

1

Resource Discovery in P2P Networks
Using Evolutionary Neural Networks

Mikko Vapa, Niko Kotilainen, Heikki Kainulai-
nen, Jarkko Vuori

Indexing terms: resource discovery, peer-to-peer networks, feed-
forward neural networks, evolutionary computing

Resource discovery is an essential problem in peer-to-peer net-
works since there is no centralized index where to look for infor-
mation about resources. One solution for the problem is to use a
search algorithm that locates resources based on the local knowl-
edge about the network. Traditionally, these search algorithms
have been based on few predetermined rules. The problem with
these algorithms is that if the conditions in the network change the
algorithm becomes less efficient and won't adapt to the new envi-
ronment. In this paper, we describe the results of a process where
evolutionary neural networks are used for finding an efficient
search algorithm. The initial test results indicate that an evolution-
ary optimization process can produce search algorithm candidates
that are more efficient compared to breadth-first search algorithm
(BFS) used in Gnutella peer-to-peer network.

Introduction: In the resource discovery problem any node
can possess resources and query these resources from
other nodes in the network. The problem consists of
graph with nodes, links and resources. Resources are
identified by IDs and nodes can contain any number of
resources. One node knows only the resources it is cur-
rently hosting. A node in the graph can start a query
which means that some of the links are traversed based on
a local decision in the graph and whenever the query
reaches the node with the queried ID, the node replies.

One possible solution for the resource discovery prob-
lem is the breadth-first search algorithm (BFS) [1]. In the
BFS approach a node that starts a query passes the query
to all its neighbors. When the neighbors receive the
query, they pass it further to all their neighbors except the
one from which the query was received.

The BFS algorithm ensures that if a resource is lo-
cated in the network it can also be found from the net-
work. The downside of the algorithm, however, is that it
uses lots of query packets to find the needed resources.
Thus, we propose an alternative algorithm that is more
efficient in face of used packets.
The algorithm: The proposed algorithm, called as Neu-
roSearch, makes decision to whom of the node's
neighbors the resource request message is forwarded
based on the output neuron of 3-layer perceptron neural
network.

When a resource request arrives to the algorithm it
goes through all the node's neighbor connections one by
one with the neural network. The input parameters for the
neural network are:

• Bias is the bias term.
• Hops is the number of the hops in the message.
• NeighborsOrder tells in which rank this connec-

tion is in terms of number of neighbors compared
to others. The connection with best rank has the
value of 0.

• Neighbors is the number of the connection's
neighbors.

• MyNeighbors is the number of node's neighbors.
• Sent has value 1 if the message has already been

forwarded to the connection. Otherwise it has
value of 0.

• Received has value 1 if the message came to the
node from the connection, else it has value of 0.

Hops and NeighborsOrder are scaled with the func-

tion
1

1
)(

+
=

x
xf and Neighbors and MyNeighbors with

x
xf

1
1)(−= before giving them to the neural network.

Scaling is made to ensure that all the inputs are between 0
and 1.

There are two hidden layers in the network. In the first
hidden layer there are 15 nodes + bias and in the second
layer 3 + bias. Tanh is used as an activation function

1
1

2
)(

2
−

+
= − ae

at in the hidden layers. Activation func-

tion in the output node is the threshold function

�
�
�

≥
<

=
0,1

0,0
)(

x

x
as .

If the output is 1, the message is forwarded to the con-
nection, otherwise it is dropped.

Whenever the query locates a queried resource a reply
message is sent back to the neighbor which forwarded the
request to the node. When all the nodes in the query path
have forwarded the reply message backward it is finally
received by the query initiator.

Neural network optimization: To find the appropriate
weights we use methods of evolutionary computing [2].
The decision, which neural nets are better than the others
is done by counting the packets sent to the test network
and replies received. The fitness for the neural network is
defined in two parts. Each query j is scored for the neural
network h and the fitness is calculated by summing up all

the scores after n queries: �
=

=
n

j
jh scorefitness

1

. The

score is defined with the following conditions:
1. If replies ≥ availableResources / 2 then score =

50 × availableResources / 2 – packets
2. If replies < availableResources / 2 and replies >

0 then score = 50 × replies – packets
3. If replies = 0 then score = 1 – 1 / (packets + 1)
4. If packets > 300 then score = 1 / (packets + 1)

The first rule ensures that when half of the resource
instances are found from the network the fitness grows if
neural network uses fewer packets. The second rule states

2

that if the number of found resources is not enough then
the neural network develops if it gains more resources
than the others. The third rule makes sure that if none of
the resources are found then the neural network should
increase the number of packets sent to the network. Fi-
nally the last rule ascertains that an algorithm that eventu-
ally stops is always better than algorithm that does not.

The optimization process had an initial population of
30 neural networks whose weights were randomly de-
fined. Next, every neural network was tested in the peer-
to-peer simulation environment and fitness value calcu-
lated. When all neural networks had been tested 15 best
were chosen for mutation and used to breed the new gen-
eration of neural nets. As a result, 30 neural networks
were available for testing the new generation. Mutation
was based on the Gaussian random variation and used
weighted mutation parameter to improve the adaptability
of the evolutionary search [3]. After 100.000 generations,
the optimization process was stopped.

In the peer-to-peer simulation environment we used
power-law graphs generated using the Barabasi-Albert
model [4]. In power-law networks there exists few hubs
in the network that have many neighbors and lots of
nodes that have only few links. The power-law graph was
selected because some existing P2P networks have shown
to express power-law dependencies [5]. The graphs being
tested contained 100 nodes with the highest degree node
having 25 neighbors.

The test case data was divided in three different data
sets as described in [6]: training set, generalization set
and validation set. Training set contained two power-law
topologies with both being queried 50 times per genera-
tion for each neural network. Two topologies were used
to have neural networks adapt to wider range of situations
than one topologu would have provided. Generalization
set consisted of two power-law topologies with 50 queries
and it was used to measure the point in which the neural
network loses its ability to generalize. The neural network
having highest fitness at that point was selected and as a
validation set one topology with 100 queries was used to
produce the final simulation results. This ensured that
neural network’s performance was being tested in new
environment and thus measured the true generalization
ability of the best neural network.

For each topology resource instances were allocated
based on the number of neighbors each node has. There
were 25 different resources in the test case and the num-
ber of different resources in a node was the same as the
number of neighbors the node had. This means that the
largest hub had one copy of all resources and the lower
degree nodes only some of these randomly chosen from
uniform distribution. The queried resources and querying
nodes were selected also randomly from uniform distribu-
tion for each query.
Simulation results: To evaluate the difference between
BFS and NeuroSearch the number of packets used and
received replies for 100 different queries were calculated

using validation set. The results are presented in Figure 1
and Figure 2.

The results of Figure 1 show that the performance of
NeuroSearch in number of packets is nearer to BFS with
time-to-live (TTL) value 2 than 3. In average Neu-
roSearch consumes 47.1 packets per query whereas BFS
with TTL 2 consumes 30.0 and BFS with TTL 3 124.6
packets. The reason why there is some variation in the
number of packets for successive BFS queries is that the
distance where packets will be delivered depends on
which node is querying. If the query starts from a central
node (nodes 0-10) it will produce more packets than the
same query started from an edge node (nodes 90-99) be-
cause the edge query has fewer connections where BFS
can spread. In case of NeuroSearch the performance is
stable and does not depend on what node is querying.

Figure 2 shows how many replies the algorithms are
able to locate. NeuroSearch’s performance in terms of
located resources is quite similar to BFS with TTL 2 at
central nodes but better in edge nodes. Compared to BFS
with TTL 3 the performance of NeuroSearch is constantly
lower reaching only at some edge nodes the same per-
formance level. The reason why NeuroSearch is satisfied

Figure 1: Number of packets used by the algorithms

Figure 2: Number of replies used by the algorithms

3

with this level of performance is that it has already
reached the goal of finding half of available resources as
defined in the fitness function and locating more re-
sources would not be beneficial in its evolution.

We analyzed the behavior of the best evolved neural
network by tracking the path used by the queries. For
searching in power-law graphs, it has been suggested that
a good strategy to locate resources is to first send the
query to highest degree nodes and then gradually lower
the degree when searching proceeds [7] 0. This ensures
that if resources are likely to be found from the network’s
core the query finds them early in the search process.

However, the path NeuroSearch uses is not com-
pletely similar. NeuroSearch seems to prefer central
nodes early in the query, but uses multiple paths for doing
this. After reaching the central nodes the spreading is
stopped and the maximum number of hops is 5. As a veri-
fication for this the behavior of a typical NeuroSearch
query started from an edge node is illustrated in Figure 3.
Conclusion: In this paper, a new resource discovery algo-
rithm has been proposed. NeuroSearch algorithm takes
into account the special characteristics of its environment
and automatically adapts to different kind of P2P net-
works. The algorithm’s performance is also stable and
competitive compared to the BFS algorithm.

REFERENCES

[1] B. Yang, H. Garcia-Molina, “ Improving search in
peer-to-peer networks” , Proceedings of the 22nd In-
ternational Conference on Distributed Computing
Systems (ICDCS’02), IEEE 2002

[2] K. Miettinen, M. Mäkelä, P. Neittaanmäki and J.
Périaux (eds.), Evolutionary algorithms in engineer-
ing and computer science, John Wiley & Sons, 1999

[3] K. Chellapilla, D. Fogel, “Evolving neural networks
to play checkers without relying on expert knowl-
edge” , IEEE Trans. on Neural Networks, 10 (6), pp.
1382-1391, 1999

[4] A.-L. Barabási, R. Albert, “Emergence of Scaling in
Random Networks” , Science 286 (1999) 509-512

[5] M. A. Jovanovic, F. S. Annexstein, K. A. Berman,
”Scalability Issues in Large Peer-to-Peer Networks –
A Case Study” , Technical report, University of Cin-
cinnati, 2001

[6] A. P. Engelbrecht, “Computational Intelligence An
Introduction” , John Wiley & Sons Ltd, 2002

[7] Lada A. Adamic, et. al, ”Search in power-law net-
works” , Physical Review E, 64, 2001

[8] B. J. Kim, C. N. Yoon, S. K. Han, H. Jeong, ”Path
finding strategies in scale-free networks” , Physical
Review E 64

Figure 3: Typical NeuroSearch resource query

