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Resource discovery is an essential problem in peer-to-peer net-
works since there is no centralized index where to look for infor-
mation about resources. One solution for the problem is to use a 
search algorithm that locates resources based on the local knowl-
edge about the network. Traditionally, these search algorithms 
have been based on few predetermined rules. The problem with 
these algorithms is that if the conditions in the network change the 
algorithm becomes less efficient and won't adapt to the new envi-
ronment. In this paper, we describe the results of a process where 
evolutionary neural networks are used for finding an efficient 
search algorithm. The initial test results indicate that an evolution-
ary optimization process can produce search algorithm candidates 
that are more efficient compared to breadth-first search algorithm 
(BFS) used in Gnutella peer-to-peer network. 

Introduction: In the resource discovery problem any node 
can possess resources and query these resources from 
other nodes in the network. The problem consists of 
graph with nodes, links and resources. Resources are 
identified by IDs and nodes can contain any number of 
resources. One node knows only the resources it is cur-
rently hosting. A node in the graph can start a query 
which means that some of the links are traversed based on 
a local decision in the graph and whenever the query 
reaches the node with the queried ID, the node replies. 

One possible solution for the resource discovery prob-
lem is the breadth-first search algorithm (BFS) [1]. In the 
BFS approach a node that starts a query passes the query 
to all its neighbors. When the neighbors receive the 
query, they pass it further to all their neighbors except the 
one from which the query was received. 

The BFS algorithm ensures that if a resource is lo-
cated in the network it can also be found from the net-
work. The downside of the algorithm, however, is that it 
uses lots of query packets to find the needed resources. 
Thus, we propose an alternative algorithm that is more 
efficient in face of used packets. 
The algorithm: The proposed algorithm, called as Neu-
roSearch, makes decision to whom of the node's 
neighbors the resource request message is forwarded 
based on the output neuron of 3-layer perceptron neural 
network. 

When a resource request arrives to the algorithm it 
goes through all the node's neighbor connections one by 
one with the neural network. The input parameters for the 
neural network are: 

• Bias is the bias term. 
• Hops is the number of the hops in the message. 
• NeighborsOrder tells in which rank this connec-

tion is in terms of number of neighbors compared 
to others. The connection with best rank has the 
value of 0. 

• Neighbors is the number of the connection's 
neighbors. 

• MyNeighbors is the number of node's neighbors. 
• Sent has value 1 if the message has already been 

forwarded to the connection. Otherwise it has 
value of  0. 

• Received has value 1 if the message came to the 
node from the connection, else it has value of 0. 

Hops and NeighborsOrder are scaled with the func-
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Scaling is made to ensure that all the inputs are between 0 
and 1. 

There are two hidden layers in the network. In the first 
hidden layer there are 15 nodes + bias and in the second 
layer 3 + bias. Tanh is used as an activation function 
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tion in the output node is the threshold function 
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If the output is 1, the message is forwarded to the con-
nection, otherwise it is dropped. 

Whenever the query locates a queried resource a reply 
message is sent back to the neighbor which forwarded the 
request to the node. When all the nodes in the query path 
have forwarded the reply message backward it is finally 
received by the query initiator. 

Neural network optimization: To find the appropriate 
weights we use methods of evolutionary computing [2]. 
The decision, which neural nets are better than the others 
is done by counting the packets sent to the test network 
and replies received. The fitness for the neural network is 
defined in two parts. Each query j is scored for the neural 
network h and the fitness is calculated by summing up all 

the scores after n queries: �
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score is defined with the following conditions: 
1. If replies ≥ availableResources / 2 then score = 

50 × availableResources / 2 – packets 
2. If replies < availableResources / 2 and replies > 

0 then score = 50 × replies – packets 
3. If replies = 0 then score = 1 – 1 / (packets + 1) 
4. If packets > 300 then score = 1 / (packets + 1) 

The first rule ensures that when half of the resource 
instances are found from the network the fitness grows if 
neural network uses fewer packets. The second rule states 
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that if the number of found resources is not enough then 
the neural network develops if it gains more resources 
than the others. The third rule makes sure that if none of 
the resources are found then the neural network should 
increase the number of packets sent to the network. Fi-
nally the last rule ascertains that an algorithm that eventu-
ally stops is always better than algorithm that does not. 

The optimization process had an initial population of 
30 neural networks whose weights were randomly de-
fined. Next, every neural network was tested in the peer-
to-peer simulation environment and fitness value calcu-
lated. When all neural networks had been tested 15 best 
were chosen for mutation and used to breed the new gen-
eration of neural nets. As a result, 30 neural networks 
were available for testing the new generation. Mutation 
was based on the Gaussian random variation and used 
weighted mutation parameter to improve the adaptability 
of the evolutionary search [3]. After 100.000 generations, 
the optimization process was stopped. 

In the peer-to-peer simulation environment we used 
power-law graphs generated using the Barabasi-Albert 
model [4]. In power-law networks there exists few hubs 
in the network that have many neighbors and lots of 
nodes that have only few links. The power-law graph was 
selected because some existing P2P networks have shown 
to express power-law dependencies [5]. The graphs being 
tested contained 100 nodes with the highest degree node 
having 25 neighbors. 

The test case data was divided in three different data 
sets as described in [6]: training set, generalization set 
and validation set. Training set contained two power-law 
topologies with both being queried 50 times per genera-
tion for each neural network. Two topologies were used 
to have neural networks adapt to wider range of situations 
than one topologu would have provided. Generalization 
set consisted of two power-law topologies with 50 queries 
and it was used to measure the point in which the neural 
network loses its ability to generalize. The neural network 
having highest fitness at that point was selected and as a 
validation set one topology with 100 queries was used to 
produce the final simulation results. This ensured that 
neural network’s performance was being tested in new 
environment and thus measured the true generalization 
ability of the best neural network. 

For each topology resource instances were allocated 
based on the number of neighbors each node has. There 
were 25 different resources in the test case and the num-
ber of different resources in a node was the same as the 
number of neighbors the node had. This means that the 
largest hub had one copy of all resources and the lower 
degree nodes only some of these randomly chosen from 
uniform distribution. The queried resources and querying 
nodes were selected also randomly from uniform distribu-
tion for each query. 
Simulation results: To evaluate the difference between 
BFS and NeuroSearch the number of packets used and 
received replies for 100 different queries were calculated 

using validation set. The results are presented in Figure 1 
and Figure 2. 

The results of Figure 1 show that the performance of 
NeuroSearch in number of packets is nearer to BFS with 
time-to-live (TTL) value 2 than 3. In average Neu-
roSearch consumes 47.1 packets per query whereas BFS 
with TTL 2 consumes 30.0 and BFS with TTL 3 124.6 
packets. The reason why there is some variation in the 
number of packets for successive BFS queries is that the 
distance where packets will be delivered depends on 
which node is querying. If the query starts from a central 
node (nodes 0-10) it will produce more packets than the 
same query started from an edge node (nodes 90-99) be-
cause the edge query has fewer connections where BFS 
can spread. In case of NeuroSearch the performance is 
stable and does not depend on what node is querying. 

Figure 2 shows how many replies the algorithms are 
able to locate. NeuroSearch’s performance in terms of 
located resources is quite similar to BFS with TTL 2 at 
central nodes but better in edge nodes. Compared to BFS 
with TTL 3 the performance of NeuroSearch is constantly 
lower reaching only at some edge nodes the same per-
formance level. The reason why NeuroSearch is satisfied 

 

Figure 1: Number of packets used by the algorithms 

 

Figure 2: Number of replies used by the algorithms  
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with this level of performance is that it has already 
reached the goal of finding half of available resources as 
defined in the fitness function and locating more re-
sources would not be beneficial in its evolution. 

We analyzed the behavior of the best evolved neural 
network by tracking the path used by the queries. For 
searching in power-law graphs, it has been suggested that 
a good strategy to locate resources is to first send the 
query to highest degree nodes and then gradually lower 
the degree when searching proceeds [7] 0. This ensures 
that if resources are likely to be found from the network’s 
core the query finds them early in the search process. 

However, the path NeuroSearch uses is not com-
pletely similar. NeuroSearch seems to prefer central 
nodes early in the query, but uses multiple paths for doing 
this. After reaching the central nodes the spreading is 
stopped and the maximum number of hops is 5. As a veri-
fication for this the behavior of a typical NeuroSearch 
query started from an edge node is illustrated in Figure 3. 
Conclusion: In this paper, a new resource discovery algo-
rithm has been proposed. NeuroSearch algorithm takes 
into account the special characteristics of its environment 
and automatically adapts to different kind of P2P net-
works. The algorithm’s performance is also stable and 
competitive compared to the BFS algorithm.  
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Figure 3: Typical NeuroSearch resource query  


