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Abstract

In this paper an interval dynamicad modelling for Kalman filtering of the mixture models
asociated to the multistream traffic aggregation in communication links in general flow
networks is considered. The purpose is to buld a robust forecasting device working under
uncertainty of the traffic dasses assgnment. If some system parameters sich as certain
elements of the system matrix are nat predsely known o gradually change with time, then the
classcd Kaman filtering algorithm canna be gplied dredly. In this case, a robust version
of the Kalman filtering that has the adility of handling the traffic dassuncertainty is needed.
The interval data vedor obtained in the interval Kalman filtering is an urcertain interval
vedor before the data ae acdually being obtained. It will be an ordinary constant vedor after it
has been actually measured and realized.
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Traffic Patterns.

1. Introduction

The multiplexing of various traffic stream al ows the minimization d the transmisson costs
and time delays is considering the decomposition d the traffic patterns based on herarchica
mean clustering of the traffic comporent rates. The multiclass ®rvice systems are becoming
even more popuar with the penetration d mobile internet applicaions. The competition to
ensure a highly reliable and guaranteed quality-of-service parameters is forcing a new
perspedive in designing the red-life network operation regimes where the uncertainty of the
current traffic dasses assgnment shoud be tolerated ([2]). The interval modelling is solution
of these problems and it is motivated by flexibility in implementing adaptive flow
multiplexing strategies that are ale to tradk the relevant statistics of the red flow network
while meding the uncertain traffic demand. The ATM networks have been designed by the
service provider industry (telcos) offers date-of-the-art quality of service (QoS)., where the
ATM conredions are described by the bit rates or bandwidth (constant, variable, unspedfied
and avail able bit rates). The ATM traditional strenghts are that it can cope well with delay
sensitive gplicaions and provide varying classes of service (allowing the service providers to
offer a suite of service level agreaments). This is adiieved by ATM transforming the
"conredionless' nature of the IP traffic into a cnredionoriented mode. The IP is
conredionless that is, it operates on a "best-effort” principle where padkets are routed
individualy using the destination IP adressinside every padket. The routes to be followed by
these padets are determined by IP routing protocols such as open shortes path firs (OSHF).
This direds padets onto the shortest path and makes no dstinction between voce and chta.
This can leal to hyper aggregation onone path as OSH- does nat take into acount how much
other traffic is traversing one particular link at any one time. In the ATM environment, the IP
traffic is directed over predetermined routes and so it avoids the downfalls of best effort.



2. Mixture Systems for Multistream Aggregation

Let us consider the multistream traffic patterns represented as classes of stochastic processes,
C, k=1 2,.. K. Asuume that we have a multiple hypathesis test, ead hypothesis

A.!
corresponding to one class (for which specific control strategies are designed), that is

H:xeC, k=1 2..K (1)

k

The problem associated to the traffic stream discrimination in the aggegation set ([4]) isto
divide the pattern space(2, into K digoint dedsion regions that is, 2, Q ..., Q . Let p,

be the prior probability that x belongsto C, and f,(x) ‘C ) isthe condtiona density

function a the likelihoodfunction. We assume that the @sts of an error of different kinds are
identicd and set the st ¢ = 1. Then the risk assciated with an arbitary dedsion function
6'(x) and decision region$)!, Q/,..., Q' , is given by

Zf S pf(x 2)

ko l=k

and represents the eror probability. The Bayes classfier ([8]) that minimizes p will divide
(2, into K disjoint regions, with each regidfnj consisting of values af such that

p].fj(x) > pkf;:(x), forall k = j (3)

When a pattern vedor x isobserved, we first caculate the likelihoodfunction f (x), multiply
it by the prior probability p, , seled the one with the largest value and cedde that x belongs
to the class corresponding to the maximppf (x) . Using the Bayesian rule, we have

p.f(®) = f(x|C,)P(C,) = P(C, 1x)f(x) (4)
where
- Z: p,J, (%) ®)

is the probability density of x (mixture of density function). The comparison o p, f,(x) for
different % is equivalent to comparing the posterior probability P(C| Ix). For equal cogt, the
Bayesian classfier is essntially a maximum posterior probability classfier. In the cae of
multiple dasses of observations, assime a sequence of pattern vedors x, x,...,x, IS

observed and that all vedors in the sequence ome from the same dass either C| or CZ. The
two hypotheses are

H:x eC,i=1 2..,n (6)
H :x €e€C,i=1 2..n (7
Using the likelihood ratio test
, 8
A‘/L = A(Xl?xp Xn) = fZ(Xl, = ,X/L) ( )
fi(xp 27 7X/L)



where f(x,x,,....,x,) is the likelihood function d the sequence given that x € C ,

i=1, 2,...,n, since the samples are observed randamly, it is reasonable to assume that
X, X,,...,X, are independent and identically distributed, that is,

f;_(Xl,Xz,...,X"):ﬁﬁ:(xl_)’ k=1 2 (9)

The members of the finite sequence x, x ,...,x, belong to the same dass either C| or C,.
When they belong to C, the randan samples are dl distributed acwrding to
fx, ‘Cl) = f(x,) and the independence shoud be in terms of the ndtional densities with
k=1. Smilar for C,. This type of independence is cdled conditional independence. Let us
assume that eadh f,(x) isan N -dimensional Gaussan density function with mean vedor m,
and covariance matriR, , that is,

[(x) = Gixm,,R,) = 27 R | exp (10)

1 _
_E(X — mk)TRkl(X — mk)

For two claseswith R, = R, = R and p, = p, = 0.5, the discriminant functionis a linea
function, that is,

—D(x)=x'R7'(m, —m ) + %(ngIm2 —m/R'm) (11)
and the decision surface is a hyperplane. If we define the statistic
s=x"R'(m, —m) (12)
and let
1 (13)

T -1 Tp -1
8, =§(m2R m,-m R m)

the dasdficaionwill be based onwhether s < s . Giventhat x € €, we have the following
first and second order conditional expectations

B|s|c,]= f x'R(m, —m,)f (x)dx = m[R"'(m, —m,) (14)

E[52 ‘01] = J: (m, —m )"R 'xx" (m

T

,—m )f (x)dx = (15)

= (m_2 — ml)TRfl(R + mlmlT)R’l(m2 — ml)

The variance is

varlsloy] = £[s* 0] - (B[s]e]) = om, ~m,)" R, —m) (o
Similarly,

E[S‘Cz] = ng’l(m2 —m,) (17)

Var[s‘C’_z] = Var[s‘Cl] (18)



We can define a measure of separation

(Elsle.] - B[k )] .

2 __
= Var[s‘Cl]

= (m, — ml)TR’l(m2 —m,)
which is cdled the "signal-to-naise” ratio. Since s isalinea combination d the comporents

of the Gaussian random vector it is Gaussian distributed with the density function

h(s) = h(s|C) = G(sm]R"'(m, —m,),d”) (20)

3. Systemswith Interval Dynamics
3.1. General Framework

In the discrimination model of the multi stream aggregation, some system parameters such as
catain elements of the system’s covariance matrix are not predsely known o gradualy
change with time, then the Kalman filtering algorithm canna be gplied drealy. We wnsider
a version of robust Kalman filtering scheme ([1]). Let us consider the nominal system

X, =Ax, +Bu (22)
y,=Cx, +v, (22)

where A, B, and C_ are known n xn, nxp and ¢ xn matrices respedively, describing
the traffic stream clasees dynamics, witk p, ¢ < n.We assume that

E[u|=0, E[uu|=Qs, (23)
Elv,]=0, E[vv]|=R¢, (24)
E[ukvlT] =0, E[xouﬂ =0, E[XOVZ] =0 (25)

foral k, 1=0, 1,...,with Q_and R, being positive definite and symmetric matrices. If all
the constant matrices A, , B, and C,_ are known, then the Kalman filter can be gplied to the
nominal system, which yields the optimal estimates {, } using the measurement data {y, }

in a reaursive scheme. If some of the dements of this g/stem are unknovn o uncertain, a
modificaion d the etire setting for filtering is necessary. Suppase that the uncertain
parameters are only known to be bounded, that is,

Al =A +AA =|A —|AA |, A, +‘AAL_H (26)
B, =B, +AB, =B, —|AB,|, B, +|AB || (27)
C,=C,+AC, =|C, —|AC], C, +\Ack” (28)

for k=0, 1,..., where ‘AAA:‘, ‘ABL.‘ and ‘ACA_‘ are mnstant bounds for the unknowns. The
corresponding system



XIH*I = Aixk + Bful (29)
y,=Cx, +v, (30)

is cdled the interval system. The physicd redization d the interval matrices (26)-(28) are
prescribing the traffic stream class assignment during the real-life operation of the network.

Proposition 1. Let I, I, J, andJ, be intervals with
I, CJ andI, CJ, (31)
Then for any operation € {+,—,-,/}, it follows that

I+1,CJ *J, (32)
0

Corollary 1. (Monotonic Inclusion Property). Let 7 and J beintervalsandlet = € I and
y€J.Then

xxy CIxJ (33)
for all x € {+,—,-/}. O

3.2. Rational Interval Functions

Let S, and S, beintervalsin R and f:S — S, be ared-valued function. Denote by >,
and X the families of al subintervals of S and S,, respedively. The interval-to-interval
function, f* : ¥, — X is defined by

f={iwesfrex, xes,} (34)
is called theunited extension of the point-to-point functiorf on S, . Its range is
F1(X) = U {f@)} (35)

reX

Proposition 2. The following property of the united extension f’ :X, — X, isadired
consequence of the above definition

X, YeX, andX CY = f/(X)Cf(Y) (36)

D

An interval-to-interval function F of n variables, X, X ,.... X , is sid to have the

monotonic inclusion property if
X CY,i=1.,n = F(X,.,X,)CF{Y,..,Y,) (37)

n

n?

Not al the interval-to-interval functions have this property. All united extensions have the



monaonic inclusion property. An interval-to-interval function is cdled interva function for
simplicity. Interval vedors} andinterval matrices are simil arly defined. An interval functionis
said to be rational and it is caled a rational interval function, if its values are defined by a
finite sequence of intervals arithmentic operations. All the rational interval functions have the
monaonic inclusion goperty. Let f = f(z,...,z,) be a ordinary n -variable red-valued

Y n

function and ke intervals. An interval function, F' = F(X,, X ,...,X,), is sid to be an
interval extension of f if

F(z,..,z,) = f(z,z,...,1,) (38)
fordl z € X, i=1..,n. Not al the interval extensions have the monaonic inclusion

property. U

Proposition 3. If F' isaninterval extension d f with the monaonic inclusion property, then
the united extensiori’ of f satisfies

f(x,...X,) CF(X,...X,) (39)
O
Corollary 2. If F is a rational interval function and is an interval extensiofi,ahen
f(x,....X,) CF(X,...X,) (40)
U
Corollary 2 provides a means of finite evaluation d upper and lower bound on the value-
range of an ordinary rational function overandimensional rectangular domain 1" ([3]).
3.3. Interval Expectation and Variance

Let f(x) be a odinary function defined on an interval X . If f satisfies the ordinary
Lipschitz condition

[f(z) = )| < L]z —y (41)

for some positive constant I, which is independent on z, y € X, then the united extension
f" of f is saidto be aLipschitzinterval extension of f over X .Let N be apasitive integer

and let us sibdvide a interval [0, )] X into N subintevals, X, =X, X[, ..,
X, =|X,, X,], such that
a=X <X =X <X ==X <X =b (42)

For any fe B(X), let ' be aLipschitz interval extension d f defined onal X,
i=1,...,N.Assume that’ satisfies the monotonic inclusion property. Using the notation

5,(Fla, 1) ="~ > F(X) )

i=1

we have

[ fyit = () $,(F:la, b) = lim 5, (Fa, b) (44)

4 N—oo *



If we recursively define
Y, =8.,.NnY.,k=1 2. (45)

where Y, =S, and S, = S,(F;[a, b)), then {V,} is a nested sequence of intervals that

conveges to the exad value of the integral in the equation (44). Let X be an interval of red-
value random variables of interest and let

f(x) — (x — :uz)2

2072

T

(46)

exp|— , teX

1
V27o,

be an ordinary Gausdgan density function with knovn mean 1, and variance o, > 0. Then
f(z) has a Lipschitz interval extension. Tilngerval expectation is defined as

T Tz (z—p,) (47)
FlX]= dr = —— 7 1q X
[X] fxa:f(x) s j);\/%ar exp 207 T, T €
and thanterval variance is defined as
A >0 , (48)
Var[X] = B|(X - B[X)| = [ (2 — ) f(x)de =
2
= (z— ) exp—ﬂd:ﬂ re X
2mo 20

The integrals in (47) and (48) are bath well defined. This can be eaily verified based onthe
definite integral defined abowve, with ¢ — —oc0c and b — oo. The conditional interval
expectation with resped to ancther red interval Y of red-valued randam variablesis defined
as

E[X|y€X]:jxf(ﬂy)dx:j‘xf(x’y) T = (49)
= \/2_3: exp Mda@ reX
and theconditional variance
5 > 50
Var[X|y€Y]:E[(x—um) |y€Y}:f(x— [z|y € Y]) f(z]y)dz (50)
b f(z,)
= — Y =
J);(x oly €] f()
:](x_ };U_h{EY] exp (x_g)z de, z € X

Proposition 4. In the above equations, we have

P uz,) T./ (51)

Y



oo’ (52)

where
0’ =0’ = E[XY|-E[X]|E[Y]=E[zy|- EzE[y], z, ye X (53)

Ty yr

Proposition 5. The conditional expectation is given by

Lo’ 54
E[X|y€Y]:E[x]—(y—E[y])ZU”,xeX (54)

2
Y

and the conditional variance is given by

2 2 55

Var[X|y€Y]:Var[x]—0'T"’—(j‘”m, reX (59)
O-'.l/

0

4. Interval Kalman Filtering for Traffic Class Estimation

The interval system previously defined has an upper boundiry system defined by al upper
bounds of elements of its interval matrices

x, , = (A, +|AA )x, + (B, +|AB,|ju, (56)

k+1
Y = (Ck + ‘Ack‘)xk + Vi (57)
and a lower boundary system using all lower bounds of the elements of its interval matrices

x,., = (A, —|AA |)x, + (B, —|AB, |, (58)

k+1
y,=(C, — ‘ACL_‘)XA: +v, (59)

By performing the standard Kalman filtering for these two boundry systems, the resulting
two filtering trajedories do nd encompass al possble optimal solutions of the interval
system. There is no spedfic relation between these two boundry trajedories and the entire
family of optimal filtering solutions ([7]). The two boundry trajecories and their neighbaring
ones are generally intercrossing each other due to the noise perturbations ([6]).

Interval Kalman Filtering of Traffic Streams Class Assignment

1. Main Process

%! = B[x!| (60)
% =Al % +Gllyl -CAl & | k=1 2.. (61)

2. Co-Process
P’ = Var[xj] (62)

0 0



M =A! P (Al +B Q_ (B ) (63)

k=17 k-1
1
G} =M, ,(C)) [CML(©)) + R} o
P/ = [1-G/C/|M  [1-G/C!| +GR (G, k=1,2,. (65)

The filtering result produced by the interval Kaman filtering scheme is a sequence of interval
estimates {; } that cortains all possble optimal estimates {%, } of the state vedors {x, }
which the interval system may generate. The filtering result produced by this interval Kalman

filtering scheme isinclusive, bu generally conservative in the sense that the range of interval
estimates is often unrecessarily wide in order to include dl possble optimal solutions. The

interval data vedor yi in the interval Kalman filtering scheme is an urcertain interval vedor

before its redization, i.e., before the data ae adually being obtained, bu it will be an ordinary
constant vector after it has been measured and obtained.

5. Concluding Remarks

For the service providers, the physicdly provisioning of the ATM links as well as the need to
manage the ATM and IP layers sparately, add complexity to the network. With multi-
protocol label switching (MPLS), layers 2 and 3 d the network are dfedively merged into
one & it allows the routing of IP padkets using "enhanced” aggregated functionality to be
managed from one point of the network orwards. A combination & MPLS with ather IP QoS
protocols, such as Diff Serv and RSVP can dffer carier classIP VPNs to its customers. The
interval Kalman filtering performing a task of prediction and clasdficaion d the traffic
stream features in the appropriate solution of these issues.
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