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Abstract

Discovery of distributed resources is an essential problem in peer-to-peer (P2P)
networks since there is no centralized index where to look for information about
resources. One solution for the problem is to use a search algorithm that locates
resources based on the local information about the network. Traditionally, the search
algorithms have been designed to be based on few rules and designed completely by
humans. The problem with these algorithms is that if the conditions like resource
distribution and topology in the network change the algorithm becomes less efficient
and won’t have the flexibility to adapt to the new environment.

In this paper we describe the results of a process where evolutionary neural net-
works are used for finding an efficient search algorithm. By using this process we are
able to define the network conditions and the quality of the search algorithm before-
hand as an optimization problem and solve it computationally. As an end product
we get a search algorithm that has adapted to the predefined conditions. The test
results indicate that the approach is feasible and that an evolutionary optimiza-
tion process can produce candidates that are competent compared to breadth-first
search algorithm used in peer-to-peer networks.
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1 Introduction

In the resource discovery problem any node in the network can possess re-
sources and also query these resources from other nodes. The problem consists
of graph with nodes, links and resources. Resources are identified by IDs and
nodes may contain any number of resources. Also there can be duplicates of
the same resource in different nodes. Any node in the graph can start a query
which means that some of the links in the graph are traversed based on a local
decision and whenever the query reaches the node with the queried 1D, the
node replies.

One solution for the resource discovery problem is the breadth-first search al-
gorithm (BFS) [1] used in Gnutella peer-to-peer (P2P) protocol [2]. In BFS a
node starts a query by sending the query to all its neighbors. When the neigh-
bors receive the query, they send it further to all their neighbors except the
one from which the query was received. Also, if the query has already arrived
to the node earlier it is not sent further anymore. The algorithm ensures that
if a resource is located in the network it can also be found from the network.
Also, BFS has low latency because it locates the shortest path between the
query originator and the resources. The drawback of the algorithm, however,
is that it uses lots of query packets to find a specific resource thus making the
network prone to congestion.

Resource discovery is multi-dimensional problem affected by the spatial distri-
bution of resources, the network topology and the location of query originators.
Also the quality of the search algorithm e.g., the number of results that needs
to be located is heavily dependant on what kind of a resource is being queried.
In some scenarios finding only one instance of a resource is sufficient when in
other cases all instances of a resource might be needed for the query to be
successful. Also in certain scenarios it might be beneficial for the search al-
gorithm to locate only shortest paths to resources, but in presence of failures
a better search strategy would be to use multiple paths to find the resources
adding even more dimensions to the problem. When the number of dimensions
increase the problem becomes complex and makes it increasingly difficult for
the algorithm designer to take all the relevant aspects into account.

Fortunately, there are ways to cope with complex problems. Evolutionary com-
puting and neural networks have become common in information technology
to solve complex problems by approximating optimal solutions. Feedforward
neural network [3] (also called as Multi-Layer Perceptron, MLP) is known as
one example of an algorithm structure that can be used to find a solution
to complex problems. In particular the property that MLPs are universal ap-
proximators [4] makes them interesting. Universal approximation means that
if the algorithm structure is properly taught neural network can learn to map



any function that is given as a training data correctly to output values. In re-
source discovery problem this function is the decision on which kind of input
values the query should proceed to the neighboring node and on which kind
of input values the querying should be stopped. Input values can be based for
example on how many hops the query has travelled, how good the neighbor
is at locating resources, in which kind of a node the query is currently being
processed etc.

Neural network consists of weights and activation functions that needs to be
tuned correctly before it can be used to calculate the output. In the case of
resource discovery the right output values are not known beforehand, so the
training process has to give feedback based on how well the neural network
was able to locate resources. This can be done, for example, by counting the
number of packets the algorithm used and the number of results the algorithm
was able to retrieve for multiple queries.

Evolutionary algorithms [3] (such as genetic algorithm) use a process where
initial population is instantiated as candidate solutions and then refined in
forthcoming generations using mutation and crossover. Traditionally crossover
has been the fundamental part of the variation algorithm, but in recent years
also approaches that rely only on mutation operator has been used [5]. For
neural network to be efficient the optimization method also needs to be able
to avoid local maximums and provide ways for locating the global maximum
of the fitness space. This can be achieved using only mutation operator if the
variation range for mutation can evolve between each generation. Because of
the variation sometimes the search makes huge leaps to different positions in
the solution space thus avoiding to be stuck only in a local maximum.

The algorithm presented in this paper combines neural networks and evolu-
tion together forming a solution to resource discovery problem. This kind of
a problem is present in P2P networks [6] where the location of a particular
resource is not known beforehand. P2P networks are self-organizing decentral-
ized systems having attended a lot of research activity in recent years. P2P
networks exhibit dynamic and complex behavior when peers autonomously
connect to each other and search resources using the topology they have con-
structed. Our approach takes advantage of this complex behavior by allowing
neural network to adapt its function to estimate the optimal search algorithm
in given network conditions.

The rest of this paper is organized as follows. The next section presents the
references to related work done in P2P resource discovery. Section 3 describes
NeuroSearch algorithm as a solution for the resource discovery problem. Sec-
tion 4 describes the optimization process and Section 5 the test case used in
the study. Section 6 analyzes the simulation results and in Section 7 the paper
is concluded.



2 Related Work

A lot of research has been done regarding the resource discovery problem.
Adamic et al. [7] and Kim et al. [8] propose a search strategy that utilizes
the topological properties of a power-law network. The search strategy first
proceeds towards highest-degree node e.g. the node that has the highest num-
ber of neighbors and then gradually moves to lower degree ones. Algorithm
locates resources fast if they can be found from the network core, but the
performance decreases when the central nodes are revisited in search for lower
degree nodes.

Lv et al. [9] evaluate BFS, expanding ring and random walk search mech-
anisms with varying topologies including random graphs, power-law graphs
and a snapshot of Gnutella network as obtained in October 2000. The authors
find that BFS is not scalable and in particular on Gnutella and power-law
graphs the effects of flooding are disastrous: the number of messages increases
drastically when time-to-live is increased. Expanding ring where time-to-live
is extended gradually for BFS is the first aid to the problem but because it
forwards duplicate messages to the nodes that the query has already reached,
a better solution to the problem using random walkers is proposed. Search
initiates multiple walkers and forwards them based on random selection of
neighbor. In addition to the time-to-live value as a termination condition for
the walkers, Lv et al. use checking where the random walkers periodically
check from the query originator whether walker should be terminated or not.
While random walkers increase the number of hops and thus latency needed
for the query, they decrease the total traffic because the search proceeds in
depth-first manner.

Kalogeraki et al. [10] consider two search algorithms for the resource discovery
problem. Modified Random BFS Search behaves like BFS, but the neighbors
select only a random subset of neighbors for forwarding the query. This prop-
erty reduces traffic, but adjusting the correct size of the subset for different
networks may be difficult. Their work uses a random graph in which all the
nodes have approximately similar degrees. Thus the performance of the al-
gorithm in power-law graphs cannot be directly determined from the results.
An another algorithm they present is called Intelligent Search Mechanism in
which nodes keep track of recent query results provided by their neighbors.
When a new query arrives the neighbors are sorted based on the similarity of
the query to earlier replies from the neighbor. Because the nodes keep track of
the earlier queries the performance of the algorithm improves as the network
evolves.

Yang and Garcia-Molina [11] experiment with many types of directed search
strategies based on different heuristics. These heuristics include the number of



results returned, shortest average time to satisfaction, smallest average number
of hops of received results, the highest number of results returned, shortest
message queue, shortest latency and highest degree. The authors’ suggest that
for minimizing the time to satisfaction measure the best strategy is to pass the
query to the neighbor that has had the shortest average time to satisfaction
for last 10 queries. Also, when considering the bandwidth use most reliable
measure is the smallest average number of hops of received results for last 10
queries. The heuristics used in the study are based on history data collected
locally in each node.

Similar use of history information is found from the work by Tsoumakos and
Roussopoulos [12,13]. In authors’ proposal, Adaptive Probabilistic Search al-
gorithm, neighbors keep track of the success rates of earlier queries and forward
random walkers probabilistically based on the success rate. The algorithm is
able to adapt to different query patterns and, therefore, performs better than
random walkers.

There are certain limitations in all the approaches described above. First, all
the algorithms use some control parameters (for example time-to-live, number
of walkers or the proportion of neighbors to forward the query) that can be
used to tune the algorithm. For a search algorithm, the number of control
parameters should be kept as minimal as possible to allow zero configurability
when applied to a real environment. Second, while some of these approaches
have mechanisms to adapt to the environment they do not utilize the whole
potential of the environment because they rely only on one strategy (for ex-
ample the similarity of the query and earlier replies, shortest average time to
satisfaction for last 10 queries or the success rate of earlier queries). In general,
only one strategy cannot be efficient in all scenarios and therefore an efficient
algorithm should be able to utilize many strategies at the same time.

To overcome these limitations a neural network based resource discovery al-
gorithm called NeuroSearch was designed. NeuroSearch learns by itself the
correct behavior in given network conditions and uses multiple strategies to
locate resources. To authors’ knowledge this is the first time when neural
networks are being applied to resource discovery problem.

3 Neural Network Search Algorithm - NeuroSearch

NeuroSearch is an adaptive resource discovery algorithm that makes decision
to whom of the node’s neighbors the resource request message is forwarded.
The decision is based on the output neuron of 3-layer perceptron neural net-
work. The algorithm goes through all the node’s neighbors (denoted as re-
ceivers) one by one and calculates the neural network output determining
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Fig. 1. Processing of NeuroSearch resource query and the NeuroSearch neural net-
work.

which receivers will receive the query. This process is illustrated in Figure 1.
If the query locates a matching resource in the node, reply message is for-
warded back to the query originator via the path that the query has travelled.
If the query has already been processed by the node the resource reply will
not be sent.

The algorithm uses multiple input parameters for the neural network:

e Bias = 1 is the bias term.

e Hops is the number of hops in the message.

e NeighborsOrder tells in which neighbor rank index this receiver is compared
to other receivers. The receiver with the best rank has value of 0.

e Neighbors is the number of the receiver’s neighbors.

e MyNeighbors is the number of node’s neighbors.

e Sent has value 1 if the message has already been forwarded to the receiver
using this link. Otherwise it has value of 0.

e Received has value 1 if the message has been received earlier, else it has
value of 0.



Hops and NeighborsOrder are scaled with the function f(x) = m+r1’ and Neigh-
bors and MyNeighbors with f(z) = 1 — % before giving them to the neural
network. Scaling is performed to ensure that all the inputs are between 0 and
1 and that the input values close to 1 (other than Sent and Received) are

supposed to represent higher probability for the query to be forwarded.

There are two hidden layers in the neural network. In the first hidden layer
there are 15 nodes + bias and in the second 3 + bias. Tanh is used as an
activation function in the hidden layers:
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The activation function in the output node is the threshold function:

0,z <0
s(a) =

Lz>0

If output is 1, the message is forwarded to the receiver, otherwise it is dropped.

4 Neural Network Optimization Process using Gaussian Random
Variation

In this section we define the optimization process for adjusting the correct
weight values for the neural network. To find the appropriate weights we use
methods of evolutionary computing [3] and a neural network population. The
feedback, which guides the optimization process is obtained by counting the
packets sent in the network and replies received.

The fitness for neural networks is defined in two parts. Each query j is scored
for each neural network h and the fitness is calculated by summing up all the
scores after n queries:

n
fitness, = Z score;.
7j=1
The score value is defined with the following rules:

(1) If replies > availableﬁiesources then score = 50 x availableResources _

packets: when half of the available resource instances are found from the



network, the fitness value does not grow if neural network locates more
resources. ,

(2) If replies < avazlableg%esources and replies > 0 then score = 50 x replies—
packets: if the number of found resources is not enough then the neural
network develops if it locates more resources.

(3) If replies = 0 then score = 1 — m: if none of the resources are

found then the neural network should increase the number of packets sent
to the network.

(4) If packets > 300 then score = 0: an algorithm that eventually stops is
always better than algorithm that does not.

In the equations available Resources is the maximum number of resources that
can be located in the query, replies is the amount of replies that the neural
network was able to locate for the query and packets is the amount of packets
that the neural network used for the query. The constant value 50 was selected
to be large enough to guide the training process towards neural networks that
benefit of locating resources. Another constant value, 300 was set as a criteria
when neural network is considered to forward the query infinitely.

The optimization process has an initial neural network population whose
weights are randomly defined. Every neural network is tested in P2P sim-
ulation environment using multiple queries and the fitness value is calculated.
When all neural networks have been tested the best half of them are selected
for mutation and used to breed the new generation. As a result, the initial
number of neural networks are available for testing the new generation. After
a selected number of generations, the optimization process is stopped.

Mutating neural network means that the values of the weights are slightly
changed from the original. This is done by random variation using normal
distribution (also called as Gaussian distribution) [14]. The variation is similar
to the one used by David Fogel and Kumar Chellapilla in their research [15-
17] in which scaling factor is used for each weight. Scaling factor is assumed
to improve the adaptability of the evolutionary search. The random variation
function is given as:

0i(j) = 0i§)exp(TN;(0,1)),5 = 1,..., Ny (1)

w;(7) = wi(4) + oi()N;(0,1),j =1, ..., Ny (2)

where N, is the total number of weights and bias terms in the neural network,
= m, N;(0,1) is a standard Gaussian random variable resampled
for every j, o is the self-adaptive parameter vector for defining the step size

for finding the new weight and w(j) is the new weight value.



5 Test Case

As a simulation environment we use P2P network simulator that we have
developed. The simulator can be used to simulate the behavior of a static
peer-to-peer network and to train neural networks using Gaussian random
variation.

For the test case topologies power-law graphs were generated using the Barabasi-
Albert model [18,19]. Power-law networks’ neighbor distribution follows the

power-curve P(k) = -, where y for Barabasi-Albert graph is 3. In power-law
networks there exists few hubs in the network that have many neighbors and
lots of nodes that have only few links. Power-law graph was selected because
some existing P2P networks have shown to express power-law dependencies
[20]. The graphs being tested contained 100 nodes with the highest degree

node having 25 neighbors.

The test case data was divided in three different data sets as described in
[3]: training set, generalization set and validation set. Training set contained
two power-law topologies with both being queried 50 times per generation
for each neural network. Two topologies were used to have neural networks
adapt to wider range of situations than one topology would have provided.
Generalization set consisted of two power-law topologies with 50 queries and
it was used to measure the point in which the neural network loses its ability to
generalize. The neural network having highest fitness at that point was selected
and as a validation set one topology with 100 queries was used to produce the
final simulation results. This ensured that neural network’s performance was
being tested in new environment and thus measured the true generalization
ability of the best neural network.

For each topology resource instances were allocated based on the number of
neighbors each node has. There were 25 different resources in the test case
and the number of different resources in a node was the same as the number
of neighbors the node had. This means that the largest hub had one copy of
all resources and the lower degree nodes only some of these randomly chosen
from uniform distribution.

The queried resource and querying node were selected randomly for each query.
All the nodes had equal probability to be query originators (randomly sampled
from uniform distribution). The probability for a resource i to be selected
from all resources as next queried resource was P(i) = EE—; where n is the total
number of resources. This means that we had a test case where more common
resources were queried more often and that the query originators changed
every generation. This ensured that neural networks had to adapt to many
different query distribution patterns.
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Fig. 2. Evolution of the best neural networks in each generation for training and
generalization sets.

30 neural networks were used in the test case and 15 neural networks selected
after each generation for next round. 15 new offsprings were created by using
variation equations 1 and 2 for computing the new neural network weights.
As a stopping criteria for the optimization process, 100.000 generations was
set. which seemed to be taking approximately two weeks on our desktop PC
equipped with AMD Athlon XP 1800 processor. The evolution of best neural
network in each generation is shown in Figure 2.

6 Simulation Results and Analysis

To evaluate the difference between BF'S and NeuroSearch we selected the best
algorithm at 85.736th generation and calculated the number of packets used
and received replies for 100 different queries in a similar environment as where
NeuroSearch was trained. 85.736th generation was selected because between
80.000 and 90.000 generations the best neural network had achieved steadily
good results and in particularly at 85.736th generation the performance was
highest. The results are presented in Figures 3, 4 and 5.

The results of Figure 3 show that the performance of NeuroSearch in num-
ber of packets is nearer to BFS with time-to-live value 2 than 3. In average
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Fig. 3. Packets used by the algorithms.

NeuroSearch consumes 47.1 packets per query whereas BFS with TTL 2 con-
sumes 30.0 and BF'S with TTL 3 124.6 packets. The reason why there is some
variation in the number of packets for successive BFS queries is that the dis-
tance where packets will be delivered depends on which node is querying. If
the query starts from a central node (nodes 0-10) it will produce more packets
than the same query started from an edge node (nodes 90-99) because the edge
query has fewer connections where BFS can spread. In case of NeuroSearch
the performance is stable and does not depend on what node is querying.

Figure 4 shows how many replies the algorithms are able to locate. Neu-
roSearch’s performance in terms of located resources is quite similar to BF'S
with TTL 2 at central nodes but better in edge nodes. Compared to BFS with
TTL 3 the performance of NeuroSearch is constantly lower reaching only at
some edge nodes the same performance level. The reason why NeuroSearch
is satisfied with this level of performance is that it has already reached the
goal of finding half of available resources as defined in the fitness function and
locating more resources would not be beneficial in its evolution.

To further analyze the performance difference of NeuroSearch and BFS algo-
rithms we computed the ratio between number of replies received and number
of packets used resembling the efficiency of the algorithms. These results are
shown in Table 1.

The results show that NeuroSearch’s efficiency is at the same level than BFS-
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Fig. 4. Replies located by the algorithms.

Algorithm Replies to Packets ratio
BFS-2 0.2063
BFS-3 0.1063
NeuroSearch 0.2040

Table 1

Replies to Packets ratio for BFS-2, BFS-3 and NeuroSearch

2 locating a new resource every 5th packet. BFS-3 locates a new resource
approximately every 9th packet. Efficiency is easier to keep high when locating
only few resources because usually those can be found from the central nodes
alone. When the number of needed resources increases it becomes harder to
locate more resources because then query has to travel more to the edges.
Therefore the efficiency of BFS-3 decreases significantly.

For each query NeuroSearch locates approximately half of the resources which
can be seen from Figure 5. There are 8 queries in which NeuroSearch misses
the target to locate half of the resources. This variation results from the differ-
ence between the training set and the validation set datas. We verified that in
queries 26 and 76 the queried resource was the same indicating that the par-
ticular resource being queried is harder to find than others for NeuroSearch.
Still, however, the results indicate that optimization process has found an al-
gorithm that is able to locate near half of the resources from the network with

12
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high probability.

We analyzed the behavior of the best evolved neural network by tracking
the path used by the queries. For searching in power-law graphs it has been
suggested that a good strategy to locate resources is to first send the query
to highest degree nodes and then gradually lower the degree when searching
proceeds [7,8]. This ensures that if resources are likely to be found from the
network’s core the query finds them early in the search process.

However, the path NeuroSearch uses is not completely similar. NeuroSearch
seems to prefer central nodes early in the query like expected, but after reach-
ing the central nodes the spreading is stopped. The maximum number of hops
is 5. This ensures that the central nodes are not revisited for the same query.
Also at the beginning of query most of the neighbors will be used for querying
ensuring that the query reaches the central nodes more likely than one depth-
first search direction would. As a verification for this the behavior of a typical
NeuroSearch query started from an edge node is illustrated in Figure 6.

13



Fig. 6. Typical NeuroSearch resource query.

7 Conclusion

We have showed that a properly designed neural network can find a good
search algorithm using simple optimization method. NeuroSearch algorithm
takes into account the special characteristics of its environment and automati-
cally adapts to different kind of P2P networks. At the same time the algorithm
leaves out a behavior that is not beneficial to its evolution therefore making
the algorithm robust to design errors. Also, since the process does not need
human intervention after the input neurons have been defined the resulting
algorithm is not limited to the designer’s own ideas but only to the limitations
of neural network’s structure and its input neurons.

The behavior of the best evolved neural network was analyzed showing that
the algorithm retains the effectiveness of BFS-2 and outperforms BFS-3. Also
the algorithm provides a fine-grain control over the defined quality of search
results and maintains a steady level of performance independent from the
location where query is initiated. The analysis also showed some contradiction
with the current research literature on searching in power-law networks and
whether these results can be generalized to searching in all kinds of power-law
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networks will be a topic for further research.

While NeuroSearch performs well compared to BFS it is by no means yet de-
signed to be optimal. For example, NeuroSearch does not yet include history-
based inputs even though they would significantly improve the performance.
Therefore, the research results obtained in [10-13] will be considered in forth-
coming research on NeuroSearch. Also, there are other directions that were
left out of this research. First, we are studying what improvements to the per-
formance would be gained by varying the neural network’s internal structure.
Second, we are aiming to find out what are the scalability factors of Neu-
roSearch when the network size grows and third we are developing an optimal
resource discovery algorithm using global knowledge to be able to measure the
best efficiency a resource discovery algorithm can achieve. Also we are working
on a solution to speed up the optimization process using parallel distributed
computing and hybrid optimization method, which helps us determine more
accurately what is the global performance maximum of NeuroSearch.
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