Peer-to-Peer Replication

Matthieu Weber
September 13, 2002

Contents
1 Introduction 1
2 Database Replication 2
2.1 Synchronous Replication 2
2.2 Asynchronous Replication 2
2.3 Conflict Avoidance, Detection and Resolution 3
3 Peer-to-Peer Systems 3
3.1 Peer-to-Peer File Sharing Systems 4
4 Peer-to-peer Database Replication 4
4.1 Quorum Calculation 4
4.2 Non-Unitary Weighting 5
5 Peer-to-Peer File Replication 5
6 Conclusion 6

1 Introduction

Research on the W.W.W. about peer-to-peer replication have given two kind
of results:

e replication of databases in a peer-to-peer way,

e data replication in an unstructured peer-to-peer network.

The two approaches, if leading to the same results (i.e. data is replicated
on different nodes of a network), are rather different. Database replication
aims to replicate data along with its metadata (e.g. a phone number and the
fact that this piece of data is a phone number and it belongs to Mr Jones)
across a well-known set of database in a controlled environment, whereas
peer-to-peer network allow the users to share (i.e. allow other users to copy,
therefore replicate) files without much checking about metadata, with who-
ever wants to copy the files. The consequence is that data is replicated, but
the user might get the recipe of pea soup instead of the phone number of Mr
Jones, due to inconsistency in metadata.

2 Database Replication

The fundamental issue in data replication is maintaining data integrity in
across multiple database images. Two primary solutions exist, synchronous
and asynchronous replication[1].

2.1 Synchronous Replication

Synchronous replication requires that every image of the database be writ-
ten at once. Data integrity is maintained in traditional database solutions
with a two-phase commit within a transaction that accesses every image
of the database element to be written, and processes only when every im-
age is available for update. In traditional database solutions, synchronous
replication eliminates the distinction between master/slave and peer-to-peer
configurations.

However, traditional synchronous solutions are vulnerable to system fail-
ure. If one image of the database is unavailable due to server failure, the
transaction is prevented from completing.

While synchronous replication assures data integrity, it does it so at the
expense of availability. System availability is greatly reduced with syn-
chronous replication if the links between the database images are fragile.
This vulnerability to network failures also prevents synchronously replicated
database servers from being geographically distributed, leaving them vulner-
able to location specific disasters, like earthquakes.

2.2 Asynchronous Replication

Asynchronous data replication provides two benefits, improved read perfor-
mance and continuous availability. The failure of a particular server does not

generally affect the operation of he other servers, but does force more work
to be done in the application to maintain data integrity.

When changes are made, a single image of the database is updated, and
then the changes are propagated to the remaining images. The two popular
mechanisms for propagating changes to the other databases images are em-
bedded triggers and passing change logs. Triggers are implemented inside the
database and add to the overhead associated with performing transactions
in the database. Passing change logs also increases network overhead during
the replication of the update, but is less intrusive on the local database.

Asynchronous replication also allows database images to be isolated ge-
ographically, since each site has its own version of the data. This fact is
of growing importance, since more and more e-commerce companies grow
overseas, and need to provide access points (i.e. the company’s web page)
in different countries, thus allowing efficient and uninterrupted access to the
company’s database, which can be greatly improved with the help of peer-
to-peer database replication|12].

2.3 Conflict Avoidance, Detection and Resolution

Conflict resolution is required when two images if the same database are
updated at the same time, without knowledge of the other image.

The simplest solution for this type of conflict is to have the applica-
tion avoid such conflict by ensuring that each data element belongs to one
database image or another. This forces a master/slave relationship between
database images.

Once the conflict exists, traditional databases provide mechanisms to de-
tect and resolve them. Conflict resolution algorithms assign priorities to
the conflicting updates based on update requester status (master or slave),
timestamps, or some type of application dependent algorithm.

3 Peer-to-Peer Systems

Peer-to-peer networks are born because of the need to share files among
users, which didn’t have the possibility to publish their files in the traditional
client/server way. Typically, peer-to-peer network users have huge amounts
of files, that cannot be fit on public shared servers (like for example free
web hosting services). The idea of peer-to-peer computing is that each user
becomes at the same time server and client, thus having an equal role than
other users.

This paradigm can be extended to whatever interaction where all the
protagonists have the same rank. There is no notion anymore of master /slave
or client/server.

3.1 Peer-to-Peer File Sharing Systems

The main problem in peer-to-peer file sharing network is the advertisement
of shared files. It has been solved first with the help of a central index
(Napster|9]). This structure has proved to be easy to tear down, since each
node of the network depends on the index, which is a potential point of
failure. Other index-based solutions exist, using multiple indexes loosely
replicated (eDonkey[10], FastTrack[11]). Another solution has been to build
a completely distributed network. This kind of peer-to-peer network might
be either strongly structured (Chord|6], CAN|5], Past|7], Tapestry|8]) loosely
structured (Freenet|3|) or unstructured (Gnutella[4]).

Unstructured peer-to-peer network don’t rely on any central index for
searching. The nodes instead send search queries and ask who owns the file
one is looking for. Structured network additionally rely on their implicit
structure to make the search faster.

4 Peer-to-peer Database Replication

In Objectivity /DB[1], peer-to-peer replication is achieved as follows: multiple
database images are set up, and a a transaction is completed only when
enough images are available to form a quorum.

4.1 Quorum Calculation

The number of database images required to complete a transaction is calcu-
lated implicitly at runtime. This is called the “quorum calculation”. Simply
put, the database images vote and the majority wins.

When a database image is accessed, and a lock is implicitly requested as
part of that access, the application process running on the local computer
contacts each lock server to determine which database images are available to
vote. If a majority of the images of a database is available, called a “quorum?”,
the access is permitted.

The images which are not available, for whatever reason, will be auto-
matically resynchronized when they come back on line.

4.2 Non-Unitary Weighting

There are many replication scenarios in which some database images require
special access or ownership of particular data, regardless of server or network
failures elsewhere in the system. This is addressed by assigning voting weights
to each database image.

A master /slave configuration can thus be achieved by granting the master
more weight than the sum of the weights of the slaves. Thus the master must
always be on line in order to have a quorum of available images.

5 Peer-to-Peer File Replication

Peer-to-peer file sharing systems don’t provide, nowadays, any version control
system nor fail-proof data identification system through the use of metadata.
The consequence is that data replication in peer-to-peer networks is done at
file level and is not very useful for a completely automated system: conflict
resolution is entirely left to the users. Today’s peer-to-peer file sharing sys-
tems allow only to replicate pieces of data, not to manage update, different
versions nor concurrent write access to the data.

Whereas data in a database is well organized, distributed peer-to-peer file
sharing systems are completely chaotic. File replication is usually done only
when a user is requesting it, therefore creating a distinction between popular
files (files which are often requested) and unwanted files. Because there is no
index of all available data, searching is required before copying a file.

The performance of searching data depends greatly on how much that
piece of data has been replicated in the network|2|. Various file sharing
systems have different policies: in Gnutella4], a file is replicated when the
requester node gets a copy of it; in Freenet|3], a file is proactively replicated
at node which have note explicitly requested the file, but which are involved
in the retrieval process.

In[2] are compared three replication strategies:

e Uniform replication, for which a fixed number of copies is made for
each file,

e Proportional replication, where a fixed number of copies is made after
each request of a file,

e Square-Root replication, for which the number of copies made is propor-
tional to the number of probes which have been made when searching
for the file, once the file has been found.

The Square-Root replication is proved as the most efficient one. It is,
however, the most difficult to implement.

6 Conclusion

Data replication in a database environment and in a file sharing system is
rather different, although the final goal is to make a copy of some data.
Whereas the constraints on database replication are rather strong (control
over the number of nodes, their behavior, consistency of data regarding meta-
data), they are rather loose in file sharing systems, which allow a greater
freedom of behavior, at the cost of numerous organizational problems.

Given the little amount of information found on the Internet about peer-
to-peer database replication, this technology seems not yet ready to be sold
to customers.

References

[1] Data Replication in Objectivity/DB — An Objectivity, Inc White Paper.
Objectivity, Inc. 2001.

[2] Qin Lv, Pei Cao, Edith Cohen, Kai Li and Scott Shenker. Search and
Replication in Unstructerd Peer-to-Peer Networks.

[3] Tan Clarke. A Distributed Decentralised Information Storage and Retrieval
System. Master’s Thesis, Division of Informatics, University of Edin-
burgh, 1999.

[4] Open Source Community. Gnutella. In http://gnutella.wego.com, 2001.

[5] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp and
Scott Shenker. A scalable content addressable network. In Proceedings of
SOSP’01, 2001.

[6] Ton Stoica, Robert Morris, David Karger, Frans Kaashoek and Hari Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service for Internet ap-
plications. In Proceedings of SIGCOMM’2001, August 2001.

[7] A. Rowstron and P. Druschel. Storage management and caching in past,
a large-scale, persistent peer-to-peer storage wutility. In Proceedings of

SOSP’01, 2001.

[8] Ben Y. Zhao, john Kubiatowicz and Anthony Joseph. Tapestry: An in-
frastructure for fault-tolerant wide-area location and routing. Technical
report UCB/CSD-01-1141, University of California at Berkeley, Com-
puter Science Department, 2001.

9] In http://www.napster.com.
[10] In http://www.edonkey2000.com.
[11] In http://www.fasttrack.com.

[12] Michael C. Morrison The Growing Importance of Peer-to-Peer Replica-
tion In DM Direct, September 2001.

