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ABSTRACT

In this paper we present a fuzzy interval modelling of the multistream traffic flows for the
advanced multiservice systems in the third generation (3G) telecommunication networks. The
fuzzy approach of the switching process of the traffic flows allows the minimization of the trans-
mission costs and time delays under uncertainty about the traffic patterns by using an approach
based on the multistream component rates input-output aggregation. In the multimedia service
models these components are combined such that to meet the strict constraints deriving from
the service level agreements (SLAs) in sharing the communication link capacities. The main
motivation in considering the fuzzy interval modelling is the need of an adaptive multiplexing
strategy which is able to track the relevant parameters characterizing the statistical calsses of
traffic demand patterns.

1. Introduction

Before the advent of Gigabit Ethernet, 100 Mbps was the maximum rate for Ethernet. For
speeds exceeding 100 Mbps, multiple proprietary Fast Ethernet links are needed to be connected
in parallel (e.g., Cisco Fast EtherChannel trunking) ([1]). The ATM technology had an edge
with its 622 Mbps version. The Gigabit Ethernet and the proposed 802.3ad Link Aggregation
/ Truncking standard, Ethernet backbones of several gigabits per second can be built. The
Ethernet now scales from 10 to 100 to 1000 Mbps. ATM speeds range from 25 to 622 Mbps.
The Ethernet Link Aggregation proposal works for both switches and servers, whereas ATM
does not allow server Link Aggregation. The 53 bythe ATM cell structure is less efficient than
Ethernet frame structure. For 1 KB frames (Ethernet frames can range from 64 bytes to 1522
bytes), Ethernet protocol efficiency is 0.98, compared to ATM efficiency of 0.9 ([6]). The ATM
attractiveness lies in its radically different approach of integrated LAN/WAN and voice/data
traffic. The ATM Forum has created LAN Emulation (LANE) and a set of other technologies
that enable a smooth migration from legacy LANs to a true ATM environment. If ATM is
used only as a backbone technology (i.e., no ATM attached clients or servers), LANE is not
required. The ATM has been designed by the service provider industry offers state-of-the-art
quality of service (QoS) in the sense that the connections are specified in terms of their bit rates
or bandwidth (CBR, VBR, UBR, ABR) ([6]). The Shared Ethernet offers a zero level QoS. Over
the past two years, many Ethernet innovations have narrowed the QoS gap between Ethernet
and ATM significantly (VLANs and Layer 3 Switching). The QoS is necessary if a network
is overloaded and sporadic delays are a normal part of the network operation. For wide area
networks (WANs), the links always run close to full capacity and the QoS becomes important.
The objective of this paper is to encapsulate in a closed form mathematical model the issue of
handling the traffic incertainties which have to be handled by the communication network in
order to preserve and guarantee the desired QoS level. The fuzzy interval modelling coupled
with a statistical setting of the reference intervals provides a suitable vehicle for carrying out the
complexity of uncertainties in the traffic flows when they are aggregated within the network.



2. Fuzzy Interval Arithmetic and Interval Matrices

2.1. Uncertainty, Randomness and Hybrid Numbers

Some observations obtained from a system are precise, while some are measurable only in
statistical sense and other cannot be measured at all. The data obtained in this manner are
hybrid and lead to hybrid operations and hybrid numbers suitable for dealing with large-scale
systems. These concepts can be associated with the Monte Carlo method ([2]). A fuzzy is
not a measurement, it is a function µA(x and corresponds to both convex and normal fuzzy
subsets. A fuzzy number is a subjective valuation assigned by one or more human operators. In
the referential set R, we have a fuzzy number A with the memmbership function µA(x) and a
random variable L whose probability is given by the density function fL(x), where x is the value
of L in R. Suppose that fL(x) has a convex shape and let the maximum value of fL(x) be

max
x

fL(x) (1)

Dividing the function fL(x) by its maximum value and define the new function µL(x) which is
convex and normal. By this process we substitute the fuzzy number L for the random variable L,
which allows L to be added to any other fuzzy number by the operation of max-min convolution.
Consequently,

µL(x) =
fL(x)

max
x

fL(x)
(2)

The addition with a fuzzy number A, i.e., ∀x, y, z ∈ R

µA(+)L(z) = ∨
z=x+y

(µA(x) ∧ µL(y)) (3)

Let us consider a fuzzy number A ⊂ R. For a move to the right, l > 0, or a move to the left,
l < 0, we write for ∀α ∈ [0, 1]

A(+)l =
[

a
(a)
1 , a

(α)
2

]

(+) [l, l] =
[

a
(a)
1 + l, a

(α)
2 + l

]

(4)

or, ∀x, y, z ∈ R,

µA(+)l(z) = ∨
z=x+y

(µA(x) ∧ µl(y)) (5)

where

µl(y) =

{

0, y 6= l

1, y = l
(6)

If l is a random variable L with a probability density f(l), then the fuzzy number A will move
randomly according to the law f(l). The couple (A, l) is called a hybrid number and represents
the addition of a fuzzy number to a random variable without altering the characteristics of
either and without decreasing the amount of information available. A hybrid number can be
represented as

Af = A(µ, f) = A [+]L (7)

where L is the random variable with probability density f(l). The probability density of (Aα(+)l)
is the density of L = l, that is,

g(Aα(+)l) = g
([

a
(α)
1 + l, a

(α)
2 + l

])

= f(l) (8)



Consider two hybrid numbers in R, (A1, L1) and (A2, L2), where L1 and L2 have the densities
f1(l1) and f2(l2), respectively. We define the addition by the hybrid convolution

(A1, L1) [+] (A2, L2) = (A1(+)A2, L1(+)′L2) (9)

where (+) represents the max-min convolution for addition and (+)′ represents the sum-product
convolution for addition. We may also write for ∀x, y, z ∈ R,

µA1(+)A2
(z) = ∨

z=x+y
(µA1

(x) ∧ µA2
(y)) (10)

and

f(l) =

∫

R

f1(l − l2)f2(l2)dl2 =

∫

R

f1(l1)f2(l − l2)dl1 (11)

A fuzzy number is a special case of a hybrid number, A = (A, 0), where 0 is the trivial random
variable with probabilities

Pr(l) =

{

1, x = 0
0, x 6= 0

(12)

A random variable is also a special case of a hybrid number, L = (0, L), where 0 is the trivial
fuzzy number with certainty

µ0(x) =

{

1, x = 0
0, x 6= 0

(13)

2.2. Mathematical Expectation of a Hybrid Number

For a function φ(x) in R that is nonnegative and monotonically increasing and a closed interval

in R,
[

a
(α)
1 , a

(α)
2

]

we have

[

φ(a
(α)
1 ), φ(a

(α)
2 )

]

⊂ R (14)

and for l ∈ R
[

φ(a
(α)
1 + l), φ(a

(α)
2 + l)

]

⊂ R (15)

If l is a value of the random variable L, the lower and the upper bounds of (15) depend only
on l for a given level of confidence α and the mathematical expectations for each bound are
calculated as follows

[

φ(a
(α)
1 + l), φ(a

(α)
2 + l)

]

=

[

∫ l2

l1

φ(a
(α)
1 + l)f(l)dl,

∫ l2

l1

φ(a
(α)
2 + l)f(l)dl

]

(16)

Theorem 1. The membership function of the mathematical expectation of a hybrid number
(A, L) is the membership function of A shifted by the mathematical expectation of L.

For k ∈ R, k 6= 0 and ∀x ∈ R

µkA(x) = µA(x/k) (17)

or ∀α ∈ [0, 1]

k ·Aα =







[

k · a
(α)
1 , k · a

(α)
2

]

, k > 0
[

k · a
(α)
2 , k · a

(α)
1

]

, k < 0
(18)



If f(l) is the density of L, then the density of k · L is given by

g(k · L) =
1

k
f(l), k > 0 (19)

For k 6= 0,

k · (A, 0) = (k ·A, 0) (20)

k · (0, L) = (0, k · L) (21)

k · (A, L) = (k · A, k · L) (22)

If L = L1 + L2 and L1 and L2 have the same density f(l), then

g(l) =

∫

R

f(l − l1)f(l1)dl1 =

∫

R

f(l − l2)f(l2)dl2 (23)

2.3. Sheaf and Expectation of Fuzzy Numbers

We have n (finite) observations of the same phenomenon, each resulting in a fuzzy number Ai,
i = 1, 2, ..., n. The set of Ai in the same referential set E constitutes a sheaf of fuzzy numbers.

Theorem 2. Let a sheaf of n numbers Ai ∈ R, i = 1, 2, ..., n, then for α ∈ [0, 1]

Ai,α =
[

a
(α)
1,i , a

(α)
2,i

]

(24)

for the interval of confidence at the level α of Ai. Defining the mean as

a
m(α)
1 =

1

n

n
∑

i=1

a
(α)
1,i (25)

a
m(α)
2 =

1

n

n
∑

i=1

a
(α)
2,i (26)

the mean interval of confidence at level α of the mean fuzzy number Am is described as

Am
α =

[

a
m(α′)
1 a

m(α)
2

]

(27)

Theorem 3. Consider a sheaf of n fuzzy numbers Ai ∈ R, i = 1, 2, ..., n, and the corresponding
probability law p(i) = Pr(i), for i = 1, 2, ..., , n. If Ā represents the fuzzy subset defined as the
level α by

Āα =

[

n
∑

i=1

a
(α)
1,i p(i),

n
∑

i=1

a
(α)
2,i p(i)

]

=
[

ā
(α)
1 , ā

(α)
2

]

(28)

then Ā is a fuzzy number called the expected fuzzy number of the sheaf, which is both convex
and normal.

The results presented in this section are effectively used in handling the uncertainties in the
traffic flows in the ATM networks based on the assumption that the reference point is subject
the changes according to some stochastic process that emulated the instantaneous rates of these
flows ([4]).



3. Linear Input-Output Traffic Aggregation

In this section we present the main concepts related to the switching of the traffic flows in the
ATM networks (considered as data micro/macro streams) when it is regarded as an input-output
aggregation process.

3.1. Preliminaries

Suppose that an n × n input-output matrix A is to be aggregated from n data micro streams
denoted by N = {1, ..., n} to m macro streams, M = {1, ...,m}, with m < n. Let an m × n

matrix S indicate which micro streams are to be combined, that is, for all i ∈ M and j ∈ N ,
si,j = 1 if micro stream j is to be included in macro stream i and si,j = 0, otherwise. Thus,
S is a 0-1 matrix with exactly one 1 in every column and at least one 1 in every row (S is a
column stochastic matrix). Let an n × m matrix T indicate the proportional weights of each
micro stream in its macro aggregate. For all i ∈ M and j ∈ N , tji ∈ [0, 1] if the micro stream
j is included in macro stream i and tji = 0, otherwise. The sum of the weights of the micro
streams assigned to a givean macro stream is assumed to be 1. Consequently, T is also column
stochastic. The input-output aggregator is computed as the matrix SAT. There are also other
methods of matrix aggregation such as

1. Aggregation where S may contain any positive weights.

2. Aggregation chosen to optimize a particular objective function.

Other possibilities include the application of the above procedure to the (I − A)−1 matrix to
obtain S(I−A)−1T and then compute the aggregation of A as I−S(I−A)−1T. Alternatively,
we may use the micro streams as data to estimate an aggregated matrix, using a variant of
the econometric estimation techniques for estimating input-output models. Also, we may first
aggregate the columns to produce a rectangular model with m macro streams and then convert
the rectangular model to a square m×m model.

3.2. Functional Form of General Aggregators for Traffic Switching

We consider a general aggregator f mapping n × n input-output matrices into m × m input-
output matrices, m < n. Denote the set of real n×m matrices by Mn,m. When n = m, Mn,m

is abbreviated as Mn. We consider an open input-output model with n streams given by

x = Ax + y (29)

where x ∈ Rn is an output vector, y ∈ Rn is a final demoand vector and A ∈ Mn is an input-
output matrix. For an input-output matrix A = (aij), then the entry aij can be interpreted
as the amount of commodity i necessary in the production of a unit of commodity j, given the
technology represented by A. Thus, 1 −

∑

i aij is the value added per unit of production of
commodity j, which is assumed positive. In this event, the matrix A has nonnegative entries
and column sums all less than 1. Such a matrix is usually called (strictly) column substochastic
since a column stochastic matrix is a nonnegative one with column sums of 1.

Definition 1. By an input-output matrix we simply mean a square column substochastic matrix.
The input-output equation

y = (I − A)x (30)

can be used to transform an output vector to a final demand. Conversely, since A is column
substochastic, (I−A) must be nonsingular, so that x = (I−A)−1y can be used to transform a
final demand vector to an output vector. Since A is substochastic, the inverse matrix (I−A)−1

is nonnegative and A is irredicible, then (I − A)−1 is strictly positive



Definition 2. An input-output matrix aggregator is a function f : Mn → Mm that maps
the n × n input-output matrices into m × m input-output matrices with m < n. The (k, l)
element of the matrix f(A) will be denoted by f(A)kl. An input-output matrix B will be
referred to as an aggregation of the input-output matrix A if it is the result of some aggregator
applied to A.

Considering that the input-output models are linear, one natural assumption is that the ag-
gregator is linear. We call an input-output matrix B a standard aggregation of the input-output
matrix A if B is the result of some standard aggregator applied to A. The following theorem
characterizes the functional form of the standard aggregators.

Theorem 4. An input-output aggregator f : Mn → Mm is standard if and only if f may
be represented as

f(A) = SAT (31)

in which S ∈ Mm,n is a 0-1 column stochastic matrix, T ∈ Mn,m is a column stochastic and
ST = I ∈Mm.

Remark 2. In the context of the theorem, the statement ST = I simply means that the
nonzero entries of T are contained among the positions indicated by the 1’s of ST . If h maps N
onto M , then the 0-1 matrix S ∈Mm,n is a 0-1 column stochastic matrix with no row containing
only 0s. The matrix S is called a partitioning matrix and the function h mapping N onto M
given by h(j) = i if sij = 1 is called the function representation of S.

3.3. Properties of Input-Output Aggregation Process

The features of the input-output matrix A are, in general, preserved by a standard aggregator
B = SAT.

Theorem 5. Suppose S ∈ Mm,n is a partitioning matrix, T ∈ Mn,m is column stochastic
and ST = I. Then TS is a column stochastic, idempotent matrix of rank m.

Remark 3. The above theorem implies that the set of eigenvalues of TS includes 1 with
multiplicity m and 0 with multiplicity (n−m), since TS is idempotent. It can be established a
close relationship between the standard aggregators and the notion of matrix similarity.

4. Forecasting Model of the Aggregated Flows

We consider a forecasting model based on a fuzzy self-regression of the aggregated flows where
the estimated parameters Ãi and the independent variable Ỹt−i are fuzzy numbers of M − N

form ([3], [5]).

4.1. Fuzzy Extension of ARMA Model

The classical n-th order forecasting model of self-regression ([7])

Yt = A1Yt−1 +A2Yt−2 + · · · +AnYt−n + et (32)

can be extended to fuzzy sets as follows

Ỹt = Ã1Ỹt−1 + Ã2Ỹt−2 + · · · + ÃnỸt−n + et (33)



in which the awaiting-estimated parameters Ãi, i = 1, 2, ..., n and the independent variable Ỹt

are all fuzzy numbers of M −N form. Here, et is the error (noise).

Definition 3. M(ϕ(χ)) is called a left (right) fuzzy regular function, if M(ϕ(χ)) satisfies:

1. ϕ(χ) is a linear form of χ.

2. There exists χ0 ∈ R+ such that M(ϕ(χ0)) = 1. M(ϕ(χ)) is a monotone increasing
continuous function in (−∞, χ0) (monotone continuous function on (χ0, ∞).)

Definition 4. Suppose that M(·) and N(·) are a left and right fuzzy regular function, respec-
tively. The fuzzy number Ã is called a fuzzy number of M −N if

µÃ(χ) =







M(ϕ(χ)), χ ≤ a

1, a < χ < b

N(ϕ(χ)), χ ≥ b

(34)

Let us suppose that we have a linear function

ϕ(χ) = ψ(χ) =
χ− a

σ
(35)

for a, σ > 0.

Theorem 6. If Ãi and Ỹt−i are fuzzy numbers of M −N form, that is,

µÃi
(ai) =















M
(

ai−ci

σi1

)

, if ci1 ≤ ai ≤ αi1

1, if αi1 < ai < αi2

N
(

ai−αi2

ri1

)

, if αi2 ≤ ai ≤ ci2

(36)

and

µỸt−i
(yt−i) =















M
(

yt−i−di1

ri1

)

, if d
i1
≤ yt−i ≤ βi1

1, if βi1 < yt−i < βi2

N
(

yt−i−βi2

ri2

)

, if βi2 ≤ yt−i ≤ di2

(37)

then Ỹt =
∑n

i=1 ÃiỸt−i is a fuzzy number of M −N form and the membership function of Ỹ is
as follows

µỸt
(yt) =



























M(−K1/2) +
√

(k1/2)2 − L1(yt), if
n
∑

i=1

ci1di1 ≤ yt ≤
n
∑

i=1

αi1βi1

1, if
n
∑

i=1

αi1βi1 < yt <
n
∑

i=1

αi2βi2

N(−K2/2) +
√

(k2/2)2 − L2(yt), if
n
∑

i=1

αi2βi2 ≤ yt ≤
n
∑

i=1

ci2di2

(38)

where

yt =

n
∑

i=1

yt−i (39)

k1 =

n
∑

i=1

(ci1ri1 + σi1di1)

n
∑

i=1

σi1ri1

(40)



k2 =

n
∑

i=1

(di2ri2 + σi2βi2)

n
∑

i=1

σi2ri2

(41)

L1(yt) =

n
∑

i=1

(ci1di1) − yt

n
∑

i=1

σi1ri1

(42)

L2(yt) =

n
∑

i=1

(αi2βi2) − yt

n
∑

i=1

σi2ri2

(43)

4.2. Model Coefficient Estimation

The main steps of the model estimation are as follows:

1. Form the self-related number sequence according to the observed number.

2. Calculate the self-related coefficient when i elapses, i = 1, ..., N according to the formula

ri = i
∑

t

Ỹt−iYt −

∑

t

Ỹt−i

∑

t

Ỹt

√

√

√

√

[

i
∑

t

Ỹ 2
t−i −

(

∑

t

Ỹt−i

)2
] [[

i
∑

t

Ỹ 2
t −

(

∑

t

Ỹt

)2
]]

(44)

3. Take rp = max
{

ri

∣

∣

∣̀
i = 1, 2, ..., N

}

. The model

Ỹt = Ã1Ỹt−1 + Ã2Ỹt−2 + · · · + ÃpỸt−p (45)

is the best forecasting model of fuzzy self-regression.
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