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Abstract. In this paper, we consider a mathematical approach describing
the sequential averaging mapping for selection dynamics of multiple classes
in digital data service systems which are generated as evolutionary games.
The essential feature of this construction is the encoding of a behaviour
discrimination for the long-term dominated strategies associated to the dy-
namic replicator games of competitive overlapping populations of data pack-
ets encountered in the common channels or switching nodes. The decision
making process is structured as an averaging operator performing an aggre-
gation task of interval-valued mappings.
Keywords: telecommunication systems, multiclass services, evolutionary
strategies, replication games, dynamic aggregation.

1. Introduction

In many tehnical, economic and social applications, the decision process taking
into account the uncertainties is best served if some evolutionary approaches are
considered (Fogel, 2000). The replication by the way of biological or technical re-
generation is an alternative determining the spread of a population of successuful
solution strategies. The replication by imitation and enforcement of successful be-
haviors leads to pure strategies of cheap talk extension as in the game theory. If
in the biological population, each individual is programmed to a decision rule that
prescribe some base game, the action to be taken for each message is determined
by the behaviour of the opponents. In this interpretation, the individuals are dis-
criminating in their behavior and their actions are conditioned on their opponents’
messages. When the evolutionary selection operates at this level of messages and
decision rules, the long-term aggregate behavior produces strictly dominated strate-
gies. If all possible decision rules are allowed, then the evolutionary selection satisfies
a game theoretic rationality in a complex form involving nonsymmetric Nash equi-
librium play. An example of such approaches in real life technical system include the
widely acclaimed multiprotocol label switching (MPLS) strategies in digital com-
munication networks (Ginsburg, 1996). In the digital switching networks, the delay
sensitive applications lead to varying/variable classes of service designed to allow
the service providers to offer a portfolio of service level agreements (SLA) (usually
ranked according to a set of parameters understood as describing the quality of
service). In the internet protocol (IP) managed networks, the connectionless feature
operates on a ”best-effort” principle where the packets are routed individually using
the destination IP adress inside every packet. The routes to be followed by these
packets are determined by the IP routing protocols such as the open shortest paths



(OSPs). The packets directed onto the shortest path make no distinction between
the specific classes of data traffic flows. The consequence of this approach is the
traffic aggregation on only few paths as the OSP does not take into account how
much other clases traffic is traversing a particular link at any one time. The level
of traffic aggregation is resposible for the quality of service degradation. The traffic
flow behaviour discrimination is likely to enhance the network utilisation and service
provisioning. Before the advent of Gigabit Ethernet, 100 Mbps was the maximum
rate for Ethernet. For speeds exceeding 100 Mbps, multiple proprietary Fast Eth-
ernet links are needed to be connected in parallel (e.g., Cisco Fast EtherChannel
trunking). The ATM technology has an edge with its 622 Mbps version. The Gigabit
Ethernet and the proposed 802.3ad Link Aggregation / Truncking standard, Ether-
net backbones of several gigabits per second can be built. The Ethernet now scales
from 10 to 100 to 1000 Mbps. The Ethernet Link Aggregation proposal works for
both switches and servers, whereas ATM does not allow server Link Aggregation.
The 53 bythe ATM cell structure is less efficient than Ethernet frame structure. For
1 KB frames (Ethernet frames can range from 64 bytes to 1522 bytes), Ethernet
protocol efficiency is 0.98, compared to ATM efficiency of 0.9 (Ginsburg, 1996). The
ATM attractiveness lies in its radically different approach of integrated LAN/WAN
and voice/data traffic. The ATM has been designed by the service provider industry
offers state-of-the-art quality of service (QoS) in the sense that the connections are
specified in terms of their bit rates or bandwidth (CBR, VBR, UBR, ABR) (Gins-
burg, 1996). The Shared Ethernet offers a zero level QoS. The QoS is necessary
if a network is overloaded and sporadic delays are a normal part of the network
operation. For wide area networks (WANs), the links always run close to full ca-
pacity and the QoS becomes important. The objective of this paper is to present
an encapsulation method in the handling the traffic incertainties occuring in a net-
work which is subject to multiclass competetive traffic patterns and to offer a way
of preserving and guaranteeing the desired QoS level. The network state discovery
mechanism based on a mobile agent style propagation of the interactions among the
service nodes running the physical implementation of the MPLS strategies.

2. Multiclass Services as Evolutionary Selection Games

Suppose that we have a population of active services implemented in the network un-
der consideration which are regarded as mobile agents which are randomly matched
to play a symmetric two-player game. At each matching, we assume that an agent
is programmed to issue one and the same of finitely many, distinct signals or mes-
sages before playing the game (Weibull, 1996) which tells to the remaining pop-
ulation of sessions that an agreement on the level of network resources sharing
(simple/aggregated link capacities, processor sharing rates, etc.) has been reached.
Let G represent the game performed using the pure strategy set K = {1, ..., m}
with the corresponding pure strategy payoff function π. Let M be the finite set of
messages that can be issued by each service agreement instance. A decision rule is
a function f : M → K which says that if the opponent message is µ ∈ M , then
use the pure strategy i = f(µ). Let F be the set of all such functions. A pure
strategy in the associated game GM is a pair (µ, f) × F and the payoff to a pure
strategy profile ((µ, f), ν, g)) is π [f(ν), g(µ)]. Let ph be the population share of



mobile agents programmed to play the pure strategy h = (µ, f) (that is, reaching
the service agreement level described by h. The vector p = (ph) is desined as the
population state, a point on the unit simplex ∆M of mixed strategies of the game.
When the population state is p ∈ ∆M , the payoff of any strategy h = (µ, f) in the
game is uM (eh, p) and the average payoff is uM (p, p). The dynamics applied to the
space ∆M of mixed strategies of the game is given by

ṗh(t) = uM (eh − p(t), p(t))ph(t) (1)

where uM is the aggregated dynamic operator. The interaction messages in the same
subpopulation µ ∈ M differ only with respect to their decision rule f ∈ F , that is,
when matched with any particular agent from the population, they will all describe
the same interaction, which is the base game strategy. If the opponent decision rule
is g ∈ F , then any agent from subpopulation µ faces the action j = g(µ). Let pµ

denote the population share of dynamic interactions of sender of type µ, that is,
pµ is the sum of all ph such that h = (µ, f) for some f ∈ F . It is reasonable to
decompose the matchings between interaction in the population of active sessions
into batches, one batch being dedicated to each session interacting pair. For each
action i ∈ K, the interaction (µ, ν) ∈ M2 and the population state p ∈ ∆M with
pµ > 0, let us denote by p

µν
i ∈ [0, 1] the share of the changing interactions in the

subpopulation µ which take the action i when meeting a session of type ν.

Proposition 1. The vector pµν = (pµν
i )i∈K is a point on the unit simplex ∆ and

thus, pµν is the randomization action (mixed game strategy) facing any interaction
of type ν when matched with an interaction of type µ. ut

Equivalently, pµν ∈ ∆ is the aggregated randomized action used by the subpopula-
tion µ ∈ M against the subpopulation ν ∈ M . Let us consider the dynamics defined
on the mixed strategy simplex ∆ in terms of growth rates for the population inter-
action shares associated with each pure strategy i ∈ K of the game. This is given
by

ẋi(t) = gi(x(t))xi(t) (2)

where gi(x) ∈ R is the rate at which the pure strategy i replicates itself when the
population is in the state x (a function with open domain X containing ∆). The
population state remains in the simplex at all times if the weighted sum of growth
rates

∑

i gi(x)xi is constantly equal to zero.

Proposition 2. The population state x ∈ ∆ is stationay if and only if all pure
strategies that are in use in x have zero growth rate, that is, if and only if gi(x) = 0
for all i ∈ C(x). ut

Geometrically speaking, the condition g(x)T x = 0 means that the growth rate
vector g(x) ∈ Rk has to be orthogonal to the associated population vector x ∈ ∆.

Remark 1. The stationarity feature of the aggregated pure strategies are usefl in
order to prescribe stationary control rules in the aggregated multiservice classes of
traffic flows under competition for network resources. ut



3. Service Class Dynamics Replication

Suppose that the payoff function represents the fitness gain at a given time step, t =
0, 1, ..., where the fitness is simply taken to be the number of emerging interactions
of the next generation of multiclass competitive traffic patterns. Suppose that each
new interaction inherits in some extent its parents intended strategy and let α ≥ 0 be
the background (lifetime) birthrate of these interactions regarded as mobile agents
in social colonies (Goel and Richter-Dyn, 1974). If pi(t) is the number of agents
in generation t who are programmed to perform the pure strategy i ∈ K, the
associated population share is xi(t) = pi(t)/p(t). Here, p(t) =

∑

i pi(t) > 0 is the
total population of interactions in the generation t. Each agent which is programmed
to pure strategy i in the generation t gets α + u

[

ei, x(t)
]

new agents where ei ∈ ∆

is the ith generation distribution over pure strategies in the game.

Proposition 3. The interactive populations of traffic classes satisfy the following
structural dynamics

pi(t + 1) =
(

α + u
[

ei, x(t)
])

pi(t) (3)

or equivalently, summing over all pure strategies i ∈ K, the aggregated dynamics

p(t + 1) = (α + u [x(t), x(t)]) p(t) (4)

where u [x(t), x(t)] is the average payoff to an interaction strategy in the generation
t.

ut

Proposition 4. The population shares of discrete time replicator dynamics are
given by

xi(t + 1) =
α + u

[

ei, x(t)
]

α + u [x(t), x(t)]
xi(t), t = 0, 1, 2, ... (5)

ut

In the equation (5), all the interactions take place within one generation at a time.
Suppose instead that the interaction generations overlap in time such that the births
and death rates are r ≥ 1 per time units. Each time, only the share τ = 1/r of the
total population is involved, where τ ∈ (0, 1] is the the time duration between two
successive population changes. Let us assume that the life-span of an interaction is
a random multiple of the interval lenghts τ , that is, it is a geometrically distributed
random variable with the mean value µ = 1 and the variance σ2 = (1 − τ)/τ = r−1.
Suppose that each interaction is programmed to be performed as a pure strategy
i and once it is reproduced at time t, then it is replaced by u

[

ei, x(t)
]

+ β ≥ 0
interactions, where β ≥ 0 is the background (lifetime) birthrate. The population of
interactive sessions has the following dynamics

pi(t + 1) = (1 − τ)pi(t) + τ
(

β + u
[

ei, x(t)
])

pi(t) (6)

where pi(t) is the number of interactions which at time t are programmed to strategy
i and p(t) > 0 is the total number of interactions at that time and xi(t) = pi(t)/p(t).
Adding the population shares and using the bilinearity of the payoff function, we
obtain the total population dynamics given by

p(t + τ) = (1 − τ)p(t) + τ (β + u [x(t), x(t)]) p(t) (7)



Proposition 5. The replication dynamics of population shares are obtained by di-
viding each side in (6) by the corresponding side in (7) as follows

xi(t + τ) =
1 − τ + τ

(

β + u
[

ei, x(t)
])

1 − τ + τ (β + u [x(t), x(t)])
xi(t) (8)

ut

Let us consider the stationary distribution of service class populations regarded as
general mapping in the space of input-output matrices m×n called the steady mix-
ing matrices (m < n) (the hybrid multiclass multistrategy dynamic interactions).
We consider an open input-output model with n aggregated sessions given by

x = Ax + y (9)

where x ∈ Rn is an shaped dynamic population (output population), y ∈ Rn is the
final demand vector and A ∈ Rn×n is an input-output mixing strategy matrix. For
an input-output matrix A = (aij), the entry aij can be interpreted as the amount of
network resource share i necessary in allowing to obtain a unit of resource share j,
given the specific mixing technology (for example, MPLS) represented by A. Thus,
1 −

∑

i aij is the value added per unit of commodity j (assumed positive). The
matrix A has nonnegative entries and column sums all less than 1. Such a matrix
is usually called (strictly) column substochastic since a column stochastic matrix is
a nonnegative one with column sums of 1. The input-output equation

y = (I − A)x (10)

can be used to transform an output population distribution vector into a finally
shaped population vector. Conversely, since A is column substochastic, (I − A)
must be nonsingular, so that x = (I − A)−1y can be used to transform a final
demand vector to an output vector. Since A is substochastic, the inverse matrix
(I − A)−1 is nonnegative and A is irredicible, then (I − A)−1 is strictly positive.

4. Sequential Aggregation of Replicated Dynamic Classes

The methods for producing the input-output matrix A introduced are various and
essentially are designed to produce averaging features of the behaviour discrimi-
nation uncertainties due to overlapping populations of data packets encountered
in the common channels or switching nodes. In the framework of this paper, the
dynamics in equation (8) can be regarded as the result of multiple swaps of popu-
lations replications as a particular type averaging operation (Fodor and Roubens,
1994). Let R1, ..., Rm, 0 ≤ Ri ≤ 1 be the set of rules leading to the reshaping of
the output traffic patterns where m is the number of pure strategies in the initial
evolutionary selection game. It is desired to substitute the vector of specific rules
(R1, ..., Rm) by a simple valued aggregation rule R using a compounding operator
M (the MPLS/IP traffic aggregator) generically defined as

M :

m
∏

k=1

[0, 1]
k
→ [0, 1] (11)



subject to the constraint

R = M(R1, ..., Rm) ∈ [0, 1] (12)

Assuming that the condition of independence of irrelevant preferences of the popula-
tion generations holds, if a profile of valued relations (R1, ..., Rm) is modified in such
a way that the interactions paired comparisons among a set of alternatives (a, b)
are unchanged, then the aggregation resulting from the original and the modified
profiles should remain unchanged for the pair (a, b) (that is, a dynamic conservation
constraint holds). We assume that R(a, b) depends only on R1(a, b), ..., Rm(a, b) and
it is a function of m arguments for every pair (a, b) ∈ A × A. According to these
intended features, the operator M will present a non-negative response to any in-
crease of the arguments. This means that M(x1, ..., xm) is monotonic (M -operator)
and x′

i > xi implies that

M(x1, ..., x
′

i, ..., xm) ≥ M(x1, ..., xi, ..., xm) (13)

We consider that dynamic aggregation operator will satisfy the unanimity voting
property, that is, if all Ri are identical, M(Ri, ..., Ri) restitutes the common valued
relation (Murgu, 2001, a). The ways to define the operator M (m)(x1, ..., xm) in terms
of M (m−1)(x1, ..., xm−1) use the associativity and decomposability properties.

Proposition 6. The associativity property of the aggregation operator of only two
arguments can be canonically extended to any finite number of arguments using the
absorption dynamics into macrorules (macroclasses)

M (3)(x1, x2, x3) = M (2)(x1, M
(2)(x2, x3)) = M (2)(M (2)(x1, x2), x3) (14)

M (m)(x1, ..., xm) = M (2)(M (m−1)(x1, ..., xm−1), xm) (15)

ut

Proposition 7. The operator M is decomposable, that is, considering a sequence
of functions M (1)(x1), M (2)(x1, x2), ..., M (m)(x1, ..., xm), each function of the se-
quence has to satisfy the following equation

M (m)(x1, ..., xk, xk+1, ..., xm) = M (m)(Mk, ..., Mk, xk+1, ..., xm) (16)

with k ∈ {1, ..., m}, Mk = M (k)(x1, ..., xk). ut

The generalized mean f−1
[

1
m

∑

i f(xi)
]

is an easy and remarkable example of ag-
gregation strategy representing an averaging operator which covers a wide spectrum
of means including the arithmetic, quadratic, geometric, harmonic and root-power
means. For example, the root-power corresponds to

M (α)
m (x1, ..., xm) =

(

1

m

∑

i

xα
i

)1/α

(17)

where 0 < |α| < ∞, which includes the arithmetic (α = 1), quadratic (α = 2) and
the harmonic (α = −1) means. The operator M is stable for any admissible positive
linear transformation if

M(rx1 + t, ..., rxm + t) = rM(x1, ..., xm) + t (18)



where r > 0, rxk + t ∈ [0, 1] for all k ∈ {1, ..., m} and rM(x1, ..., xm) + t ∈ [0, 1].
The operator M is a generalized mean if and only if

M(x1, ..., xm) =
1

α
log

[

m
∑

i=1

eαxi

m

]

, α 6= 0 (19)

M(x1, ..., xm) =
1

m

m
∑

i=1

xi (20)

The specific application of the equations (18) and (19) includes the determination of
the associated parameters and data smoothing horizon fitted to describe in a best-
effort manner the dynamic competition of multiclass services for network resources
(Murgu, 2001, b). In the sequential window flow control, the first packets in a
switch’s input buffers first contend for the outputs, the losing input buffers that
contain a second cell are allowed to contend a second time. Those that lose in the
second time and have a third cell are allowed to contend a third time and so on,
until N times are contended, where N is the depth of window. In parallel windowing
(or batch window as it is called in this paper) all the cells in the windows of all
buffers contend in a single round with the winners proceeding to the outputs, with
the condition that only one cell can be selected at most from a buffer.

5. Concluding Remarks

The statistical multiplexing approach of traffic flows allows the minimization of the
transmission costs and time delays based on the decomposition of the traffic patterns
using the hierarchical sequential averaging mappings according to the value of the
component rates as in (17). The digitally siwtched networks are designed to offer
quality of service guaranteed applications. The MPLS/IP connections are specified
by the bit rates or bandwidth for a given connection request (constant, variable,
unspecified and available bit rates.
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