10]. The value of the Dis function belongs to the interval [0,1]. When Dis (RA,B,RC,D) is equal to 0, this means that the values of the balance points Bal(RA,B
	In formulas \(3\)-\(5\) we used the values �

	Acknowledgements
	References




