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Abstract

In this paper we develop a mathematical statistics model for the mean learning processes
occurring in adaptive systems. A maximum likelihood approach with penalty constraints and
averaging is considered for increasing the performance in coping with the environment’s
uncertainties since it allows greater robustness by not relying on any particular prior
assumption. The mean learning or averaging can be considered as a form of regularization
since the effect of over-exposing the system to new information is reduced by averaging the
predictions obtained from models which describe the local relevant information. Covariance
evolution for dynamic systems having Markov parameters ensures that the data smoothing and
information conditioning is encapsulated into the mean learning scheme.

Keywords: Expectation Maximization, Maximum Likelihood, Information Conditioning,
Covariance Dynamics, Mean Learning, Adaptation, Prediction.

1.  Introduction

The averaging ensembles of estimators to probabilit y density estimation for Gaussian mixture
models important methods in many learning and control applications operating in uncertain
environments. The performance of averaging approach  is enhanced by using the traditional
regularization strategies such as the maximum likelihood approach and the Bayesian
approach. In the maximum likelihood approach, some penalty functions can be derived using
the conjugate Bayesian priors allowing the construction of the expectation maximization (EM)
algorithms which can be used for learning purposes. The maximum likelihood approach with
penalty constraints and the averaging increase the performance considerably compared to a
standard maximum likelihood approach. The averaging is a superior way of coping with the
environment’s uncertainties since it allows greater robustness by not relying on any particular
prior assumption. The averaging can be considered as a form of regularization since the effect
of over-exposing the system to new information is reduced by averaging the predictions
obtained from models which describe the local information exploration (Ormoneit and Tresp,
1998). The regularization is achieved by adding a penalty term to the log-likelihood cost
function. In the Bayesian approach, the predictive distribution is approximated by averaging
the forecasts of a sequence of parameter vectors selected according to the posterior probabilit y
density of the parameter vectors (White, 1996). In this respect, the Bayesian approach is
related to both the regularization strategy (via the prior) and the averaging strategy (via
models with different parameters). A covariance description of dynamic systems having
Markov parameters ensures that the data smoothing and information conditioning will be
exploited subsequently in order to match a prescribed model using an equivalent reduced
dynamic system subject to a mean learning scheme (that is, averaging) using the EM solution
to the smoothed maximum likelihood problem. The relevant local information is subsequently
used in a mixture of normal multivariate distributions.
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2.  Information Conditioning for Data Smoothing

We consider a general formulation of the Expectation Maximization (EM) problem with
multiplicative regularization (smoothing) of a data set. When the model data matrix is of
maximum rank, the EM model has a data smoothing interpretation, that is, the fixed points of
an iteration mapping (called the EMS solutions), solve a nonlinear system whose data have
undergone a componentwise nonlinear smoothing. Given a large non-negative linear systems
of the form

P nTθθ = ∗ (1)

with the model matrix P ∈ ×RB D , data vector n∗ ∈RD  and the solution θθ ∈RB  (all required to
be non-negative), an arbitrary non-negative data smoothing system

Q nTλλ = ∗ (2)

can be reformulated as in (1) using the following transformations

p
q

rbd
bd

b

=
( )Q

(3)

θ λb b br= ( )Q (4)

r qb bd
d

( )Q = ∑ (5)

These transformations allows the new coeff icient matrix P to be normalized and to become
row stochastic. We assume that P in equation (1) is row stochastic. In the context of
probabili stic models, the EM algorithm is an iterative procedure whose iterates converge to a
non-negative approximation of a solution to (1), independent of whether this system is over-,
fully- or underdetermined. This algorithm generates a sequence of non-negative appro-
ximations to (1) as follows

θθ θθ θθ( ) ( ) ( )( ) , , ,...n n n n+ = =1 0 1 2F ,     (6)

for a suitable initial selection θθ ( )0 , where

F( ) ( ),..., ( )θθ θθ θθ= diag F FB1 (7)

and

F
n p

b Bb
d bd
T

dd

D

( )
( )

,...,θθ
θθ

= =
∗

=
∑ P1

1  ,  (8)

The EM algorithm allows to find a non-negative solution called the EM solution of the
Maximum Likelihood Equations (MLE)

θθ θθ θθ= F( ) (9)

The iteration (6) is noisy and slowly converging. An intermediate information conditioning
step is introduced in order to obtain an EM with smoothing (EMS) algorithm. For linear
smoothing, this algorithm takes the form

θθ θθ θθ( ) ( ) ( )( ) , , ,...n n n n+ = =1 0 1 2SF   ,    (10)

where S ∈ ×RB B  is a non-negative conditioning matrix. The fixed point iteration generates a
sequence of non-negative iterates approximating a non-negative solution of the functional
equation
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SF( )θθ θθ θθ= (11)

Remark 1. If the smoothing matrix S  is chosen to be non-negative, row stochastic and
irreducible, then we obtain the class of the statistical smoothers which,  as a minimum are
irreducible.

 

If S  is invertible, every EMS solution θθS  lies in the convex region

ΩS b bb
s N= ≥ =∑θθ 0 θJ L (12)

where
N nd

d

= ∗∑ (13)

and
s Sb b b

b

= ′
−

′
∑ 1 (14)

Consequently, the set ΩS , defining the constraints on the parameter  θθ  as part of a hyperplane

in RB  which is compact if all the quantities sb  are positive. We denote the nonlinear EMS
mapping by

θθ θθ6 FS ( ) (15)
where

FS ( ) ( )θθ θθ θθ= SF (16)

We can write the system (11) in the form

θθ == ΘΘ νν θθS P ( ) (17)

where ΘΘ θθ= diag . The vector νν ∈RD  is defined as

ν d
d

T
d

n
d D( )

( )
,...,θθ

θθ
= =

∗

P
  ,  1

(18)

The alternative way of representing the EMS iteration equation is

θθ ΘΘ θθ( ) ( ) ( )( ) , ,...n n n n+ = =1 0 1S Pν ,    (19)

Theorem 1. Assume that P has rank D  and that S  is non-negative and invertible. Then every
positive EMS solution θθS  solves the nonlinear equation

P nTθθ θθ= ( ) (20)

where < >�� 	 � 	����� � 	
�

�N N�N θθ θθ θθ  with

n
n

d Dd
d

d

( )
( ( ) )

,...,θθ
ΘΘ θθ

= =
∗

+ −P S 1
1  ,  

(21)

Every solution �θθ  of (20) without zero components solves the modified EMS equations

S F( ( ) )θθ ΘΘ θθ θθ+ =∗ (22)

where Θ∗ ∗= diagθθ  for some θθ∗ ∈ker( )PT .
 



52

Remark 2. Theorem 1 also holds for any nonlinear mapping S  which is non-negative and
locally invertible near θθS , when ( )SΘΘ S −1 is interpreted locally as being the composition
( )ΘΘ S − −1 1

DS . If S  is linear, the assumption θθ S > 0  holds if, in addition to the given
assumptions, S  is irreducible.

 

The introduction of the nonlinearity S allows the EMS algorithm to perform very well for a
suitable choice of S . This situation resembles the phenomenon of super-resolution of near
black objects by the Maximum Entropy Method (MEM). The intuition behind the data
smoothing is the following: if ( )S 1ΘΘ θθS S

B
− ≈1 , then P S 1+ − ≈( )ΘΘ θθS S

D
1  and so, n n( )θθ S ≈ ∗.

Any S  which makes ( )S 1ΘΘ θθS S
B

− −1  suitably small causes a small change in the data when the

smoothing is performed to obtain n( )θθ S . The quantity ( )S 1ΘΘ θθS S
B

− −1  is a measure of the

amount of data smoothing.

Theorem 2. Assume that S  is non-negative and invertible and N , P and

s Sb b= −∑ β
β

1 ,  b B= 1,..., (23)

are all positive. Then the EMS equations have a solution θθ S
S∈Ω .

 

Theorem 3. The variation of any smooth EMS solution θθS  with the parameters n∗ and P is
the solution of the following systems

S I p( ( )) ,...,− ∇ = =DF d DS
S

d
S

d

S
dθθ θθ ΘΘ1

1
µ

  ,  (24)

S I p( ( )) ( ,..., , ,...,− ∇ = − = =∗DF n b B d DS
S

bd
S

d

S
b b

S
d dθθ θθ ΘΘ δδ1

1 1
µ

θ )   ,   (25)

where

∇ = ∗d
S

S

dn
θθ θθ∂

∂

(26)

∇ =bd
S

S

bdp
θθ θθ∂

∂

(27)

( )δδ b b bb′ ′= δ (28)

( )pd b b dp′ ′= (29)

µ d
T S

d= ( )P θθ (30)

If S  is chosen to be non-negative and invertible matrix such that 1∉σ ( ( ))DFS
Sθθ , then the

systems (24)-(25) are uniquely solvable with respect to ∇d
Sθθ  and ∇bd

Sθθ .
 

A covariance description of dynamic systems having Markov parameters ensuring that the
data smoothing and information conditioning is exploited in order to match a prescribed
model is considered in the next section. An equivalent reduced dynamic system subject to a
mean learning scheme (averaging) uses the solution of maximum likelihood problem.
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3.  Covariance Dynamics of Markov Systems

Truncation technique in dynamic systems based on observabilit y matrices of the full order
system are used to determine the order of reduced order model needed to match a specified
number of output covariance derivatives and Markov parameters. The resulting realization is
independent of the basis of the complete model up to a unitary transformation. Consider an
asymptotically stable, controllable and observable stochastic system (Grimble and Johnson,
1988)

�

( ) ( ) ( )x Ax Bwt t t= + (31)

y Cx( ) ( )t t= (32)

where x ∈Rn  is the state vector, y ∈RD is the measurement vector and w ∈Rm  is the noise
vector. The parameter matrices A B C, ,   are constant and we assume that rank C = ≤n D1 .
The initial condition x( )0  is assumed to be a zero mean Gaussian random vector with
covariance matrix X0 . The zero mean white noise process w( )t  has the intensity W 0>  and
we assume that w( )t  is independent of x( )0 . The covariance matrix  of the output process
y( )t  in the presence of zero mean x( )0 , denoted by ΣΣ 0( , )t t+ τ  is defined as

ΣΣ 0( , ) ( ) ( )t t E t tT= y y (33)
and

ΣΣ 0( , ) ( ) ( )t t E t tT+ = +τ τy y (34)

where ΣΣ 0( , )t t  is calculated as

ΣΣ 0( , ) ( , )t t t t T= CX C (35)

with X( , )t t , the covariance matrix of x( )t  satisfying the following differential equation

� ( , ) ( , ) ( , )X AX X A BWBt t t t t t T T= + + (36)
with

X X( , )0 0 0 = (37)

The steady-state covariances are defined as

ΣΣ ΣΣ0 0=
→∞
lim ( , )
t

t t (38)
and

X X=
→∞
lim ( , )
t

t t (39)
where ΣΣ 0 is given by

ΣΣ 0 = CXCT (40)

and
AX XA BWB 0+ + =T T (41)

A partial realization of the system (31)-(32) is defined as
�

( ) ( ) ( )x A x B wR R R Rt t t= + (42)

y C xR R Rt t( ) ( )= (43)

where x R
rR∈ , yR

DR∈  with r n≤  and

E Rx 0( )0 = (44)
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E R R
T

Rx x X( ) ( )0 0 0= (45)

The system (42)-(43) is obtained by truncating (subsystem elimination) the system (31)-(32),
that is, there exist the matrices L R  and TR  satisfying the following equations

L T IR R r= ,  LR
r nR∈ × ,  TR

n rR∈ × (46)

such that
A L ATR R R= (47)

B L BR R= (48)

C CTR R= (49)

where Ir  is the ( )r r×  identity matrix.

Definition 1. The realization (42)-(43) is called a q -COVariance Equivalent Realization (q -
COVER) of (31)-(32) if and only if

E t E tRy y( ) ( )= (50)
and

ΣΣ ΣΣ ΣΣ ΣΣRj
t

j

j R
t

j

j j

d

d
t t

d

d
t t j q= +�

! 
"
$#

= +�
! 

"
$#

= =
→ →∞ → →∞

lim lim ( , ) lim lim ( , ) , , ,...,
τ ττ

τ
τ

τ
0

0
0

0 0 1   (51)

A minimal q -COVER is defined as satisfying (46)-(49) with the smallest possible order r .
 

We can write

ΣΣ 0( , ) ( ) ( ) ( ) ( ) ( , )t t E t t E t t e t tT T T T+ = + = + =τ τ τ τy y C x x C C X CA
(52)

and since X X( , )t t =  in the steady state, it follows that

ΣΣ ΣΣ0 0( ) lim ( , )τ τ τ= + =
→∞t

Tt t eC XCA
(53)

Remark 3. Assuming the steady-state covariance conditions is equivalent to assuming that
y( )t  is a stationary process, since for stationary we have

E t t t t t tTy y( ) ( ) ( , ) ( ) ( )+ = + = + − =τ τ τ τΣΣ ΣΣ ΣΣ0 0 0 (54)
and

ΣΣ ΣΣ0 0( , )t t = (55)
 

From the equation (52) it follows that

ΣΣ ΣΣj
t

j

j
j Td

d
t t e j q( ) lim ( , ) , , ,...,τ

τ
τ τ= + = =

→∞ 0 0 1C A XCA    (56)

ΣΣ ΣΣj j
j T j q= = =

→
lim ( ) , , ,...,
τ

τ
0

0 1CA XC    (57)

Theorem 4. A realization (42)-(43) is a q -COVER of (31)-(32) if and only if

ΣΣ ΣΣRj R R
j

R R
T j T

j j q= = = =C A X C CA XC  ,    0 1, ,..., (58)
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Considering a series expansion of eAτ  in (52), we can write

lim ( , ) ( )
!t

i T

i

i

t t
i→∞

=

∞

+ = �
��

�
��∑ΣΣ 0

0

τ
τ

CA XC (59)

and similarly for the partial realization we get

lim ( , ) ( )
!t

R R R
i

R R
T

i

i

t t
i→∞

=

∞

+ = �
��

�
��∑ΣΣ 0

0

τ
τ

C A X C (60)

As q  increases, the q -COVER forces more terms of ΣΣ R t t0( , )+ τ  to match those of
ΣΣ 0( , )t t+ τ  and (42)-(43) becomes a better partial realization of (31)-(32). The correlation over
time of the reduced system outputs comes closer to matching the correlation over time of the
full system outputs.

Remark 4. A q -COVER has the same input-output rate correlation as the full order system.
This condition improves the fidelity of the reduced order model and it is regarded as an
internal smoothing mechanism for model approximation. The steady state covariance of x R t( )
satisfies

X A A X B WB 0R R
T

R R R R
T+ + = (61)

 

Remark 5. The q -COVER is independent of the choice of basis of the state space of (31)-
(32) up to a unitary transformation. Since a change of basis affects only the endogenous
variables x( )t , the q -COVERs depend only on the exogenous variables y( )t  and w( )t .

 

4.  Maximum Likelihood Mean Learning

In the maximum likelihood approach we try to find the parameters which maximizes the
function

� � 	 LOG � � 	 LOG � 	 LOG � 	L P P P� � �Y Y YR R R R (62)

with respect to R , where the first term is the log-likelihood and the second is the logarithm of
the prior parameter distribution. As a density model for the data we choose the class of
Gaussian mixtures

�
� 	 � � 	

�

� � �

�
P .B

�

��Y YR N 4 (63)

with the restrictions ��B p  and

�
�

�

�

�
B

�

�� (64)

where � � 	� �. Y N 4  are the multivariate normal densities

	 

	
 �

� � 	 �� 	 EXP � 	 � 	
�

�

�

     . Q
� � �  ¯

� � � �¡ °
¡ °¢ ±

Y X XN 4 4 N 4 N (65)
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The Gaussian mixture model is well suited to approximate a wide class of continuous
probabilit y densities (White, 1996). Given the data set \ ^������ �9 � Y Y  of realizations for Y ,

we formulate the log-likelihood as

� � �
� � 	 LOG � 	 LOG � 	 LOG � � 	 LOG � 	

���
� � � � �

� � �
L P P . PB

	 	 	

  ¯
¡ °� � � �
¡ °¢ ±

� ��Y Y YR R R N 4 R (66)

Maximum likelihood parameter estimates R  using the EM algorithm which consists of the
iterative application of the following two steps:

1. E-step. Based on the current parameter estimates, the posterior probabilit y that the
component J  of the covariance equivalent realization is responsible for the generation of
data pattern 
Y  is estimated as

�

� � 	

� � 	

� 
 � �
�


� 
 � �
�

.

.

B
C

B
�

�

�

Y

Y

N 4

N 4
(67)

2. M-step. The new parameter estimates are computed as

�
�

�
� ��

�M
B C

�
a � � (68)

�

�

�
�� �

�
��

��
�

C

C

�

�

a �

�

�

Y

N (69)

�

�

� 	� 	

� �
�� � � � �

�
��

��
�

C

C

�

�

a a� �

a �
�

�

Y YN N

4 (70)

Theorem 5. For a given i , the q -COVERs ( )q i>  satisfy the equation

lim ( )( ) lim ( )( ) , , ,...,( ) ( ) ( ) ( )

t
R
j

R
l T

t

j l TE t E t j l i
→∞ →∞

= =y y y y ,      0 1 (71)

where

⋅ = ⋅( )j
j

j

d

dt (72)

 

Remark 6. In the special case �Q � , the 1-COVER has the property of minimizing a
quadratic criterion associated to the truncation error (when n k1 = ). Define the output error as

e y y( ) ( ) ( )t t tR= − (73)

Assuming that C IR k= , the error e( )t  satisfies the equation

�( ) ( ) ( )e A e ft t tR= + (74)
where

f CA A C x CB C B w( ) ( ) ( ) ( ) ( )t t tR R R= − + − (75)
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The quadratic criterion

J E t t dt
t

T
t

= Imin ( ) ( )
( )f

f f
0

(76)

This minimization criterion can be regarded in two different ways as follows:

a) f( )t  is the forcing term (learning stimulus) in the output residual error equation (65). The
minimization is an appropriate goal which is associated to the learning/approximation of
the full system model.

b) f( )t  can be considered as the equation error resulting from substituting the output into the
equation of the reduced model, that is,

f y A y B w( ) �( ) ( ) ( )t t t tR R= − + (77)

In this case, the minimization (67) becomes a linear problem called the output learning
model (Ormoneit and Glynn, 2002).

 

In the case of impulse or white noise inputs, the parameter matrices A BR R,   which minimizes
J  are given by

A CAXC CXCR
T T= −( ) 1 (78)

and
B CBR = (79)

Remark 7. The truncation technique provides a link between the matching of Markov
parameters to the output covariance derivatives in the partial realization problem. This
technique a q -COVER which simultaneously matches q +1 output covariance derivatives and
q  Markov parameters.

 

The aim of the next section is to provide a basis for identifying the elements of an adaptation
model based on observations from a dynamic system and statistical inference drawn from a
postulated reference model. The issue is to have a robust inference from observations as a
self-adaptation when learning the truly valuable new information contained in the data. As
describe in the previous section, this issue is handled via the maximum likelihood averaging
by detecting the system pattern behaviour. The observations data can contain non-typical
records (i.e., outliers) which are regarded as being innovations in the learning process. These
outliers' potential contribution to knowledge formation process is evaluated locally in
conjunction with the latest estimation of the knowledge map prior to the sampling of the new
observation.

The statistical inference drawn from the data can be substantially altered when the observation
evaluated as the outlier is deleted from the knowledge map formation process. The outlier
generation process could have a mean-shift model or a variance-inflation model. In other to
deal with the forthcoming complexities in the data, we consider a general regression model as
the basic hypothesis for the observation process. To assess the practical advantage of the
averaging and regularization approaches, the density estimates of the multivariate statistical
processes are used to obtain the control model for adaptation by learning. The reason is that
the generalization error of density estimates in terms of the likelihood based on test data is
rather unintuitive.
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5.  Application to System Adaptation by Learning

Let  us consider an exponomial function approximation p( )t  defined as

p x( ) , , ,...,t c t mj
t

j
j

q

= =
=

∑
1

1 2   (80)

where the c j  are fixed and distinct real numbers. Suppose that we have M  observations on a

nonstationary stochastic process Y y y y= 1 2, ,..., m

T
 with finite second order moments, where

ym  is the first observation, ym−1 the second, etc., and y1 the last observation in the series.
Assume that the series of observations obeys the model

y p et tt t m m q= + = >( ) , , ,..., ,        1 2 (81)

Let C be the generalized Vandermonde matrix

C =

�

�

�
�
��

�

�

�
�
��

c c c

c c c

c c c

q

q

m m
q
m

1 2

1
2

2
2 2

1 2

"

"

# # " #

"

(82)

and let X x x x= 1 2, ,..., q

T
 and E e e e= 1 2, ,..., n

T
. The model can be reformulated into a

matrix notation

Y CX E= + (83)

where E E 0=  and Var E EE= ≡ −E T σ 2 1ΣΣ . The covariance matrix is assumed to be

positive definite. The matrix #  has full rank because the c j  are distinct. If ΣΣ −1 is not the

identity matrix, then !  cannot be estimated simply by the usual least squares technique. For
the estimates so obtained will not in general have minimum variance among all unbiased
linear estimates. To obtain the best linear unbiased estimator (BLUE), a weighted least
squares analysis is necessary. It can be shown that there exists a nonsingular symmetric matrix
'  such that

G G GGT = = ΣΣ (84)

and multiplying Y  by ' , we have

GY GCX GE= + (85)

Since E GE 0=  and Var GE GEE G I= =E T T σ 2 , 8  is found by minimizing

( ) ( ) ( )GE GE Y CX Y CXT T= − −ΣΣ (86)

with respect to 8 . Then we have

� ( )X C C C Y= −T TΣΣ ΣΣ1 (87)

where obviously, the inverse exists since #  has full rank and 4  is positive definite. Define
ΣΣ1 2  to be the positive definite square root of 4  and let D C= ΣΣ1 2 . Then, we see at once also
that

�X D y= +ΣΣ1 2 (88)
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where D+  is the generalized inverse of D and consequently,

� ( )X X C C C E= + −T TΣΣ ΣΣ1 (88)

where E �X X=  and Var( � ) ( )X C C= −σ 2 1T ΣΣ . Let � �E Y CX= −  denote the estimation error

matrix. If Y  has a multivariate normal distribution, then it can be shown that e8  and � �E ET mΣΣ
are the maximum likelihood estimate of X  and σ 2I. In this case, we can also perform the
usual significance tests and construct confidence intervals for the x j  (White, 1996). We

construct the one-step predictor for y0 with the purpose of on-line adaptation (Cassandras and
Lafortune, 1999). The best (in the sense of minimum variance) linear unbiased one-step
predictor of y0, given the previous observations y y y1 2, ,...,  m . We assume that

y 1 X e0 0= +T (89)

where E e 00 = , Var e I0 0
2= σ  and 1 = 1 1 1, ,...,  

T
 and define the matrix of expectations 6

by

V e E= E T
0

(90)

The best linear unbiased predictor of y0, denoted by �y0 is

� �y 1 X V V0 2

1= +T T

σ
ΣΣ (91)

In the case when e0 is not correlated with % , �y0 reduces to the one-step forecast, namely

y 1 X0
∗ = T � (92)

where
E Ty 1 X0

∗ = (93)

Var y 1 C C 10
2 1∗ −= σ T T( )ΣΣ (94)

In the same way we can construct the ( )k +1 th  step forecast. If it is assumed that

y c X e− −= +k
T

k , where c = − − −c c ck k
m

k T

1 2, ,..., , E ke 0− = , Var e I− −=k kσ 2 , then

�y c X E− −
−= +k

T
k

Tσ 2ΩΩ ΣΣ (95)

where ΩΩ = −E k
Te E . The regression model of the environment is a way of encoding how the

environment will i nteract with the adaptative/learning system. The time sampling strategy of
the data produces the probabili stic description of the knowledge needed by the system in order
to mimic or simulate the experience accumulation.

The mixture of normal multivariate distributions coupled with a regression estimate for the
model parameters as in Section 4 is allows to perform mean learning in the presence of
multiple operating modes describing the overall behaviour of the adaptive system. The one-
step or multi -step ahead prediction framework remains in the general spirit of the parameter
estimation theory for linear-quadratic systems (Harvey, 1996). The adaptation model of the
closed loop for knowledge growth of the adaptive features is needed for the optimal evolution
in an uncertain environment.
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6.  Concluding Remarks

This paper represents an attempt to close some earlier developments on the use of the
maximum likelihood strategies for on-line information processing for control synthesis in
systems operating in uncertain environments such as the telecommunication traff ic flows
(Murgu, 1995). The averaging technique previously considered in the context of ordered
means for dynamics of normal populations (Murgu, 2001a) and the Kalman filtering for
mixture systems (Murgu, 2001b) is regarded now as a data smoothing/regularization method
for which the expectation maximization algorithms are available in the literature. The
dynamic covariance modeling for equivalent Markov system realization is involved into the
matrix statistical data smoothing of the EMS solutions. This type of data smoothing approach
can be related to the maximum entropy method which is widely used as spectral optimization
criteria for statistical control systems. Further research efforts along this path will l ead to
additional insights on the probabili stic nature of the learning models and knowledge formation
from experimental data.

References

Cassandras C.G. and S. Lafortune (1999); Introduction to Discrete Event Systems; Kluwer
Academic Publishers.

Grimble M.J. and M.A. Johnson (1988); Optimal Control and Stochastic Estimation. Theory
and Applications, Vol. 1, John Wiley & Sons.

Harvey A.C. (1996); Forecasting, Structural Time Series Models and the Kalman Filter;
Cambridge University Press.

Murgu A. (1995); “Maximum Likelihood Estimation from Multiple Observations for Neural
Control of Traff ic Flows in Multistage Networks” ; Advances in Interdisciplinary Studies in
Systems Research and Cybernetics, IIAS, G.E. Lasker (ed.), Vol. III, pp. 55-64.

Murgu A. (2001a); “ Interval Estimation of Ordered Means fir Dynamics of Normal
Populations” ; Proceedings of the Focus Symposium on “Adaptive, Cooperative and
Competitive Processes in System Modeling, Design and Analysis” , A. Murgu, G.E. Lasker
(eds.), IIAS, pp. 19-27.

Murgu A. (2001b); “Kalman Filtering of Mixture Systems with Interval Dynamics” ;
Proceedings of the Focus Symposium on “Adaptive, Cooperative and Competitive Processes
in System Modeling, Design and Analysis”, A. Murgu, G.E. Lasker (eds.), IIAS, pp. 28-36.

Ormoneit D. and V. Tresp (1998); “Averaging, Maximum Penalized Likelihood and Bayesian
Estimation for Improving Gaussian Mixture Probabilit y Density Estimates” ; IEEE Trans. on
Neural Networks, Vol. 9, No. 4, pp. 639-650.

Ormoneit D. and P. Glynn (2002); “Kernel-Based Reinforcement Learning in Average-Cost
Problems”; IEEE Trans. on Automatic Control, Vol. 47, No. 10, pp. 1624-1636.

White H. (1996); Estimation, Inference and Specification Analysis; Cambridge University
Press.


