Joni Toyryla

Building NeuroSearch - Intelligent Evolutionary
Search Algorithm For Peer-To-Peer Environment

Master’s Thesis
in Information Technology
3rd September 2004

University of Jyvaskyla
Department of Mathematical Information Technology

Jyvaskyla



Author: Joni Toyryla

Contact information: Taitoniekantie 9b 304,

40740 Jyvaskyla

email: jtoyr@cc.jyu.fi

phone: 014-607176

Title: Building NeuroSearch - Intelligent Evolutionary Search Algorithm For Peer-To-
Peer Environment

Tyo6n nimi: NeuroSearch hakualgoritmi vertaisverkko ympéristossa

Project: Master’s Thesis in Information Technology

Page count: 72

Abstract: This thesis describes the results of a process where evolutionary artificial
Neural Networks (EANN) were developed for finding an efficient search algorithm for
Peer-To-Peer (P2P) networks. In this research questions like how structural changes
of neural network affect the search and how the selection of fitness function or input
values affects the resulting neural network are considered. The thesis also analyzes
the different behavior that neural networks algorithms can exhibit and sketchs the
limitations inherent in this kind of search algorithm design.

Suomenkielinen tiivistelm#: Tutkimuksessa kuvataan evolutionaarisen hakualgo-
ritmin kehittymisprosessi ja sen tehokas kiytto vertaisverkossa. Tutkimuksessa pohdi-
taan kuinka neuroverkon rakenteelliset muutokset, erilaiset sisddntuloarvot ja hyvyys-
funktion muuttuminen vaikuttavat hakualgoritmin kehittymiseen ja toimintaan. Tutkimuk-
sessa selvitetddn minkalaisia eri luonteenpiirteitd neuroverkkohakualgoritmeilla voi
esiintyd ja hahmotellaan rajoituksia, jotka tdméan tyyppisessid hakualgoritmin suunnit-
telussa on olemassa.

Keywords: Peer-to-Peer, P2P, Neural Network, resource discovery, evolutionary com-
puting, search algorithm

Avainsanat: Vertaisverkko, P2P, Neuroverkko, evoluutiolaskenta, hakualgoritmi, resurssien
16ytaminen

Copyright (© 2004 Joni Toyryla
All rights reserved.



Glossary

Activation total

ANN
BFS

Bias

DFS
DNS
FFNN
FreeNet

Gnutella
HDS

Hops
Input value

Net sum

Value of all weighted connections summed together (in
summation units). See: net sum

Artificial Neural Network.

Breadth First Search. Peer-To-Peer resource query type.
Query will be forwarded to all neighbors except the one
where it came from. Proceeding of the query is stopped
with Time-To-Live value. BFS-2 means that time-to-live
value is set to 2.

Unzero value which is added to neurons activation total.
Without bias the output of neuron would also always zero
if all inputs would be zero. Bias may also be weighted as
other connections.

Depth First Search. Peer-To-Peer resource query type.
Query is routed to one neighbor at the time.

Domain Name Server. Server translates computer ip’s to
domain names and vice versa.

Feed-Forward Neural network. The most common, ba-
sic neural network architecture. FFNN is used in Neu-
roSearch.

Decentralized, structured P2P-System.

Decentralized, unstructured P2P-System.

Highest Degree Search. Peer-To-Peer resource query type.
Query is forwarded to one neighbor at time, as DFS, but
largest node is selected to be the target. Largestnode is
node with most neighbors.

Times of links the message has passed in P2P-Network.
Neural network is fed with input values. Properly trained
NN will generate correct output from these values.

Value of all weighted connections summed together. See:
activation total.



NeuroSearch
P2P, P2P-Network
Power-law network

Product unit

Random network
Resource discovery problem

Scale-free networks
Small world network

Structured P2P-Topology

Summation unit

Time-To-Live

Unstructured P2P-Topology

Weight

Intelligent resource discovery algorithm in
P2P-Network. Main subject of this thesis.
Peer-To-Peer. Nodes forming the network are
all functioning as clients and servers.
Network where few nodes have lots of connec-
tions and lots of nodes have few connections.
Neuron that multiplies all weighted connec-
tions together for activation total. See: sum-
mation unit.

Network where nodes are randomly con-
nected to each others.

How to minimize use of sent messages and
maximize found resources in P2P-Network.
See: Power-law network.

Distance between nodes is small related to
size of the network.

Nodes form the network using strict rules.
There is a reason why this node is in that
place in the network. Also called as Dis-
tributed Hash Table P2P-Topology.

Neuron that sums all weighted connections
together for activation total. See: product
unit.

Measures how long query message may travel
in P2P-Network. This value is decreased ev-
ery time the message reaches new node.
Nodes form the network without rules. Nodes
may join the network at any time and to any
place.

Every connection between neurons have
weight value which modifies the connection
strength.
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1 Introduction

In P2P-Networks discovering resources is a central problem because nodes forming
the network do not before hand know what kind of structure network has or how the
resources are distributed. Different algorithms have been suggested and they have
advantages and disadvantages. In this thesis is presented one search algorithm, Neu-
roSearch. As in all P2P-Network query algorithms also in NeuroSearch the routing of
messages is based on local knowledge.

When P2P-Node receives a message it routes it forward using some rules. It may
forward it further if some value is fullfilled or it may drop the message for the same
reason. NeuroSearch is intelligent algorithm. The decision of routing is based on out-
put of neural network. Neural networks are one major research area at this time in
artificial intelligence.

Neural network cannot make right decisions in the beginning. It needs to be trained.
NeuroSearch is trained using evolutionary computing, more precisely using a combi-
nation of evolutionary programming and evolutionary strategies. In the beginning
there are some population of neural network candidates. These all are tested in P2P-
Network and their performance is measured. The best half of population are chosen to
stay while the rest is discarded. Remaining neural networks are used to build new half
of the population and then these are tested again. This way good abilities of neural
networks survive and are multiplied and mutated.

Constructing NeuroSearch is complicated and time consuming process. It contains
many parts and beforehand it is not known how different parts modify the outcome.
Changing the architecture of neural network affects the outcome as well as many pa-
rameters in training. These changes affect the behavior, performance and training time
of the algorithm. In this thesis is examined how these changes influence e.g., which
change lowers the performance, which rises it and how the behavior of the algorithm
changes.



1.1 Resource Discovery Problem

Resource discovery is essential problem in Peer-To-Peer (P2P) [19] networks. P2P-
Network is formed by nodes connecting each other. Nodes contain resources. Nodes
also want to communicate with other nodes, locate and grab resources other nodes
have. Because in P2P there is no central points containing global information of the
network this is not that simple task. There is no list of all nodes, connections nor
resources in the network. When trying to locate resources on the network the node
can only send the resource query to its neighbors and hope that after sometime it will
be informed by some of its neighbors where the wanted resource was found. But with
what information the node makes its decision - to send or not to send? If nodes send
queries with too loose principles the network will eventually be flooded with packets.
If nodes are too strict of sending query further the query stops too early. How to
minimize the use of packets but still maximize founded resources?

Peer-To-Peer Network

Already Received: 0

Figure 1.1: P2P-Node receives resource query from its neighbor, node number 3. Now,
based on local knowledge it has to decide which neighbors would be the best targets
(if any) for the query to be successful globally.

In the figure 1.1 local routing situation in P2P-Network is shown. Node receives
resource query from node 3. It has 4 neighbors which it knows but the rest of the
network is unknown. It knows that this message has travelled 2 hops, it knows that
this message has not been here earlier and it knows its neighbor’s neighbor amounts.



There is no list of resources and no global view of topology to optimize search route.
Every node who receives queries will make the decision based on conditions on that
moment in that local situation.

Gnutella’s [12] Breadth First Search (BFS) [16] is one widely used P2P search al-
gorithm. The idea of this algorithm is to flood the whole network with queries so that
every node will be queried. This search will always find all the resources of the network
but the backside is that it will use huge amount of packets. Gnutella uses Time-To-Live
(TTL) value in messages, so every time message is routed further TTL decreases by
one. When TTL is zero the message is dropped. Even while using TTL the algorithms
which behaviors this way will eventually slow the network down. When size of the
network grows there are too many simultaneous messages and thus latency will grow
and eventyally when buffers become full packets will be dropped. It has been shown
that Gnutella [12] is not scalable thus it cannot work efficiently when network grows.
So better search strategies needs to be found.

One solution for the problem is to use Artificial Neural Network (ANN) [9] as search
algorithm. Every P2P-Node will base its routing decision on neural network’s out-
put. Output value is revealed when the neural network is calculated through with
chosen input values. Before neural network can be calculated it needs to be trained
and methods of evolutionary computing can be used to do this. This thesis describes
how evolutionary neural network search algorithm, named as NeuroSearch, was created
and how well it performs contrasted with other search algorithms.

NeuroSearch needs to be trained to solve the resource query problem. This is done
by using evolutionary computing e.g., selecting strongest neural networks and discard-
ing the weakest ones. There is problem that neural network overlearns the settings
of environment and it cannot manage same quality if environment changes. This is
described more closely in chapter 5.

1.2 Cheese Factory Project

This work is part of the Cheese Factory research project in Agora Center [2]. Agora
Center is part of the University of Jyviskyld and contains multiple research projects.
Cheese Factory project’s interest are for example Peer-To-Peer network architectures,
message routing, P2P in mobile environment, distributed data fusion and neural net-



works.

1.3 Related Work

Michael Iles and Dwight Deugo have researched how Gnutella network can be con-
structed and maintained more efficiently [14]. They used genetic programming to find
the optimal rules for Gnutella’s network protocol. Connection amount was found to be
six instead of commonly used seven and new rule for establishing new connections was
determined also. In the result, their network was more than 10% efficient compared to
original Gnutella network. All the information for managing the network can be done
locally so the protocol is a direct substitute to the one used by Gnutella. Although
managing and constructing P2P-Networks is not subject of this thesis this article gives
a clue what computationally intelligent methods can accomplish when used properly
for complex problems.

In [26] one NeuroSearch algorithm is shown. Six input values, scaling, activation and
fitness functions are revealed. After 100000 generations of 30 Neural Networks the
best was chosen and tested against Gnutella BFS. NeuroSearch has found to be more
stabile i.e., resource query succeeded whether it was started by edge or central node.
Efficiency of BFS search depends where querying node is located thus queries started
from edge were significantly poorer than those started from center.



2 Peer-To-Peer Network

In this chapter brief history, different architectures and search algorithms of Peer-To-
Peer networks is reviewed. Two decentralized Peer-To-Peer systems are introduced and
their performance is analyzed.

2.1 Brief History

The early Internet, established at late 1960s was Peer-To-Peer (P2P) system. The ob-
jective of the ARPANET project was to share computing resources around the United
States. Users of the network were researchers who generally knew each others [19, p.4|.

When Internet started to grow it also started to change. Slow speed modem users
used FTP and Telnet programs to connect bigger and faster machines. Corporations
started to build firewalls to protect their internal networks from malicious users. World
wide web and simple client/server protocol was introduced. Web users do not need
continuous connection to Internet for using web. User just connects to web server,
downloads the web page and disconnects. [19, p.9]. Internet was changed from peer-
to-peer system where all machines were generally equal peers to client/server system
where bigger and better connected servers are used by weaker clients.

In 1999, an 18-year old college student created Napster [18] file sharing program which
success reshaped our thoughts of distributed computing and peer-to-peer systems. The
Record Industry Association of America (RTAA) sued Napster in December of 1999 for
copyright infringement [23].

Napster was peer-to-peer program because addresses of Napster nodes bypass DNS
and because control of file transfer is shifted to nodes [19, p.25]. Napster was hybrid
peer-to-peer network because there was centralized index of users and files on the net-
work. Because of the centralized index Napster did not scale well since central directory
was constantly updated [13]. Central server also made it possible to actually shut down
the Napster network.



Publicity of Napster inspired more peer-to-peer development over the globe. Early
in 2000 Nullsoft company introduced new P2P file sharing system - Gnutella [23].
Gnutella is pure P2P-System [22] e.g., there is no central points containing informa-
tion of global view of the network. It is ad hoc network where peers may join or leave
at will and users may decide what files they share to the network.

By March 2000 the first version of Freenet was released. Freenet is as well decen-
tralised peer-to-peer system for file sharing. Purpose of the Freenet is that people may
anonymously publish and retrieve any kind of information without fear of cencorship
or punishment.

Different P2P-Systems and applications have been released e.g. KaZaA, file sharing
system with two kind of P2P-Nodes, normal and supernodes [15], Publius - anonymous
distributed publishing system [19, p.145] [20] and Free Haven - anonymous P2P stor-
age system [19, p.159| [11]. These systems are not described in this thesis, but more
information can be found from references.

2.2 Architectures

Peer-To-Peer networks are decentralized opposite to client /server networks where server
is the central point of the network. Resources in the P2P-Network are stored in a dis-
tributed manner to the nodes opposite to client/server where resources are located in
the servers. Peer-To-Peer is a way for decentralizing costs and administration because
resources are distributed all over the network [19, p.23]. All nodes in the Peer-To-Peer
network are connected to neighbors which in turn are connected to their neighbors.

In client/server network the client nodes are connected to server nodes. When client
wants to locate a specific resource it sends query to server which replies if resource is
found on its local data store. This kind of querying is simple and efficient which is one
reason why it has been so widely used. However, there are drawbacks in client/server
architecture. This system has weak point on its server because if server does not func-
tion properly all the clients will be out of service. Clients cannot share information
between themselves because they are dependant on server. For this kind of network
malfunction Peer-to-Peer network becomes invulnerable.



In client/server model content is located in the center. In Peer-To-Peer system content
is located where it is created and used, in the common PC’s of the network. There is no
center and therefore there is no need to push data to central servers. Also, bandwidth
usage and CPU usage are distributed all over the network [19, p.29]. “The Network is
the Computer” is very true [19, p.56]. For example SETI@home distributed computing
program has performance of 48,26 TeraFLOPs/second while having almost 5 million
users all around the world in total and over thousand users every day [24].

Peer-To-Peer systems can be divided to two different architectures, hybrid P2P-Networks
and pure P2P-Networks. Hybrid networks have global data index of the network con-
taining information of the nodes and resources in the network. Pure networks do not
have any centralized points in it and there is no global information of the peers nor
resources. In pure P2P-Network any peer can be removed from the network without
having any loss of network service [22]. Gnutella and Freenet are pure Peer-To-Peer
networks and Napster is hybrid P2P-Network.

Pure P2P-Networks can be divided also to two based on their topology. These are
unstructured and structured topologies. Unstructured topologies are created without
any rules. Topology management is easy because peers may leave or join to network at
any time and there is no restrictions which neighbors should be contacted. However,
finding resources is more difficult because peers do not know where queried resources
are located. Gnutella is unstructured pure Peer-To-Peer system.

In structured topologies there are strict rules how the topology is created. These
rules determine how the neighbors are selected and therefore more efficient search may
be used. However, these topologies are harder to keep stable in dynamic environments.
Structured topologies include e.g., FreeNet, Chord, CAN, Pastry, Tapestry [13].

Peer-To-Peer networks may be constructed using whatever topology structure because
it usually is based on TCP-connections. Thus Peer-To-Peer topology lays over physi-
cal topology and links between peers are not related how the computers are located in
physical network [13, p.4].

It has been proven that Gnutella network forms power-law network [21]. In power-
law network there are some nodes which have more neighbor nodes than others. These
nodes form the core of the network and tie the network together thus making the net-



work diameter ultra-small |7].

2.3 Algorithms

In this section two different search algorithms are revealed and their performance is
analyzed. Other algorithms are also available, e.g., Iterative deepening, Directed BF'S,
[27], Random Walkers, Highest Degree Search (HDS) [1]|, and many more [13, p.16] but
these algorithms are not subject of this thesis.

In figure 2.1 is simple classification of few search algorithms. Breadth first search
can be divided to normal BFS and directed BFS. Depth first search may be divided as
highest degree search e.g., message will be routed to one neighbor only or none. This
way the messages do not flood the network so easily but it may have difficulties to find
resources on edges of P2P-Network. Random walkers are quite equal to HDS but the
decision where the message is routed is chosen randomly. In HDS the target is chosen
based on the number of neighbors. Gnutella is BFS-algorithm while Freenet is Depth
First Search.

Search Algorithm

/ \

DFS

/ EFE\ / \

Grnutella Directed BFS HDS Random Walker

Figure 2.1: Few search algorithms

2.3.1 Gnutella

When Gnutella node wants to find something from the network it sends query message
to all the neighbors it has. Those nodes check if they have the queried resource. They
send the message further to all their neighbors except to the node who sent the message
to them. If they have the resource they send a reply back towards the query originator
but also forward the search message further.



Communication is message based TCP broadcasting. Each message has unique identi-
fier (UUID). Every host that this message passes through memorizes it. When message
comes to node it checks if the same message has already been here. If the message
is memorized it is not retransmitted. Also, to prevent the network from flooding for-
ever Gnutella uses Time To Live (TTL) number. TTL is decreased everytime message
reaches new node in the network and when it reaches zero the query is dropped [19,
p-105].

Gnutella does not scale because of the flooding. When size of the network grows
the queries will either flood the whole network or queries can reach only some parts of
the network because messages are dropped when TTL reaches zero [13, p.6|. Because
Gnutella uses Breadth First Search it does not benefit the possible advantages of the
network topology, e.g. power-law structure. Search will continue node by node without
thinking would it be better to find central nodes where more resources are located, e.g.,
as in Highest Degree Search (HDS).

2.3.2 Freenet

FreeNet is also a decentralized Peer-To-Peer system but differs from Gnutella that the
network is structured. Every document in the network has unique hash key value. Ev-
ery node stores data, corresponding hash value and host address from where this data
was received. These values are stored in a list where recently requested documents are
located first. This list of nodes, keys and data is basically equal to Gnutella’s neighbor
list and thus these lists form the Freenet network. Keys that are associated to the
data itself are made so that they can be compared. If keys are close each other the
data is more likely to be found from that direction [19, p.127]. Because in Gnutella
the topology is ad-hoc e.g., peers may join anywhere in the network or leave at any
time Gnutella is message based network. The topology of Freenet is based on data lists
managed by peers, and so it is storage based network.

When node starts to search for document it forwards the query to node that is found
on the list and is more likely to have the searched document. Search continues until
messages are dropped or requested document is found. When document is found it is
replied back through the same nodes that previously forwarded it. Every node in the
chain stores the document, the key and the host where it came from to the data list.
This allows two benefits - documents are moving toward the searchers and thus they



are more easily reached and more commonly requested data is multiplied all over the
network.

Data store that peer maintains is continuously changing. The data that is least re-
quested is eventually removed from peers data list. However key and the host are kept
because possible future requests could now be delivered to node which most likely will
have it [19, p.128]. Bigger documents remain more bottom of the data lists and so they
are removed more easily than small documents. This guides the users to spare space
as well as compress the documents before inserting them to the network [19, p.126].
The network is all the time changing as the data moves and new references to the new
nodes is established and unused data is removed from the network. This differs from
Gnutella network where location of data does not affect the network structure. Nodes
with more data will eventually get more links in Freenet and thus form the core of the
network. This is because more requests are done to those nodes which have more data
and more links.

2.3.3 Performance

Freenet network simulation where amount of nodes and links remain same all the time
is able to shorten the path length, e.g., shortest route between any node in the network,
as more data requests and transfers are processed [19, p.224|. Freenet’s local routing
cannot choose globally optimal path all the time but it manages to get close. Even
when network grows Freenet is able to keep path length short. This is possible because
new nodes that join the network tend to add links to nodes that have more links al-
ready. Nodes which have more links see more requests and thus will get more links.
In Gnutella network the search locates shortest paths to results and therefore is quick.
It also uses many nodes for search and therefore consumes bandwidth like explained
earlier. Fault tolerance of Freenet is significantly better when network is under failure
e.g., nodes are randomly removed. Targeted attack which removes largest nodes will
lower the performance much faster. In randomly generated Gnutella network this is
just opposite because all the nodes have quite equal number of links/neighbors [19,
p.219-241]. In such network targeted attack and random failure scenarios have quite
similar behavior resulting both in a critical point where network divides into disjoint
clusters [4].

Both decentralized systems have advantages. Gnutella is simple and easy to imple-
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ment, it has powerful search which locates all the queried resources if time-to-live
value is set high enough. Backside is that these algorithms will flood the whole net-
work full of messages and eventually prevents the network from functioning. Freenet
has more complicated, dynamic structure which allows the search algorithm to scale
very well. However, users of Freenet are forced to store anonymous data which does
not actually belong to them, because it is stored as requests go by. Also, files that are
not requested are eventually removed from the Freenet [19, p.385].

Later in this thesis new search algorithm, NeuroSearch, is introduced. This algo-
rithm uses computational intelligence to solve message routing problem. It is more
like Gnutella than Freenet because there is no hash values for data, network is mes-
sage based and it is unstructured while decentralized. However, this algorithm solves
message routing problem more intelligently than Gnutella. It chooses, based on local
knowledge to which neighbors it will route the message. So, NeuroSearch takes good
sides of BFS and DFS, it is unstructured, it can spread like BE'S but it can also route
messages like DFS. It locates resources using fewer packets and thus spares network
bandwidth significantly.

11



3 Neural Networks

In this chapter history of Artificial Neural Networks (ANN) is described. Architecture
of one of the most common neural network, Feed forward neural network (FFNN) is
shown, and training methods are analyzed.

3.1 Brief History and Introduction

The Brain is complex computer capable to perform task such as pattern recognition,
perception and motor control whereas an Artificial Neural Network is crude model of
brain. An Artificial Neuron (AN) is a model of biological neuron (BN) which is a
complicated system. BN has myriad of parts, sub-systems and control mechanisms.
There are hundreds of different BNs. Together these neurons and their connections
form process which is not binary, not stable and not synchronous. An ANN tries to
replicate most basic systems of the brain |8].

Modern theories of neural processing and development of digital computer occured
at the same time, during the late 1940s. Development of artificial neural networks is
inspired by understanding of animal brain. At late 1950s first artificial neural networks
appeared. Frank Rosenblatt developed perceptron, father of the complex neural net-
works used nowadays. Perceptron had input layer and output layer and as an oldest
neural network it is still in use. Bernard Widrow developed adaline and madaline.
Madaline was first neural network which was used to solve real world problem |[8].

In 1969 Minsky and Papert published book called Perceptrons [17| where they con-
cluded that perceptron, developed by Rosenblatt, could not solve even simple prob-
lems. Their conclusion was that “despite the fact that perceptrons were interesting to
study, ultimately perceptrons and their possible extensions were a ‘sterile’ direction of
research” [25]. This caused major set-back to ANN development. In 1980s the research
of NNs started again and is today one of the largest research areas in computer science
19, p.12|.
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3.1.1 Artificial Neuron

An AN is a nonlinear mapping Fyn from R! to O where O is value depending on the
activation function used. I is the number of input signals to the AN.

FANiRI—)O

Each input signal z; is modified by weight w; to strength or deplete the input signal.
The AN sums all incoming modified signals.

I
netg = E T;W;
i=1

The AN that computes weighted sum is referred to summation unit (SU) (see figure
3.1). Alternatively product unit (PU) can be used. Product units provide higher-order
combinations of inputs and so have increased information capacity [9, p.18]. Product
units are not subject of this thesis.

Net value is modified by threshold value 6, also referred as bias. Threshold value
can be any real value which is added to total or it can be input/weight pair where
= 1 and wyy, is the weight value for bias. Without bias the value of neuron is zero if
all inputs are zero. This means that hyperplane that neuron produces in space has to
pass through zero. In many problems it would be much useful that hyperplane could
be elsewhere [3].

After calculation of the net sum activation function Fy is used (also called trans-
fer function) to compute the output signal y. Any activation function may be used.
Frequently used functions are Linear function, Step function (Threshold function),
Ramp function, Sigmoid function, Hyberbolic tangent function and Gaussian function
[9, p.19]. When using threshold activation function the AN (also called as Threshold
Logic Unit) will fire when net value e.g., sum or product of the modified input signals,
is larger than threshold value:

a if net >0
fan(net — 0) = { -

b ifnet <0

where a is usually 1 and b is 0.
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Figure 3.1: Internal representation of one neuron. After weight values and connection
values are multiplied these values are sent to neuron. Neuron adds all these values
together and uses this new value on transfer function which will then generate the
output of the neuron.

Sigmoid is often used as activation function because it is continuous, monotonous and
differential but still quite linear in presense of origo. This means that there is no point
in the function output that would not react to changes in weights or input values. This
makes teaching neural networks easier.

flu)=(1+e™)"

The final output signal O of the AN is

I
0= fAN(Z TWw; + TrWri),
i=1
where fan is the chosen activation function, I is the number of signals, z; is the input
signal, w; is the corresponding weight and x;yw;y1 = 6. 7 is referred to bias unit
and it is usually 1 or -1. wy,, is adaptive weight for bias and as all weights, it also will
change when neuron is trained |9, p.20-22|.
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Input Hidden Hidden Output
layer layer #1 layer #2 layer

Figure 3.2: Internal representation of feedforward neural network which has 2 hidden
layers. Neural network is calculated from left to right. First layer is input layer where
the raw data is located. Input values are connected to first hidden layer. All connections
are weighted connections. Neurons on first hidden layer are connected to second hidden
layer which in turn are connected to output neuron. After all calculations are made
the output neuron will reveal final output.
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3.2 Feed-Forward Neural Networks

Feed-forward neural network or Multi-layer Perceptron (MLP) contains neurons as-
signed to layers. Between neurons there are weighted connections. Neurons are con-
nected to neurons on another layer but they are never connected to neurons on the
same layer [9]. Internal representation of Neural Network is described in figure 3.2.

First layer of the neural network is input layer and it contains all the input values
that are used for calculation. Last layer is output layer and it contains one or more
output neurons which specifies the result. All the remaining layers are named as hidden
layers. Usually there is one or two hidden layers in a neural network. Main idea is to
use as few neurons as possible but no fewer to minimize CPU time usage consumed by
calculations.

Feed forward neural network is calculated through by summing all incoming modi-
fied connections in each neuron. This sum is handled as previously described. After
all layers have been computed through the final output value can be read from output
layer. Output value can also be modified by sigmoid or any other function

Output = f(net),

where f is the activation function used in output neuron.

FFNN with one hidden layer, multiple output units and multiple input patterns is
formulated as

J+1 I+1

Okp = fox (Z Wi fy; (Z VjiZigp)),
j=1 i=1

where 2, is input pattern and z;, is ’s input value. vj; is the weight value for connection
between input value 7 and hidden unit j. I is the amount of input units, I + 1 is bias
and thus v 1) is weight value for bias. f,, and f,, are activation functions for hidden
unit y; and output unit ox. wy; is a weight value between hidden unit j and output
unit k. J is the amount of hidden units.
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3.3 Training Neural Networks

3.3.1 Supervised Learning

In supervised learning the input values and output values are known. This means that
for specific inputs we are expecting specific output also. Training means that if the
output differs from desired value neural network’s weight values are adjusted. Error
value between desired output and neural network’s output is counted and weights are
correspondingly adjusted until a certain stop criteria is satisfied. Supervised learning
is mostly used for training Feed forward neural networks |9, p.27-54].

It is crucial in this learning method that desired output is known. In NeuroSearch
the decision to send or reject packet in certain situation in P2P-Network is unknown
beforehand. If the node decides not to send query further there is no way to tell if this
decision is good or bad because it depends on the decision made by other nodes. So,
this kind of training is not possible for neural network based resource query algorithms
until we have good resource discovery algorithm to use as training data for supervised
learning method.

3.3.2 Other Learning Methods

Unsupervised learning is learning method that requires no supervisor or external guid-
ance. Objective of unsupervised learning is to find specific patterns from input data
by performing clustering of input space. Reinforcement Learning in the other hand is
based on psychology of animal learning. Neural network is awarded for correct actions
and punished for wrong actions [9, p.55,56,79]. These learning methods are not subject
of this thesis.

Neural network used in NeuroSearch is trained using Evolutionary Computing. This
method is explained in next chapter.
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4 Evolutionary Computing

In this chapter Evolutionary Computing (EC) is described and some Evolutionary
Algorithms (EA) are revealed.

4.1 Introduction to Evolutionary Computing

“THE AFFINITIES of all the beings of the same class have sometimes been repre-
sented by a great tree. I believe this simile largely speaks the truth. The green and
budding twigs may represent existing species; and those produced during each former
year may represent the long succession of extinct species... The limbs divided into great
branches, and these into lesser and lesser branches, were themselves once, when the
tree was small, budding twigs; and this connexion of the former and present buds by
ramifying branches may well represent the classification of all extinct and living species
in groups subordinate to groups... From the first growth of the tree, many a limb and
branch has decayed and dropped off, and these lost branches of various sizes may repre-
sent those whole orders, families, and genera which have now no living representatives,
and which are known to us only from having been found in a fossil state... As buds
give rise by growth to fresh buds, and these, if vigorous, branch out and overtop on all
a feebler branch, so by generation I believe it has been with the Tree of Life, which fills
with its dead and broken branches the crust of the earth, and covers the surface with
its ever branching and beautiful ramifications.” (Darwin, 1859)

Because the environment of the world is constantly changing the individuals habit-
ing it need to adapt dynamic conditions. Failure in this race means that eventually all
individuals will die and species extinct. Those individuals that survive will form the
species that carry on life to next generations, to future. Evolution is the process to
improve survival capabilities of the life on space.

Evolutionary Computing (EC) is the emulation of this process. It is an emulation

of natural selection, survival of the fittest, reproduction and mutation. Evolutionary
Algorithm (EA) is a search for an optimal solution to a given problem e.g., how the life
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can survive as time goes by and environments on earth changes or how neural network
can learn to approximate given function [9, p.124].

Evolutionary Algorithm’s main components are chromosomes, fitness function, initial
population, selection operators and reproduction.

4.1.1 Chromosome

Each individual in population is candidate solution and it has charasteristics which are
represented by chromosome. Chromosome determines how well the individual solves
the given problem. A chromosome consists of a number of genes. Each gene represents
one charasteristic of the individual e.g. each gene represents one parameter of the
optimization problem [9, p.125].

4.1.2 Fitness Function

Fitness function tests how well the individual e.g. chromosome can solve the problem.
It maps chromosome representation into a scalar value:

FEAZCI—)%,

where Fpgy4 is fitness function and C! is I-dimensional chromosome. Because fitness
value informs the quality of the solution e.g. individual it is important that this function
models the optimization problem. Twisted fitness function will give twisted solutions
[9, p.125].

4.1.3 Initial Population

Evolution needs some population of individuals to begin. If the initial population is
small it covers small part of the search space. Too large population will need more
time on each generation but it also covers more search space [9, p.126].

4.1.4 Selection Operators

At each generation EA produces new set of individuals. New generation is reproduced
by individuals on earlier generation. Selection operator finds those individuals on
population that may reproduce. Different operators are random selection, proportional
selection, tournament selection, rank-based selection and elitism [9, p.126-129].
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4.1.5 Reproduction Operators

Reproduction operators produce new offsprings from previously selected individuals.
This is done either by cross-over e.g., creating new individual by combining genes
between parent chromosomes or mutation e.g., creating new individual by altering
genes of parent chromosome [9, p.130].

4.2 Cross-over

Cross-over method produces new individuals from two existing inviduals. It is a way
to mix genes of two chromosomes to make one. In population cross-over happens on
certain probability. In real world mating partners are chosen by some criteria, weakest
individuals are closed out to prevent weak gene transfer to the future. Pseudocode
algorithm to illustrate cross-over between individuals C),; and C,;3 is shown below [9,
p.137-138|:

1. Randomly determine if cross-over takes place. If no, parents are returned. Else
continue.

2. Copy the genes of parents to offspring e.g. @ = Cj; and 8 = Che.

3. Compute mask, m which specifies which genes of the parents should be swapped.
Several cross-over operators have been developed: uniform cross-over, one-point
cross-over and two-point cross-over.

4. Fori=1,...,Iif m; =1 swap genes. o; = Cpz; and 3; = Cp14.

5. Return « and §.

4.3 Mutation

Mutation changes genes of an individual and thus brings new genetic material to pop-
ulation. Mutation occurs with certain probability, referred to mutation rate. Mutation
rate should be larger when evolution starts to cover larger area of search space. When
better solution candidates are found the mutation rate should be decreased and when
candidates are approaching the optimal mutation rate should be significantly smaller
[9, p.138].
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4.4 Evolutionary Algorithms

Genetic Algorithms (GA) model genetic evolution. Offsprings are generated by cross-
over and mutation. GAs may be evolved using more than one population at the same
time. Selection and reproduction may occur between subpopulations. Individuals can
also immigrate other populations |9, p.133].

Genetic Programming is specialization of genetic algorithms. GP is also a model of
genetic evolution where GP represents individuals as executable programs constructed
as trees |9, p.147].

Evolutionary Programming (EP) models behavioral evolution and genetic evolution.
In reproduction only mutation is used |9, p.155].

Evolutionary Strategies (ES) is evolution of evolution. Each individual is represented
as genetic material and set of strategy parameters. Changes due the mutation are only
accepted in case of success e.g. if mutated individual has improved fitness value [9,
p.161].

Differential Evolution (DE) is similar to basic EAs but differs in reproduction. DE
introduces new way to mutate offspring. DE uses arithmetic operator which depends
on the differences between randomly selected individuals. If mutation occurs the off-
spring contains combination of genes of three different chromosomes [9, p.167].

EP methods are used in training of NeuroSearch added with strategy parameter as
in ES.
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5 NeuroSearch

In this chapter the NeuroSearch search algorithm is described.

5.1 Introduction

NeuroSearch is intelligent resource query algorithm. Every peer in the P2P-Network
will decide based on local information if it will send query to its neighbor. Local
information contains such elements as how long the message has travelled and how
many neighbors the target neighbor has. As a total of six different local information
pieces are used to make routing decision. Peer may want to send query further if it
has travelled only few hops or it may drop the query even if it has travelled few hops
but the target has too few neighbors. The answer for the problem - should the peer
send it or not is revealed when input values are computed through neural network.
Good neural network will make wise decisions and so lowers the bandwidth usage on
P2P-Network while maximises the probability of finding the wanted resources. Neural
network cannot make good decisions if it is not trained properly. NeuroSearch is trained
using evolutionary programming and evolutionary strategies, described earlier.

5.2 Inner Structure

NeuroSearch is feedforward neural network (FFNN). It has input layer, one or more
hidden layers and output layer. Different amount of neurons are used and their behavior
and success are analyzed. If neural network is too large it consumes more CPU time
for calculations and it may overlearn the training environment e.g., P2P-Network.
NeuroSearch differs from all other search algorithms used in P2P-Networks because it
can adapt its functionality by combining multiple input types to make a wise routing
decision.

5.3 Input Values

Six input values are used:
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e hops is the number of links the message has gone this far. Neural network can
decide to drop packets which have gone too long or maybe send those which have
been routed only few times.

e neighbors is the amount of neighbor nodes this node has. It can decide to send
or drop message by knowing whether it is located in center or in the edge of
P2P-Network.

e target’s neighbors is the amount of neighbor nodes the message’s target has. This
tells to the neural network if the target is central or edge node.

e neighbor rank tells target’s neighbor amount related to this node’s other neighbors
e.g., if this value is 0 this target node is the node which has more neighbors than
any other neighbor.

e sent is a flag for telling if this message has already been forwarded to the target
node by this node.

e received is also a flag and will be 1 if this node got this message from target node.

Input values are scaled so that all inputs are between 0 and 1. Sent and received
are either 0 or 1. Hops and neighbor rank are scaled with:

flz) = : (5.1)

where x > 0.

Neighbors and target’s neighbors are scaled with

f@)=1-12, (5.2)

X

where x > 1. Neighbors and target’s neighbors are always over 1 and thus they can be
dividers.

NeuroSearch can imitate BFS if all other inputs are dropped but hops and received
which informs if the query came from this target node. So, best neural networks with
only this input and bias will send the query further but will not send it to the same
target where it came from. NeuroSearch with inputs hops, and random value will im-
itate Random Walker algorithm. This NeuroSearch will send or drop query based on
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random value but also on hop count. If NeuroSearch is filled with inputs containing
heuristic information of the network i.e. P2P-Node reply rates or average latency of
the replies it may imitate Directed BFS algorithm [27].

5.4 Activation Functions

Hyperbolic tangent (Tanh) is used as an activation function in the neurons on hidden

layers:
fz) =
1+e2

where z is the net sum of all input values to this neuron

I
net = E W;Zi,
i=1

where I is total number of connections to this neuron. w; is the weight value for input

)

value z;. The output of hyperbolic tangent is between -1 and 1.

5.5 Training

The idea of training is to find correct weight values for neural network. Evolutionary
Programming and Evolutionary Strategies are used to train NeuroSearch. Training
steps are the following:

1. Load P2P-Network from the file.

2. Set initial population of ANN. Every individual in the population is prepared by
randomly setting weight values and self adaptive parameters. Weight values vary
randomly between values -0.2 and 0.2 and self adaptive parameters is set to 0.05.

3. Test the ANN-population in P2P-Network to obtain fitness value for each ANN.

e Take ANN from population

e Multiple times choose randomly one peer and one resource and execute
query in P2P-Network starting from the selected peer. Determine fitness by
counting how many resources are found and how many packets were used:

n

fitnessanny = E score;,
=1

24



where n is the number of resource queries. Score is calculated using following

principles.
Min(R,T) * Rygpue — P R >0,T > 0, Rygiye > 0, P >0
score = 1_P+r1 ifR=0
0 1f P > Plimi

where R is found resources, P is used packets used in query, 7" is target
amount of resources e.g., half of the available resources, R,q tells how
much one found resource is worth compared to packets e.g., every resource
is worth of 50 points as every consumed packet is one minus point and Py,
is maximum amount of packets that may be consumed in one query.

First formulae tells that score is counted by taking founded resources, mul-
tiplying them by some number and decreasing from this number the amount
of used packets. If more than limit amount of resources are found the limit
amount is used. This way NeuroSearch gets best score by founding wanted
amount of resources and using minimal amount of packets.

Second formulae states that score is very small if no resources are found,
however using fewer packets NeuroSearch gets better fitness - even very
small one.

Third one states that if amount of used packets grow over packet limit
the algorithm floods the network and its score is thus set to 0.

e If all individuals have been tested go further, otherwise go back and test
new ANN.

4. Use selection methods to separate the most fit individuals from the population
to breed new generation. Remove weakest half of the population.

5. Reproduce new half by cloning and mutating each survived network. Descendant
is an ANN that has slightly changed weight values than its parent. Mutation is
done by random variation using normal distribution. Scaling factor is used for
each weight value. Scaling factor will determine how much the weight is being
changed [10]. At the beginning mutation should be aggressive but when the
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fitness grows and algorithm comes closer to the optimal solution the mutation
should be very small. The random variation functions are given as:

o'(j) = o(j)exp(TN;(0,1)),5 =1, ..., N,

w;(]) = wz(]) + Ul(j)Nj(Oﬂ 1)’j = 1: ---an

Finally we have exactly the same amount of neural networks than initially.

6. Increase generation amount by one. Stop if chosen generation time has been
reached, else go back to step 3.

After the process the best neural network is found e.g., neural network with highest
fitness score. Behavior of this ANN may be analysed further with NeuralSee and
P2PStudio programs.
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6 Research Environment

In this chapter is reported the tools with what this study is made. Computer programs
are shown and their function is explained. Computers used is listed with statistic and
network used in calculations is explained.

6.1 P2PRealm

P2PRealm - the simulator of P2P-Environment as well as generator of NeuroSearch
algorithm is the main program used in this thesis. P2PRealm generates virtual P2P-
Network, initiates chosen neural network population, tests and mutates neural net-
works, writes statistics of the process and prints specific files for P2PStudio.

P2PRealm may be connected by telnet and commands to modify running process may
be given. Software has advanced configuration system for running multiple research
cases and the computing may be distributed so that processing slave computers do not
use any storage space - all generated data is transferred back to the master computer
by network. The distribution of P2PRealm is built upon Chedar P2P-Platform [5].
These features are crucial because evolutionary programming consumes huge amount
of computing power and thus time. Configuration system allows user to set up all
needed cases at once for processing and thus computing is uninterrupted. Distributed
system allows these cases to be computed on separate computers decreasing computing
time.

P2PRealm is coded with Java 1.4.1 and can be run both on Unix or Windows ma-
chines. P2PRealm is programmed by Niko Kotilainen and Joni Toyryla.

6.1.1 Java Classes

Netsimulator.Java is the main class of the program. Simulation variables is read from
config file and evaluator is created with these parameters.

Evaluator.Java is the component for running training of neural network. NeuroSearch-
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Generator and Network are initialized. After this the main loop of simulation is started
i.e., generation loop. In each generation all neural networks from population are tested
and then variated.

NeuroSearchGenerator.Java creates and holds the population of neural networks. It
contains methods for calculating average fitness of population and finding neural net-
work with best fitness value.

NeuralNet.Java is the class of neural network. It contains weight values, scaling factors
and method for weight variation as well as used packets and found resources in last
generation. Method private void variateGaussian(NeuralNet father,

int variationRound) is used to variate neural network.

NeuroSearch.Java is the class for making decision should NeuroSearch send packet
further or not. Method public static Vector handleMessage(Node node,
Message msg, Vector decisions) is called from every P2P-Node when decision is
needed to be made. public static double calculateOutput(double datal],
double weights[]) is the method for calculating neural network output. Data con-
tains scaled input data and weights are the array of NN weights.

Network.Java is the class for P2P-network. It contains Node, queried resource and
querier arrays and main method for calculating the route of a query. It also loads the
network from file or creates it dynamically.

Node.Java is the class for one node in P2P-network. It contains array of its neigh-
bors and resources.

Message.Java is the class of the routed message. It contains information of weight
values of corresponding algorithm, amount of hops used and from what node it came
from.

6.2 P2PStudio

P2PStudio was created for analyzing query routing in P2P-Networks. With P2PStudio
researchers may see the graphical representation of P2P-Network - nodes and links but
also the resource query routes for the loaded NeuroSearch. This is useful when analyz-
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ing behavior of NeuroSearch. For example is it acting like Breadth-First-Search or is it
more like Depth-First-Search. P2PStudio can be used in real situation with TCP/IP
to monitor Chedar network or it can be fed with proper data and used offline. In figure
6.1 the interface of the P2PStudio and topology of P2P-Network used in all research

cases in this thesis are shown.

First version of P2PStudio was created in student project of University of Jyvaskyla in
autumn 2002. Further development of the software has been done by Niko Kotilainen.
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Figure 6.1: Interface of the P2PStudio

6.3 Internal Representation of P2P-Network and Queries

P2P-Network used in simulations is created using Barabasi-Albert model [6] and thus is
power-law distributed. Every node has as many resources as it has neighbors - central
nodes have more resources than nodes on the edge. Parameters of the used network

are:
e 100 peers
e 394 links
e 394 resources

29



e Highest degree node has 25 resources and links
e Every node has at least 2 resources and links
e Connections between nodes are power-law distributed

Each NeuroSearch algorithm in certain generation is tested n times in the P2P-
Network. All tests are done with randomly chosen queriers to make fitness value
represent overall performance in the network rather than only certain individual query
patterns. The queriers are the same to make fitness values comparable between different
NeuroSearch algorithms inside one generation.
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7 Research Cases

In this chapter different research cases are described. First is researched how initial
population affects the development of NeuroSearch. Secondly the size of neural network
is analyzed. Third case reveals information of input values, where some inputs are more
important than others and some combinations work better than others. Fourth case
is about fitness function, we analyze what kind of NeuroSearches are developed with
different amount of required resources to be found.

7.1 General Information

In all experiments, the same fixed values are used when possible. Those research cases
which do not concentrate on topology will use same topology [i.e., network.xml|, initial
population, variation amount and neuron amounts are used. In the beginning it is not
sure which values or value combinations are better than others and so at first some
values need to be set more or less randomly. The following variables are used:
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Variable Explanation

Peers Number of P2P-Nodes in the network

Links Number of links between nodes in the network
Resources Number of resources in the network

Topology Topology of the network

Variation Variation function used when generating new

weight values for new neural network

Fitness Percent amount of target resources to be found
in the query

Neurons Neuron amount in the hidden layers of the ANN.
Different layers are separated by “:”

Hidden activation | Activation function used in neurons on hidden layers

Output activation | Activation function used in output neuron

Inputs Amount of inputs used
Generations Amount of generations in evolution
Population Amount of neural networks in the population

In almost all graphs there are fitness values of best neural network and average
fitness of better half of the population in the last generation '. Hops and Age is shown
same way e.g., amount of best evolved ANN and average value of the better half of the
last generation are shown in the graph.

Most of the figures presented in these cases are made so that curves are an aver-
age of 50 last generations. Without this moving average the curve would be too messy
to be analysed. If other average value is used it is written in the caption.

7.1.1 Fitness

Fitness value determines how good the neural network is compared to others. Even
smallest and simplest neural networks manage to have fitness value over 10000. In
table 7.1 are shown statistics of poor and good neural network. The poor network
founds 239 resources after 50 queries and consumes total of 1290 packets. Because

1Population of 30 neural networks will have after every generation 15 networks which have proven
to be better than other half. These 15 are mutated to get new breed of neural networks which have
proven nothing, there is a high probability that these 15 will not succeed. This is the reason why
average fitness is calculated from better half of neural networks
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fitness is calculated so that each found resource is worth 50 points to total score mi-
nus used packets, we can calculate the fitness value 239 x 50 — 1290 = 10660. This
neural network finds in average 239/50 = 4.78 resources every query and consumes
1290/50 = 25.8 packets for locating them. This is not very good algorithm though.
Better algorithms are listed below this one - good NeuroSearch, Highest Degree Search
and steiner Algorithm. Steiner algorithm finds the best possible search path for given
querying node to locate specific resource in that P2P-Environment but it uses global
knowledge to solve problem and therefore cannot be used as local search algorithm.
Efficiency is counted by dividing replies by packets.

Name Fitness ‘ Fitness/Query ‘ Packets | Replies | Efficiency
Poor NS | 10660.0 | 213.2 1290 239 0.19
Good NS | 17905.0 | 358.1 1995 398 0.20
HDS 18891.0 | 377.0 1209 402 0.33
Steiner 18371.0 | 366.4 379 375 0.99

Table 7.1: Statistic of different algorithms. As can be seen, steiner algorithm where
global knowledge is used has enormous advantage compared to rest of the algorithms.

7.2 Population
7.2.1 Setup

Initial population is the first research case because the results may prove better and
makes it faster to get results for later cases. If the amount of ANN is too small it may
lose information in the training and if the amount is too large there may be unnecessary
computing when variating new breed of ANNs.

In this case the values that were changed were ANN amount and generation amount.
Generation amount is changed to set variation amount to be the same for all ANN
amounts. The amount of neural nets and generations used in this case are shown in
table 7.2.1. Only half of the population is variated, so total variation amount is counted
as:

(initialpopulation/2) x generationamount
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Neural Nets | Generations | Total Variations

2 300000 300000
16 37500 300000
30 20000 300000

Table 7.2: The amount of neural nets, generations and variations used in this case

Variables used in this case are:

e 100 peers

e 394 links

e 394 resources

e Power-Law distributed topology
e gaussian variation

e 50 percentage of resources

e 16:4 neurons

e sigmoid hidden activation

e threshold output activation

6 inputs

7.2.2 Results

In figure 7.1 the population contains only 2 neural networks which is the minimum
amount of population. It can easily be seen that the evolution of NeuroSearch is not
stable. It may sometimes find reasonable fitnesses but in general its performance is not
admirable because the fitness drops multiple times during the training. There are huge
leaps in the fitness values. These leaps mean that population had got some intelligence
about solving the problem but it was lost. This happens because population size is so
small that it cannot store the level of performance. Because P2P-Nodes starting the
queries are randomly selected there is possibility that those nodes are very bad nodes
for starting to find resources e.g., they may be on the edge of the network with few
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links. This may give a chance to weaker networks to get slightly better fitnesses. Also,
if the query originators are set so that finding resources is very easy also poor networks
manage to attain good fitness values. This can be crucial, stable network (e.g., a neural
network that keeps fitness values inside about 800 points range) can be dropped by
network which counts only on luck.
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Figure 7.1: Evolution of 2 Neural Networks and 300000 generations. There may appear
nets which contains more intelligence but because population is too small it cannot hold
the information. The curve is calculated as an average of 500 last generations.

Because the queriers are randomly chosen the querier may be on the edge of the
network or in the center. Query started from the edge is different than query started
from center, usually is thought that queries started from edge are “hard” problems
while central queries are “easy” problems because most of the resources are located in
the centre of the P2P-Network. This randomness leads to situation that some tests are
easier to neural network to solve than others and because of this the difference between
fitnesses of neural networks could be very small. The difference between fitnesses can
be only few packets after 50 resource queries.

However, even if fitness difference is very small, the better network will survive and

live to the next generation. Down leap will come when weak survivor cannot maintain
the fitness. It has no proper intelligence to solve resource discovery problem in all ran-
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Figure 7.2: Two different behaviors of neural networks. First half of the graph demon-
srates stable network and second half shows unstable network. Stable network tries to
do good job in every environment, unstable tries to do good job when environment is
easy for it but drops down when the environment is difficult. Stable network is beaten
up by unstable at generation 27316. Stable network got fitness value of 16738 and
unstable got 16870.
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domly chosen situations, and thus the fitness will drop. It manages to get good fitness
time to time but as often it performs very poorly. Because fitness curve is average
value those poor values will push the curve down.

Even though the initial population was smallest possible the evolution could reach
over 16000 fitness value and it did not drop down from there. It managed to find some
intelligence and could keep that information but it could not reach higher. Every time
it found new solution it also lost it.

It seems that on some level the life of the neural network is dangerous. In a figure
7.2 we can see a more close situation of the evolution of 2 neural networks. This is
the same situation as shown in figure 7.1 at generations 27000-27500. There is huge
rising of the fitness and few thousands generations of stableness. This is second highest
fitness value over the whole evolution. But what happened after that? Terrible down-
hill. Stable network is beaten by unstable network. Unstable network behavior differs
greatly from stable network. Unstable gets sometimes good values but sometimes very
poor values depending on the environment e.g., on the nodes that send resource queries.

In the figure 7.3 fitness curve of 16 neural networks population is presented and it is
shown that it is capable of keeping the reached intelligence much better. Fitness drop-
pings caused by small population do not exist. Minor varying of the curve is caused by
different environment and different behavior of search algorithm. Environment can be
easy or hard and some networks are more stable than others. Stable network is gener-
ally better than unstable because it can get reasonable fitness in all different situations.

At time of 20000 generations there is major rising of the fitness curve. This is normal
in the training and will eventually happen to all neural networks when there is rea-
sonable amount of generations. This means that after random amount of generations
a new neural network will evolve that can solve the problem better than its friends or
its parent. With initial population amount of 16 neural networks the evolution could
reach fitness of 17200 which is a lot better than what 2 neural networks can attain.

In the last figure 7.4 same curve but with population of 30 neural networks is shown.
Curve is even more stable than with population of 16 neural networks. Average fit-
ness curve follows best neural network but more farther than in figure of 16 neural
networks. This population size surely can hold the information but it may also be
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Figure 7.3: Evolution of 16 neural networks and 37500 generations. Moving average of
50 generations were used.

too big because 16 neural networks can also sustain the good solutions at reasonable
probability. Larger population will use more computation time and so it is important
to find population amount which can hold the information but which does not waste
processing time.

7.2.3 Conclusion

Too small population cannot keep information and the evolution can make huge drops
randomly. Very big population will keep the information but also uses much more com-
puting time. It was shown that population of 16 networks can keep the information it
has found with high probability. In later research cases initial neural network amount
is risen by one third to 24 to be sure that evolution will not lose intelligence. The
probability to lose best network will grow if the generation amount grows.

Also must be noticed that all evolutions could reach up to 16000 fitness values and
they did not drop from there. So with this setup the fitness values below 16000 are
rare as well as values above 17000. The fact that all evolutions could reach 16000 at
very little time (e.g. 100-1000 generations) proves also that values near 16000 are com-
mon in fitness space. To get neural network that manages to have fitness value over
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50 generations were used.

Random weights
le+07 T T

”histogr‘amG_O.txt"' +

1le+06 | E
100000 E

10000 | E

Amount of hits

1000

100

10

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Fitness

Figure 7.5: Fitness hits using neural networks with randomly chosen weight values.
The value 0 has been hit 1 * 107 times, other fitness values are found almost equally
frequently. Fitness values near 18000 are almost impossible to find.
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16000 without using evolution is very difficult. In figure 7.5 is shown fitness values of
neural networks with randomly chosen weight values. Most of the random neural net-
work have fitness value 0. Only few thousands of 10 million randomly chosen networks
manage to have fitness over zero. Few hundred manages to have fitness close to 16000
and few single have fitness over 16000 and no one has near 18000. So, probability to
have fitness over 16000 randomly is very small, near 0,0001 %.

7.3 Inputs

7.3.1 Setup

Neural network’s input values are only way for network to get information from enviro-
ment. In this thesis six input values are used as described earlier. In this research case
every input is tested alone to get a clue how important is the input’s information. Also,
some input values are tested together and their performance is analyzed. In this case
neuron amount was dropped to 10:5 because larger networks used too much computing
power and valuable time.

Variables used in this case are:

e 100 peers

e 394 links

e 394 resources

e Power-Law distributed topology

e gaussian variation

e 50 percentage of resources to find

e 10000 generations (sent input was tested with 50000 generations)
e initial population 24

e sigmoid hidden activation

e threshold output activation

e 10:5 neurons
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7.3.2 Results

In figure 7.6 the evolution of six different inputs is shown. Using only hops as input
NeuroSearch knows the distance how long the query has travelled in the network. It
may decide to drop the message if it has gone too far or it may send it further if it has
gone only few hops. With this information NeuroSearch does not perform very well,
its fitness remains below 13500.
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Figure 7.6: Fitness values of NeuroSearch using only one input value. Hops can reach
13K fitness but all inputs related to neighbors can reach near 16K fitness. Sent alone
cannot do anything but flood the P2P-Network. Received is also able to reach fitness
of 16K.

When using information of target’s neighbor amount NeuroSearch’s search capabil-
ity improves significantly reaching fitness near 16000. With this input NeuroSearch
knows if the target node is central node with many neighbors and thus has resources
or if it is node on the edge of the network with few neighbors and resources. This
information is more meaningful than information of the travelling distance because
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P2P-Network used in this test is rather small, so the distance to travel to central nodes
is only 2-3 hops. This may be a reason why NeuroSearch using only hops is rather
poor compared to others (except sent).

Neighbor rank is counted for every target node and is calculated using target node’s
neighbor amount. Target node with most neighbors will have rank 0, second 1 and so
on. Nodes with same amount of neighbors will get different rank numbers such the
other will get better rank. This ensures that two similar neighbors do not have the
same input values and thus enables NeuroSearch to send only to one neighbor. Using
this information only NeuroSearch will get very good fitness value, over 16000. Fitness
is even better than using exact value of neighbor amount. So, ranking the neighbors
in order of their neighbor amounts is more important than counting how many neigh-
bors they have. This may be caused by reason that many nodes have same amount of
neighbors. Near the center all nodes have quite many neighbors and in the edge the
nodes have few.

Using information of sender’s neighbor amount, my neighbor amount, NeuroSearch
knows how near the center e.g., well connected this node is. It does not know anything
about the nodes where it is sending the query. It may think “I am central node. I
have 10 neighbors - I will send the query further” or “I am node with 4 neighbors - I
will reject the query”. With this information NeuroSearch performs the most efficiently
reaching fitness near 16500.

Sent input tells if this node, sender node, has already sent this message to that target
node. Using this information NeuroSearch floods the P2P-Network. Every new node
on query path will send the message to all its neighbors because it has not sent it ear-
lier. So, every node in the P2P-Network will get the resource query, and all will send
it at least once to all neighbors. It finds all resources but uses huge amount of packets.
Sent reaches fitness value of 400.0 using 19700 packets and finds all 777 resources but
is rewarded only from the half e.g., 402 resources.

Received input manages to do much better having fitness over 14000. Received con-
tains the information if this node has already received the query. NeuroSearch drops
query if this is not the first time when it gets the query. At start, it sends query to all
its neighbors. These neighbors will send query to all neighbors also, even back to the
previous senders. These previous nodes drop the queries because they know that they

43



already have sent the message further. Resource query is like a wave, it keeps going
until all nodes have been reached but it does not use link more than two times.

In figure 7.7 three different fitness curves are shown. They all are related to neighbor
amounts and describe the fitness curve of NeuroSearch with two inputs only. First two
are figures with information of sender’s neighbor amount and information of target’s
neighbors - first one with amount and second one with rank. Both of these curves
are relatively equally good, NeuroSearch manages to reach fitness of near 12000. This
fitness value is much smaller than with NeuroSearch using any of these inputs alone.
This cannot be explained by simply saying that generation amount or neuron amount
were too small because using all inputs NeuroSearch manages a lot better with same
generation and neuron amount. Information of these inputs may be somehow overlap-
ping and thus depletes the performance. Third figure is fitness curve of inputs target’s
neighbor amount and neighbor rank and this fitness is significantly smaller than the
previous two. The information of these inputs is quite same, both contain information
related to target node’s neighbors. Target’s neighbor amount contains the scaled value
of neighbor amount. Neighbor rank contains value how many neighbors this target has
related to other targets.

In figure 7.8 also 3 different fitness curves are shown. All the information in these
inputs is related to query. First curve is evolution of NeuroSearch with two inputs,
Hops and Received. This fitness curve is almost identical to next one, NeuroSearch with
inputs Hops and Sent. Both of them manages to reach fitness value over 14000. In the
last figure NeuroSearch with inputs Received and Sent are shown. Fitness of the last
NeuroSearch is significantly poorer than previous two. In the last figure NeuroSearch
knows only if the query has already been received by this node and has this node
sent the query already to target node. There may be some overlapping information on
these inputs. If the query has been in this node it is more likely sent also further. So,
information got from input received may already contain much of the information that
is contained in input sent. In the table 7.3 is shown relations between these inputs.
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‘ sent ‘ received ‘
1
0 0 orl

‘ received ‘ sent ‘
1 0 orl
0

Table 7.3: Table of relations between inputs sent and received.
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Figure 7.7: Three different fitness curves are shown. All related input values contained
information on neighbors. In each figure two input values are used. First one is fitness
curve of inputs my neighbor amount and neighbor rank. Second is calculated using
inputs targets neighbor amount and neighbor rank. Third one is fitness curve of target
netghbor amount and my neighbor amount. As can be seen the last figure is significantly
poorer than previous two.
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Figure 7.8: Three different fitness figures containing inputs not related to neighbors.
In each figure two input values are used. Hops is tested with received and sent and
finally received and sent are tested together. First and second fitness curves are almost
identical reaching value 14000. Last one is much poorer, information contained in sent
and received is not enough to make intelligent routing decisions.
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7.3.3 Conclusion

Using inputs hops, my neighbor amount, sent or received alone the NeuroSearch will
always send or reject the query for all targets of sender node. The information fed to
neural network is independent of target node and thus neural network will give same
output for all the targets. Target node’s neighbor amount and neighbor rank of targets
is related to target and thus neural network will give different output values for every
target node and thus P2P-Node may send or reject queries.

It is noticeable that fitness curves of few inputs are much more straight than curves
using all six input values. New generation of neural networks have almost same func-
tionality and fitness values than their parents. Weight variation generates identical
neural networks which keep getting almost same fitness values.

7.4 Resources

7.4.1 Setup

In this case is measured how much packets NeuroSearch uses when different amount
of resources are needed to find. Target amount of resources varies from 10 percent to
100 percent with steps of 10 percent. Results are compared to other algorithms, BFS,
HDS and steiner.

Variables used in this case are:
e 100 peers
e 394 links
e 394 resources
e Power-Law distributed topology
e (Gaussian variation
e 10000 generations
e Population 24

e Sigmoid hidden activation
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e Threshold output activation

e 10:5 neurons

7.4.2 Results

Figure 7.9 shows curves used in this case. NeuroSearch consumes much more packets
than steiner but this is quite obvious. Steiner has global information of nodes, links
and resources and with this knowledge steiner algorithm can make smallest possible
route to locate all wanted resources. HDS uses also fewer packets than NeuroSearch
but they both need lots of packets when amount of needed resources increases.
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Figure 7.9: Usage of packets with different amount of target resources.

7.4.3 Conclusion

NeuroSearch uses more packets than steiner or HDS. BFS uses few packets when target
amount of resources is kept small but when this amount rises over 70% BFS uses more
packets than any other algorithm.
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7.5 Queriers

7.5.1 Setup

In this case the effect of lowering amount of queriers per generation to calculate fitness
value of neural network is examined. Other values are kept the same but amount of
queries varies. If the fitness value of NeuroSearch is unaffected while querier amount is
dropped in later evolutions smaller querier amount should be used because of smaller
time usage.

Variables used in this case are:
e 100 peers

394 links

e 394 resources

e Power-Law distributed topology
e gaussian variation

e 10000 generations

e initial population 24

e sigmoid hidden activation

e threshold output activation

e 10:5 neurons

7.5.2 Results

In table 7.4 is shown amount of queriers and corresponding fitness per query. As
can be seen, the values are quite near each other. 10 queries got best fitness value
and thus it is suggested amount to use in future evolutions. Using smaller than 10
queries NeuroSearch’s performance however drops. It does not get enough data from
P2P-Network to figure out how to solve resource query problem.
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‘ Querier amount ‘ Fitness/query ‘

20 352.6
40 347.1
30 354.8
25 338.1
20 355.8
15 343.6
10 364.4

321.0
1 222.0

Table 7.4: Fitness per query for different query amounts per generation for the best
neural network in last generation i.e., generation 10000 of evolution.

7.5.3 Conclusion

In this case is shown that using smaller amount of queriers while training NeuroSearch
does not affect algorithm’s performance. Only training using smallest query amounts
lowers the fitness value. It is suggested that 10 queriers are used in future instead of
50, because this change fasten’s calculations i.e., evolution significantly.

7.6 Brain Size

7.6.1 Setup

Neural network’s intelligence capability can be modified by setting different amount
of hidden layers and different amount of neurons on those layers. If the amount of
neurons is small neural network cannot approximate input relations correctly. If there
are too many neurons in neural network it wastes precious computing time.

Variables used in this case are:

e 100 peers
e 394 links
e 394 resources

e Power-Law distributed topology
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‘ # ‘ Neurons | Fitness | Packets ‘ R ‘ RR ‘ Parents ‘ Born ‘ Hops ‘ Age ‘ Efficiency
1 ]5:0 17500.0 | 2550 401 | 469 | 44185 99997 | 6 3 0.18
2 | 20:10 17905.0 | 1995 398 | 473 | 103 91855 | 24 8145 | 0.24
3 | 25:10 18091.0 | 1709 396 | 434 | 109 90715 | 5 9285 | 0.25

Table 7.5: Statistics of three different neural networks. Even the efficiency of the last
two networks is almost the same. By taking a look at the real replies it can be seen that
ANN 25:10 does not “overfind” resources that much as 20:10. It finds 32 resources too
much while 20:10 finds 71, over twice as much (maximal possible amount of rewarded
resources per 50 queries is 402). R is amount of resources found and awarded. RR is
the amount of total found resources.
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Figure 7.10: Evolution of neural network with one hidden layer and 5 neurons assigned
on it. Even this small neural network reaches moderate fitness value, 17500.0. Average
best fitness on generation 100000 is 17421.62. Fitness jumps suddenly near generation
33000 but after that this neural network cannot find new solutions to solve resource
querying problem.
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Figure 7.11: Age graph of the same network as in figure 7.10. After generation 13000
the population contains individuals whose life lasts only few generations.

e gaussian variation

50 percentage of resources

100000 generations

initial population 24

sigmoid hidden activation

threshold output activation

6 inputs

Population amount of 24 were used because in earlier case it was found to be large
enough to hold found intelligence as evolution proceeds. Variation amount was risen
to 1.2 million and so generation amount was set to 100000. The varying values in this
case are neuron amount and hidden layer amount. Different amount of neurons are
tested both with one and two hidden layers.

Tests are calculated using either one or two hidden layers. One hidden layer is enough
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to FFNN to approximate given function but it needs more neurons than FFNN using
two hidden layers. Using more than two hidden layers does not improve the approxi-
mation performance of FENN [9].

7.6.2 Results

In table 7.5 is the statistics of last generation (generation 100000) of neural networks
used in this research case. First one is very small network which manages to reach good
fitness. Second one is much bigger neural network which was able to find slightly better
solution to resource query problem. First neural network is BF'S algorithm because it
uses only few hops thus sends queries fast to all neighbors. Second is more like DF'S
using fewer nodes but sends queries using long paths. Third NN is little larger than
the second one. It is the best NeuroSearch algorithm shown in this thesis being the
only one that could reach fitness over 18000. Surprisingly it uses only 5 hops and thus
acts as BFS.

Packets and replies are the amount of packets used and amount of resources found
in total of 50 queries. First network used about 50 packets/query and found almost
10 resources/query. Difference between replies and real replies is that replies is the
amount of resources that NN is awarded and real replies is the real amount of resources
it found. Every NN locates more resources than the target amount but none can still
find maximum amount of resources e.g., maximum amount of rewarded resources in
all 50 queries is 402. This means that algorithms find some resource type more than
is needed but other resource type is found less than needed. Thus the total amount of
found resources is over target amount but total rewarded amount is not the maximal.
Parents is the amount of successful variations to reach this network. The huge differ-
ence between parents value of first and two last networks is explained later. Born is
the generation number when the neural network was generated. Hops is the amount of
nodes the longest message route has trespassed in the last query round of 50 queries.
Age is the number of generations since ANN was born.

Smallest tested brain was neural network with one hidden layer and 5 input neu-
rons assigned on it. Both layers included also bias. In figure 7.10 we see the evolution
and fitness curve of very small neural network. There is nothing very dramatic on
the evolution. In the generation 33000 there can be seen nice rising of the fitness but
in all this evolution is quite stable. Even though this ANN is very small it can solve
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the problem quite well. However, when we look at the figure 7.11 of age curve of the
same network we see something quite interesting. At the beginning the age of the
oldest network in the population stays quite high but in generation 11618 the neural
network which has born in generation 10253 lost the competition and after this all
neural networks in the population stayed very young. Average age of the oldest net-
work after generation 13000 is below 6. This means that some of the scaling factors
which control the strength of mutation is gone so small that changes in the weights
of siblings are very small. Optimization process has come to its end. After genera-
tion 13000 the evolution could have been stopped. But if we look at the fitness curve
again we see that in about generation 33000 there happens a fitness jump. Evolution
of evolution e.g., size of scaling value has lots of variation. Some scaling values are
very small while some values are huge. It may be that those weight values which have
huge scaling value have minimal effect on performance of neural network. In evolution
they change all the time but cannot find any value which would be better than others,
so it may be that it is almost same to the neural network which these weight values are.

In appendix A (p.66) weight values and scaling values for this neural network are
listed. There are 41 weight values in the network and for every weight there is scaling
factor. w means weight value and s means scaling value. After this term there is in
parantheses three numbers. First one tells the order number of the gap between layers
where this connection is located e.g., #1 means that connection is between first gap,
between input layer and hidden layer. #2 is gap between first hidden layer and second
hidden layer or output layer, depending if the neural network has one or two hidden
layers. #3 means gap between second hidden layer and output layer. This neural
network has two hidden layers. Second number inside parentheses tells which neuron
in the first layer has the connection. Third number is the number of neuron in the
second layer. So, term w(1,2,8) means weight value between second input neuron and
third neuron on first hidden layer.

In figure 7.12 evolution of much larger neural network is shown. This ANN has 20
neurons on its first hidden layer and 10 on second, we mark this neural network as
20:10. In charra.it.jyu.fi evolution of this network took 6 days and 12 hours. In con-
trast, the evolution of previous network took only 30 hours. This network reaches
almost the fitness of 18000 (best network on generation 100000 has fitness of 17905).

In figure 7.13 the age graph is shown. This differs strongly from smaller ANN’s age
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graph. Here the best network is very old, over 3000 generations all the time. More
detailed information can be found on table 7.6 where are some statistics of all neural
networks in last two generations listed. There can be seen that oldest network is not
necessarily the best one. The network with id -1504970559 is oldest but not the best.
Average age of strongest half of the population is also high. Descendants do not survive
in the contest of getting better fitness because only few times in 10000 generations new
neural network manages to reach fitness value enough to stay on living.
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Generation: 99999

Fitness | Parents | Born | Hops | ID

17651.0 | 104 99844 | 13 -941428707
17715.0 | 103 95684 | 12 2124936363
17725.0 | 104 67804 | 9 -1504970559
17744.0 | 102 84107 | 8 600025180
17753.0 | 103 97300 | 10 -63942598
17787.0 | 103 96959 | 6 -2070662978
17798.0 | 103 90849 | 10 1705618726
17807.0 | 102 70843 | 15 359425110
17816.0 | 104 99347 | 14 -646429487
17819.0 | 102 84450 | 12 -914979540
17858.0 | 103 91855 | 16 140784151
17912.0 | 104 88289 | 17 1710203044

Generation: 100000

Fitness | Parents ‘ Born ‘ Hops ‘ ID

17664.0 | 104 99844 | 15 -941428707
17738.0 | 102 84107 | 13 600025180
17739.0 | 102 70843 | 15 359425110
17770.0 | 103 97300 | 9 -63942598
17782.0 | 104 99347 | 18 -646429487
17821.0 | 103 96959 | 13 -2070662978
17831.0 | 102 84450 | 14 -914979540
17837.0 | 103 90849 | 11 1705618726
17872.0 | 104 88289 | 12 1710203044
17884.0 | 103 95684 | 14 2124936363
17897.0 | 104 67804 | 8 -1504970559
17905.0 | 103 91855 | 24 140784151

Table 7.6: Statistics of all NeuroSearch algorithms (20:10 neurons) on two last gener-
ations of evolution. The oldest networks are not necessarily the fittest. All networks

have similar amount of parents, little over 100.

Figure 7.14 shows how different amount of neurons on different input layers will
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Figure 7.12: Figure of the evolution of 20:10 neural network. Fitness is continuously
rising and reaches almost 18000.

affect the evolution of NeuroSearch. Small hops value means that algorithm behaves
as BF'S, it sends queries to many neighbors but stops sending after some time. Bigger
hops value means that NeuroSearch acts more like DFS, sending query only to few
neighbors but more frequently. Neural network 20:10 used 17.46 hops as an average
of 50 last generations. Same network used 24 hops in generation 100000. In contrast
that the previous neural network 5:0 used 6 hops, behavioring more like BF'S. Amount
of hops decreases significantly as amount of neurons increases over 20:10. This can
be explained by two ways. First, amount of generations has been too small for larger
neural networks. When increasing the size of the neural network it also needs more
training time. Another explanation is that too large neural network have more free
parameters that actually may decrease it’s performance [9, p.103|.

However, the best NeuroSearch algorithm in this thesis had 25:10 neurons and fit-
ness value (in last generation 100000) 18091.0. This algorithm used only 5 hops to
reach all resources. This leaves question whether BF'S or DF'S style algorithm is the
best one to solve resource discovery problem.

28



20:10 Neurons
35000 T

T
Best
Average -

30000

25000

20000

15000 W )

10000 ‘

)
M oy -
5000 L Ll
P Y P
A o 4

g I - -

o Vi [ T L
- v 7 by
ey Vo i

Age

P

o '
0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Generation

Figure 7.13: Age of the 20:10 neural networks. Neural networks in the population are
much older than those in population of 6 neurons neural networks.

7.6.3 Conclusion

Larger neural networks consume more computing time but also manages to reach better
fitness values. It is noticeable that fitness usually jumps powerfully up before genera-
tion 1000. This development of intelligence is purely random, it may happen at any
time, but it usually happens somewhere between generations 100 and 1000. Another
jump usually happens between fitness values 16000 and 18000 on random generation,
usually after generation 10000.

ANN with 20:10 neurons found new ways to solve resource discovery problem. It
used more hops but kept usage of packets still relatively small. Smaller and larger net-
works did not learn to use multiple hops. This may be caused by lack of generations in
training of larger than 20:10 ANNs. Smaller neural network are not capable of finding
any other than BFS stylish algorithms. ANN with 25:10 neurons could make better
fitness value with using only 5 hops. This raises question is it possible that BFS style
algorithm is the best one to solve this problem in this P2P-Network?
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Hops with different neuron amounts
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Hidden #2
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Figure 7.14: Different amount of neurons used in NeuroSearch. Total number of hops
used in last query is shown in z-axis and number of neurons in hidden layer 1 on x-axis
and hidden layer 2 on y-axis. ANN of 20:10 gets highest hops amount imitating DFS
algorithm. It is future work to figure out what happens if neuron amount in hidden
layer 2 increases e.g., will the hops drop. Values in this figure are counted as moving
average of 50 last generations. Neural network 20:10 has the highest value of 17.46
hops counted as moving average.
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Figure 7.15: Fitness for different amount of neurons. ANN 25:10 had the greatest
fitness value of 18053.62 calculated as moving average of 50 last generations. Hops
value for this network was only 6.58 and thus this algorithm is of BF'S style.
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8 Conclusion

8.1 Summary

In this thesis has been shown five different aspects of building resource query algo-
rithm using neural network, evolutionary programming and evolutionary strategies. In
general, NeuroSearch has been found promising search algorithm for P2P-networks,
intelligent routing uses less packets than BFS-stylish flooding algorithm. By choos-
ing specific set of inputs researcher may train differently behavioring NeuroSearch i.e.,
NeuroSearch may imitate any existent search algorithm or it may behavior as combi-
nation any of those.

Five tests in this work were initial population, neural network size, inputs, query
amounts and different target resource amounts. If initial population was set too small
the population could lost its best individuals but too large population would consume
computing time. It was found that 24 neural networks should be used as initial pop-
ulation. Amount of neurons in neural network has interesting results. Small neural
networks could not learn to solve problem properly and thus had low fitness values.
While size of the neural network was increased the amount of hops it used also in-
creased, thus algorithm was behavioring more like depth first search. However, after
20:10 neural network the amount of hops significantly dropped and larger neural net-
works started to act like breadth first search but got still very good fitness values. This
shows that intelligent BFS style search may be best solution to this problem (prob-
lem is different if amount of P2P-nodes increases). Inputs were also tested, alone and
by groups. Interesting results showed that some inputs had better performance alone
than grouped. This may be caused by overlapped information of the inputs. In query
amounts test was found that previouly used 50 queries / fitness was too much for re-
solving valid fitness value. Instead, 10 queries was found to be enough. In resource
amounts test different search algorithms performances were measured. Steiner algo-
rithm using global knowledge was no doubt the most efficient. HDS and NeuroSearch
came second while BF'S managed poorly when amount of target resources increased.
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8.2 Future

More input values need to be found and used e.g., random value, P2P-Networks heuris-
tic inputs, output value as next peer’s input value, neighbor amount as next peer,s input
value and history based inputs e.g., number of received replies etc. Input that is 1 if
this node has sent query further. With this input NeuroSearch may send message only
to one neighbor in the beginning thus imitating DFS. Also input that would tell how
many neighbor’s neighbors are free ones (if more than one node is grey node, if none
node is black node) should be tested as well as decisionsLeft i.e., how many neighbors
node has unresolved and forwardedDecisions i.e., to how many of the resolved neigh-
bors has been sent the query.

Neural network could be taught to modify its architecture e.g., neuron amounts and
links between neurons. This could speed up the calculations (if same result is got with
fewer amount of neurons or weights).

Is it possible to evaluate dynamic populations? Evaluation would start with 2 neu-
ral networks but the process would rise the population amount. After it would reach
some state of balance it just listens certain events for optimizing population amount
by dropping or rising new networks.

How about to count moving average value to the NEW descendants also. This means
that every descendant need to be tested as many times as needed and after that the
average value is calculated. In the present system at start of the new generation all
nets are tested to get fitness. Average value can be calculated from older networks but
new networks have only one value to count on. This problem is solved by testing the
new networks so many times that counting the average value is possible. Of course the
backside is that processing time will be many times larger.

Determine the probability of different amount of population to lose its best network
on specific amount of generations e.g., how many generations should run on 30 neural

networks that probability to loose best network grows to one percent?

Output of the neural network could be used as probability to send query further.
Little research has been on using probability output but more work is still needed.
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NeuroSearch Neural Network

Weight and Scaling values for 6 neuron neural network

‘ Weight value ‘ Scaling value
w(1,1,1) : 0.8 s(1,1,1) : 9.3F — 18
w(1,1,2) : 0.2 s(1,1,2) : 2.7E — 19
w(1,1,3) : 0.2 s(1,1,3) : 1.1E — 28
w(l,1,4) : —9.3 s(1,1,4) : 0.001
w(1,1,5) : 0.9 s(1,1,5) : 1.6E — 21
w(1,2,1) : 6.5E26 s(1,2,1) : 5.9E21
w(1,2,2) : —3.6E7 | 5(1,2,2) : 1.8E — 25
w(1,2,3) : —2.8622 | 5(1,2,3) : 3.7E — 5
w(1,2,4) : ~2.5F19 | 5(1,2,4) : 1.04E — 6
w(1,2,5) : —1.3E33 | s(1,2,5) : 1.1E11
w(1,3,1) : 8.0E16 | s(1,3,1) : 5.4E14
w(1,3,2) : —5.9E10 | s(1,3,2) : 4.4E — 10
w(1,3,3) : 3.4E9 5(1,3,3) : 4.9E — 21
w(1,3,4) : —1.5E57 s(1,3,4) : 7.2E45
w(1,3,5) : —14226.8 | s(1,3,5) : 8.8 — 50
w(l,4,1) : —18.4 s(1,4,1) : 3.5E — 36
w(l,4,2) : —281276.5 | s(1,4,2) : 7.2E — 10
w(l,4,3) : —7954.8 s(1,4,3) : 2.7E — 23
w(l,4,4) : 171342.0 s(1,4,4) : 71E - 13
w(l,4,5) : ~2.1E13 | s(1,4,5) : 317358.6
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Weight value Scaling value

w(1,5,1) : 400.3 5(1,5,1) : 0.1
w(l,5,2) : —0.4 5(1,5,2) : 1.3E — 20
w(1,5,3) : 0.1 5(1,5,3) : 3.0E — 35
w(1,5,4) : 1.9 5(1,5,4) : 3.3E — 10
w(1,5,5) : —1.5 5(1,5,5) : 3.3 — 42
w(1,6,1) : 0.01 5(1,6,1) : 4.6 — 24
w(1,6,2) : —2.4FE13 | s(1,6,2) : 14191.7
w(1,6,3) : —1.2E10 | s(1,6,3) : 1.3E7
w(1,6,4) : 1.4E9 s(1,6,4) : 13271.2
w(1,6,5) : —0.3 s(1,6,5) : L.7E — 26
w(1,7,1) : —0.5 s(1,7,1) : 2.3E — 14
w(1,7,2) : 0.01 5(1,7,2) : 1.3E — 40
w(1,7,3) : 0.4 s(1,7,3) : 4.8E — 13
w(l1,7,4) : 0.6 s(1,7,4) : 1.9E — 46
w(1,7,5) : —0.1 s(1,7,5) : 1.6E — 38
w(2,1,1) : 6.9E18 | s(2,1,1) : 0.1
w(2,2,1) : —3.1E10 | 5(2,2,1) : 0.1E — 11
w(2,3,1): —2.6E14 | 5(2,3,1) : 2.9E — 9
w(2,4,1) : —1.2E17 | 5(2,4,1) : 3.7TE9
w(2,5,1) : 3.1E55 s(2,5,1) : 1.1E35
w(2,6,1) : 1.3E8 s(2,6,1) : 1.3E8
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