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Abstract

In this paper we develop a mathematicd statistics model for the mean leaning processes
occurring in adaptive systems. A maximum likelihood approach with penalty constraints and
averaging is considered for increasing the performance in coping with the environment’s
uncertainties gnce it alows greaer robustness by not relying on any particular prior
asumption. The mean leaning or averaging can be @nsidered as a form of regularization
since the dfed of over-expasing the system to new information is reduced by averaging the
predictions obtained from models which describe the locd relevant information. Covariance
evolution for dynamic systems having Markov parameters ensures that the data smoothing and
information conditioning is encapsulated into the mean learning scheme.

Keywords. Expedation Maximization, Maximum Likelihood, Information Condtioning,
Covariance Dynamics, Mean Learning, Adaptation, Prediction.

1. Introduction

The averaging ensembles of estimators to probability density estimation for Gausgan mixture
models important methods in many leaning and control applicaions operating in urcertain
environments. The performance of averaging approadh is enhanced by using the traditional
regularization strategies such as the maximum likelihood approach and the Bayesian
approad. In the maximum likelihood approacd, some penalty functions can be derived using
the wnjugate Bayesian priors al owing the cnstruction d the expedation maximization (EM)
algorithms which can be used for leaning purposes. The maximum likelihood approadch with
penalty constraints and the averaging increase the performance onsiderably compared to a
standard maximum likelihood approach. The averaging is a superior way of coping with the
environment’s uncertainties snceit alows greaer robustnesshby not relying on any particular
prior assumption. The averaging can be cnsidered as aform of regularization sincethe dfed
of over-exposing the system to new information is reduced by averaging the predictions
obtained from models which describe the locd information exploration (Ormoneit and Tresp,
1998. The regularization is achieved by adding a pendty term to the log-likelihood cost
function. In the Bayesian approad, the predictive distribution is approximated by averaging
the forecasts of a sequence of parameter vedors sleded acrding to the posterior probability
density of the parameter vedors (White, 1994. In this resped, the Bayesian approach is
related to bah the regularization strategy (via the prior) and the averaging strategy (via
models with dfferent parameters). A covariance description d dynamic systems having
Markov parameters ensures that the data smoothing and information condtioning will be
exploited subsequently in order to match a prescribed model using an equivalent reduced
dynamic system subjed to a mean leaning scheme (that is, averaging) using the EM solution
to the smoothed maximum likelihood poblem. The relevant locd informationis subsequently
used in a mixture of normal multivariate distributions.

49



2. Information Conditioning for Data Smoothing

We onsider a genera formulation o the Expedation Maximization (EM) problem with
multi pli cative regularization (smocthing) of a data set. When the model data matrix is of
maximum rank, the EM model has a data smoothing interpretation, that is, the fixed pants of
an iteration mapping (cdled the EMS solutions), solve anoninea system whaose data have
undergone a omporentwise nonlinea smocthing. Given a large non-negative linea systems
of the form

PTg =n" (1)

with the model matrix P OR®®, data vedor n” OR® and the solution %D R® (al required to
be non-negative), an arbitrary non-negative data smoothing syste

QT9 =n" )
can be reformulated as in (1) using the following transformations
— qbd

Pod =~~~ 3
() ®
0, =1,(Q)A, 4)

h(Q)=)d
b Z bd (5)

These transformations all ows the new coefficient matrix P to be normalized and to become
row stochastic. We aaume that P in equation (1) is row stochastic. In the mntext of
probabili stic models, the EM algorithm is an iterative procedure whose iterates converge to a
nornegative gproximation d a solution to (1), independent of whether this s/stem is over-,
fully- or underdetermined. This algorithm generates a sequence of nonnegative gpro-
ximations to (1) as follows

9" =FE™P"”, n=0,1 2.... (6)
for a suitable initial selectiog(o’, where
F(g) = diag[Fl(g),..., Fg(g)] (7)
and
s NP o B
SO 2P, P ®)

The EM agorithm alows to find a nonnegative solution cdled the EM solution d the
Maximum Likelihood Equations (MLE)

8=F ()9 ©)

The iteration (6) is noisy and slowly converging. An intermediate information condtioning
step is introduced in order to oltain an EM with smoathing (EMS) algorithm. For linear
smoothing, this algorithm takes the form

8(n+1) — SF(g(n))g(n) , n= 01 :L 21___ (10)

where SOR®® is a non-negative conditioning matrix. The fixed pdnt iteration generates a
sequence of nonnegative iterates approximating a non-negative solution d the functiona
equation
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SF©)9=9 (11)
Remark 1. If the smoothing matrix S is chosen to be nonnegative, row stochastic and

irreducible, then we obtain the dass of the statistical smoothers which, as a minimum are
irreducible.

|
If Sis invertible, every EMS solutiogS lies in the convex region
—Ja - 12
QS—{20|stDGb—N} (12)
where
N = Z ng (13)
and
_ —1 (14)
%—g%b

Consequently, the set Q, defining the wnstraints on the parameter @ as part of a hyperplane
in R® which is compad if al the quantities s, are positive. We denate the nonlinear EMS

mapping by
8- Fs(0) (15)
Fs(®) =SF©)9 (16)
We can write the system (11) in the form

8=S0Py (@) 17)

where = diag. The vectory O R® is defined as

where

Ny

_ (18)
29 )

, d=1...,D

The alternative way of representing the EMS iteration equation is
(+1) — g () - 19
g =sgP, (§”). n=0,1 (19)

Theorem 1. Assumethat P hasrank D andthat S is nonnegative and invertible. Then every
positive EMS solutio@S solves the nonlinear equation

P8 =n(9) (20)
wheren(§) = [n,(9).....n, (g)]T with

_ N _ (21)
4 E e e d= ...,D
RN CCR N

Every solutior@ of (20) without zero components solves mhalified EMS equations
O —_

S(FO)+979 =8 (22)

where@" = diaggD for somegD Oker(PT).
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Remark 2. Theorem 1 aso hdds for any nonlinear mapping S which is non-negative and
locdly invertible nea 8°, when (S©°)™" is interpreted locdly as being the composition
(@%)"eS™ If S is linea, the asumption 83>0 hdds if, in addtion to the given

assumptionss is irreducible.
|

The introduction d the norlineaity S alows the EMS algorithm to perform very well for a
suitable dhoice of S. This stuation resembles the phenomenon d super-resolution d nea
bladk ohjeds by the Maximum Entropy Method (MEM). The intuition behind the data

H H H . S$\-1S ~ + S—lS: S ~ O
smocthing is the following: if ( ). 1., then P ( ) 1, and so, n(°)=n".

Any S which makes ( S)‘l%s -1, suitably small causes asmall change in the data when the

. - A . S ) - ° S _lS _ -
smooathing is performed t_o oltain n(§°). The quantity ||( ) 1| is a measure of the
amount of data smoothing

Theorem 2. Assume thas is non-negative and invertible an P and

s=YS; b=1..B (23)
b

are all positive. Then the EMS equations have a solgﬁdﬁQs.
|

Theorem 3. The variation d any smocoth EMS solution 85 with the parameters n” and P is
the solution of the following systems

S( - DF,(@%)0,8°= 8%, . d=1...,D (24)
l'-fd
s —DFS(gS))Dbng:iS(gb ~p PN, b=1..B,d=1..,D (25)
hd

where

Ddgs :9§; (26)
9 d
0,,8°= 9gi (27)

9pbd
(gb)b' :9 bb’ (28)
(Pg)y = Pya (29)
frd = (PTgs)d (30)

If S is chosen to be nonnegative and invertible matrix such that 1DQ(DFS(gS)), then the

systems (24)-(25) are uniquely solvable with respeEtdg)s and Dbdgs.
|

A covariance description d dynamic systems having Markov parameters ensuring that the
data smoacthing and information condtioning is exploited in order to match a prescribed
model is considered in the next sedion. An equivalent reduced dynamic system subjed to a
mean learning scheme (averaging) uses the solution of maximum likelihood problem.
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3. Covariance Dynamics of Markov Systems

Truncaion technique in dynamic systems based on olservability matrices of the full order
system are used to determine the order of reduced arder model needed to match a spedfied
number of output covariance derivatives and Markov parameters. The resulting redization is
independent of the basis of the complete model up to a unitary transformation. Consider an
asymptoticaly stable, controllable and olservable stochastic system (Grimble and Johrson,
1988)

%(t) = Ax(t) + Bw(t) (31)
y(t) = Cx(t) (32)

where x OR" is the state vedor, y [JR® is the measurement vedor and w OR™ is the noise
vedor. The parameter matrices A, B, C are mnstant and we asame that rank[C]=n, < D.
The initial condtion x(0) is assumed to be azero mean Gaussan randam vedor with
covariance matrix X,. The zero mean white noise process w(t) has the intensity W >0 and
we asume that w(t) isindependent of x(0). The covariance matrix of the output process
y(t) in the presence of zero mega(0) , denoted b%o(t +£,t) is defined as

Zo(t.1) = Ely(t)y" ()] (33)
and
To(t+ 0 =E[y(t+ )y" ()] (34)
where%o(t,t) is calculated as
%o(t,t) =CX(t,t)C’ (35)
with X(t,t), the covariance matrix of(t) satisfying the following differential equation
X(t,1) = AX(t,t) + X(t,t) AT + BWBT (36)
with
X(0, 0) =X, (37)
The steady-state covariances are defined as
%o = !'EQ %o(t,t) (38)
and .
Where%0 is given by
%0 =CXC' (40)
and
AX +XAT+BWBT =0 (41)
A partial realization of the system (31)-(32) is defined as
Xr(t) = ApXg(t) + Bw(t) (42)
Ya(t) = CeXp(l) (43)
wherex,, OR', y, OR” with r <n and
E[xx(0)]=0 (44)
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E[XR(0)XE(0)] = X o (45)

The system (42)-(43) is obtained by truncating (subsystem elimination) the system (31)-(32),
that is, there exist the matricés, and T, satisfying the following equations

L:Tg=1,, LxOR™, T, OR™ (46)
such that
Ag =L AT, 47)
B.=L:B (48)
Cr =CT; (49)

wherel, is the(r xr) identity matrix.

Definition 1. The redization (42)-(43) is cdled a q-COVariance Equivalent Redization (q-
COVER) of (31)-(32) if and only if

Ely«()] = E[y()] (50)
and
| d (. d :
o = I Im g B 0= I MG TRt 0|8 =00 (5
L L
A minimal q-COVER is defined as satisfying (46)-(49) with the smallest possible order
u
We can write
To(t+,,0) = E[y(t+ )y" ()] = CE[x(t+,)x"()]C" = Ce™X(t,1)C (52)
and sinceX(t,t) = X in the steady state, it follows that
Zolp) =lim Zo(t+ 1) = Ce™XC! (53)

Remark 3. Asauming the stealy-state mvariance @ndtions is equivalent to assuming that
y(t) is a stationary process, since for stationary we have

Ely(t+,)y (O] = Zo(t+,,0) = Zo(t+, =) = Zo(,) (54)
and
Zo(t)=2, (55)
|
From the equation (52) it follows that
. d - :
%J(,c) = llm F%O(t +£’t) =Ce:A'XCT, j=0,1...,9 (56)
L
) =im2,()=CAXCT, [=0.1...q 7
Theorem 4. A realization (42)-(43) is @ -COVER of (31)-(32) if and only if
Zx :CRAiRXRCTR:CAjXCT:%j, j=0,1....q (58)
|
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Considering a series expansionedf in (52), we can write
; — - i T |
!'f'l %O(t + ot = ;(CA XC )(ﬁj (59)
and similarly for the partial realization we get
lim %RO (t +, 1) = ; (CRARX RC;)(J{T] (60)

As @ increases, the q-COVER forces more terms of X . (t+ I,t) to match those of
o(t+ x’t) and (42)-(43) becomes a better partia redization d (31)-(32). The wrrelation ower

time of the reduced system outputs comes closer to matching the crrelation over time of the
full system outputs.

Remark 4. A q-COVER has the same inpu-output rate correlation as the full order system.

This condtion improves the fidelity of the reduced order model and it is regarded as an
internal smoothing mechanism for model approximation. The steady state mvariance of X(t)
satisfies

X AL +A X +B.WBL=0 (61)
|

Remark 5. The q-COVER is independent of the chaice of basis of the state spaceof (31)-
(32) up to a unitary transformation. Since a dange of basis affeds only the endogenous

variables x(t), theq-COVERs depend only on tlegogenous variables y(t) andw(t).
u

4. Maximum Likelihood Mean Learning

In the maximum likelihood approach we try to find the parameters which maximizes the
function

1(8,y) = log p(8,y) = log p(y|0) + log p(8) (62)

with resped to 0, where the first term is the log-likelihoodand the seandis the logarithm of
the prior parameter distribution. As a density model for the data we coose the dass of
Gaussian mixtures

p¥10) = Do Ny, %) (63)

with the restrictionsy, > 0 and

S

a; =1 (64)

7=1

whereN(y‘uJ. , %) are the multivariate normal densities

J

d ’
N(Y‘p’jﬂzj) = (277-)75 ‘Ejrlﬂ exp

_%(X_uj)szl(x—uj) (65)
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The Gaussan mixture model is well suited to approximate a wide dass of continuous
probability densities (White, 1996. Given the dataset Y = {y,,...,y, } of redizationsfor y,

we formulate the log-likelihood as

m

H P(YA: |9)

Maximum likelihood @rameter estimates 6 using the EM algorithm which consists of the
iterative application of the following two steps:

m

+log p(© ZlogZOz N(y, |n., E;) +log p(6) (66)

J=0

[(8,y) = log

1. E-step. Based on the arrent parameter estimates, the posterior probability that the
comporent j of the cvariance euivalent redization is resporsible for the generation o

data patterry, is estimated as

. ajN(Yk ‘p‘]‘v Y
E =
J Zq:ayN(Yk |U172 ) 1)

2. M-step. The new parameter estimates are computed as

1 m
/ [ —
Q; = m ;ﬁjk (68)
Zﬁjky]\
p, =t (69)
Zﬁjﬂ'
k=1
@A-(YA - U;)(Yk - l"j)T
2; == Al m (70)
Zﬁjk
k=1
Theorem 5. For a given , theq-COVERs(q >i) satisfy the equation
lim E[y (0(/&)"] = lim ElyP ™)} j,1=0,1....i (71)
where
) —
g W (72)
|

Remark 6. In the spedal case ¢ =1, the 1-COVER has the property of minimizing a
quadratic criterion associated to the truncation error (wherk). Define the output error as

e(t) = y(t) - yx(t) (73)
Assuming thaC; =, the errore(t) satisfies the equation
&(t) = Age(t) +1(1) (74)
where
f(t) = (CA - ALC)X(t) + (CB - CiB)W(t) (75)
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This minimization criterion can be regarded in two different ways as follows:

a) f(t) istheforcing term (leaning stimulus) in the output residual error equation (65). The
minimization is an appropriate goal which is associated to the leaning/approximation d
the full system model.

b) f(t) can be cnsidered as the equation error resulting from substituting the output into the
equation of the reduced model, that is,

f(t) =y(0) —[Ay(t) + Bw(t)] (77)

In this case, the minimization (67) becmes a linea problem cdled the output leaning

model (Ormoneit and Glynn, 2002).
u

In the cae of impulse or white noise inpus, the parameter matrices A5, B, which minimizes
J are given by

A= CAXC'(CXCH)™ (78)
and
B, =CB (79)

Remark 7. The truncaion technique provides a link between the matching of Markov
parameters to the output covariance derivatives in the partia redization poblem. This
technique aq-COVER which simultaneously matches g+ 1 output covariance derivatives and
g Markov parameters.

|

The am of the next sedionisto provide abasis for identifying the dements of an adaptation
model based on olservations from a dynamic system and statisticd inference drawn from a
postulated reference model. The iswue is to have arobust inference from observations as a
self-adaptation when learning the truly valuable new information contained in the data. As
describe in the previous dion, thisiswue is handled via the maximum likelihood averaging
by deteding the system pattern behaviour. The observations data can contain nontypicd
records (i.e., ouliers) which are regarded as being innowations in the leaning process These
outliers potential contribution to knowledge formation process is evaluated locdly in
conjunction with the latest estimation d the knowledge map prior to the sampling of the new
observation.

The statisticd inference drawn from the data can be substantially altered when the observation
evaluated as the outlier is deleted from the knowledge map formation pocess The outlier
generation processcould have amean-shift model or a variance-inflation model. In ather to
ded with the forthcoming complexities in the data, we consider a general regresson model as
the basic hypothesis for the observation pocess To assss the pradicd advantage of the
averaging and regularization approades, the density estimates of the multivariate statistica
processes are used to oltain the control model for adaptation by leaning. The reason is that
the generalization error of density estimates in terms of the likelihood lased ontest data is
rather unintuitive.
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5. Application to System Adaptation by Learning

Let us consider an exponomial function approximagi¢th defined as
q
p(t)ZZC}Xj, t=1 2,....m (80)
=1

where the c; are fixed and dstinct red numbers. Suppcse that we have m observations on a

norstationary stochastic process Y = [yl,yz,...,ym]T with finite second ader moments, where
Y. Is the first observation, y,_, the second, etc., and y, the last observation in the series.
Assume that the series of observations obeys the model

Y, =p(t)+e, t=1 2., m m>q (81)
Let C be the generalized Vandermonde matrix
C G - G
o8 & 4 o
qoc e

and let X =[x,,X,,...,x ]T and E=[e,e,,...,e,]'. The model can ke reformulated into a
matrix notation

Y =CX+E (83)
where E[E]=0 and VarE]= E[EET]EQZ%‘l. The ovariance matrix is assumed to be
positive definite. The matrix C has full rank because the c; are distinct. If %‘1 Is not the

identity matrix, then A canna be estimated simply by the usual |east squares technique. For
the estimates © oltained will not in general have minimum variance anong al unhased
linea estimates. To oktain the best linea unkiased estimator (BLUE), a weighted least
squares analysisis necessry. It can be shown that there exists a nonsingular symmetric matrix
G such that

G'G=GG= % (84)
and multiplyingY by G, we have
GY =GCX +GE (85)
SinceE[GE] = 0 andVa[GE] = E[GEE'G"]=_’I, X is found by minimizing
(GE)"GE = (Y - CX)T%(Y -CX) (86)
with respect taX . Then we have
X = (CT%C)‘lcEY (87)

where obvioudly, the inverse exists snce C has full rank and X is positive definite. Define
%”2 to be the pasitive definite square root of 3 andlet D = %”ZC. Then, we see @ once dso
at

X = D%”y (88)



whereD" is the generalized inverse Bfand consequently,
X:XHCEQ*G%E (88)
where E[)A(] =X and Var(X) =, 2(CEC)*. Let E=Y -CX dencote the etimation error

matrix. If Y has amultivariate normal distribution, then it can be shown that X and ETZE/m

are the maximum likelihood estimate of X and _°I. In this case, we can also perform the
usua significance tests and construct confidence intervals for the x; (White, 1999. We

construct the one-step predictor for y, with the purpose of on-line alaptation (Cassandras and

Lafortune, 1999. The best (in the sense of minimum variance) linea unbiased ore-step
predictor ofy,, given the previous observatiogs v,,..., ¥,. We assume that

Yo =1 X+e (89)

where E[e,] =0, Var[e,]= ¢l and 1=[1, 1,..., 1]" and define the matrix of expedations V
by

V = E[eE] (90)
The best linear unbiased predictorygf denoted by, is
N 5 1
¥o=1"X +—2VT%V (91)
e
In the case wheg, is not correlated wittE , §, reduces to the one-step forecast, namely
yo=1"X (92)
where
E[y,]=1"X (93)
Valyg]=,*1"(C"2C) "1 (94)

In the same way we can construct the (k+1)th step forecast. If it is assumed that

Y. =c'X+e, wherec=[c;*,¢;%,....c;¥], E[e.]=0, Vale,] =, 2l then

9«:€X+Qj%%E (95)
where % = E[eka]. The regresson model of the environment is a way of encoding how the

environment will i nterad with the alaptative/leaning system. The time sampling strategy of
the data produces the probabili stic description d the knowledge needed by the system in order
to mimic or simulate the experience accumulation.

The mixture of normal multivariate distributions couged with a regresson estimate for the
model parameters as in Sedion 4 is allows to perform mean leaning in the presence of
multi ple operating modes describing the overall behaviour of the alaptive system. The one-
step or multi-step ahead prediction framework remains in the general spirit of the parameter
estimation theory for linea-quadratic systems (Harvey, 1996. The alaptation model of the
closed loopfor knowledge growth of the adaptive feaures is needed for the optimal evolution
in an uncertain environment.
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6. Concluding Remarks

This paper represents an attempt to close some ealier developments on the use of the
maximum likelihood strategies for ontline information processng for control synthesis in
systems operating in urcertain environments such as the telecommunication traffic flows
(Murgu, 1995. The averaging technique previously considered in the antext of ordered
means for dynamics of norma popdations (Murgu, 2008) and the Kalman filtering for
mixture systems (Murgu, 2001D is regarded now as a data smoothing/regularization method
for which the expedation maximization algorithms are available in the literature. The
dynamic covariance modeling for equivalent Markov system redization is involved into the
matrix statisticd data smoothing of the EMS solutions. This type of data smoathing approach
can be related to the maximum entropy method which is widely used as gpedral optimization
criteria for statisticd control systems. Further reseach efforts along this path will |ead to
additional insights on the probabili stic nature of the leaning models and knavledge formation
from experimental data.
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