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Abstract

In this paper an interval dynamical modelli ng for Kalman filtering of the mixture models
associated to the multistream traff ic aggregation in communication links in general flow
networks is considered. The purpose is to build a robust forecasting device working under
uncertainty of the traff ic classes assignment. If some system parameters such as certain
elements of the system matrix are not precisely known or gradually change with time, then the
classical Kalman filtering algorithm cannot be applied directly. In this case, a robust version
of the Kalman filtering that has the abilit y of handling the traff ic class uncertainty is needed.
The interval data vector obtained in the interval Kalman filtering is an uncertain interval
vector before the data are actually being obtained. It will be an ordinary constant vector after it
has been actually measured and realized.

Keywords: Interval Dynamics, Kalman Filtering, Mixture Models, Covariance Matrix,
Traffic Patterns.

1. Introduction

The multiplexing of various traff ic stream allows the minimization of the transmission costs
and time delays is considering the decomposition of the traff ic patterns based on hierarchical
mean clustering of the traff ic component rates. The multiclass service systems are becoming
even more popular with the penetration of mobile internet applications. The competition to
ensure a highly reliable and guaranteed quality-of-service parameters is forcing a new
perspective in designing the real-li fe network operation regimes where the uncertainty of the
current traff ic classes assignment should be tolerated ([2]). The interval modelli ng is solution
of these problems and it is motivated by flexibilit y in implementing adaptive flow
multiplexing strategies that are able to track the relevant statistics of the real flow network
while meeting the uncertain traff ic demand. The ATM networks have been designed by the
service provider industry (telcos) offers state-of-the-art quality of service (QoS)., where the
ATM connections are described by the bit rates or bandwidth (constant, variable, unspecified
and available bit rates). The ATM traditional strenghts are that it can cope well with delay
sensitive applications and provide varying classes of service (allowing the service providers to
offer a suite of service level agreements). This is achieved by ATM transforming the
"connectionless" nature of the IP traff ic into a connection-oriented mode. The IP is
connectionless, that is, it operates on a "best-effort" principle where packets are routed
individually using the destination IP adress inside every packet. The routes to be followed by
these packets are determined by IP routing protocols such as open shortes path firs (OSPF).
This directs packets onto the shortest path and makes no distinction between voice and data.
This can lead to hyper aggregation on one path as OSPF does not take into account how much
other traff ic is traversing one particular link at any one time. In the ATM environment, the IP
traffic is directed over predetermined routes and so it avoids the downfalls of best effort.
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2. Mixture Systems for Multistream Aggregation

Let us consider the multistream traff ic patterns represented as classes of stochastic processes,
�# , �� Å������K +� . Assume that we have a multiple hypothesis test, each hypothesis

corresponding to one class (for which specific control strategies are designed), that is

� Å �� Å������� Å� �( K +# ��X (1)

The problem associated to the traff ic stream discrimination in the aggregation set ([4]) is to
divide the pattern space �8  into +  disjoint decision regions, that is, � �� Å ����� Å �8 8 8 . Let �P

be the prior probabilit y that X  belongs to �#  and  � 	 � 	� �F F #�X X  is the conditional density

function or the likelihood function. We assume that the costs of an error of different kinds are
identical and set the cost �C � . Then the risk associated with an arbitary decision function
� 	Ea X  and decision regions, 	 
� Å ����� Å �a a a8 8 8 , is given by

	
� 	 � 	

�




� �
� � �

P F DS E ��
� �

a �� �¨ X X
(2)

and represents the error probabilit y. The Bayes classifier ([8]) that minimizes S  will divide
�8  into +  disjoint regions, with each region �8  consisting of values of X  such that

� 	 � 	� � � �P F P FpX X , for all K Jv (3)

When a pattern vector X  is observed, we first calculate the likelihood function � 	�F X , multiply

it by the prior probabilit y �P , select the one with the largest value and decide that X  belongs

to the class corresponding to the maximum � 	� �P F X . Using the Bayesian rule, we have

� 	 � 	 � 	 � 	 � 	� � � � �P F F # 0 # 0 # F� �X X X X (4)

where

�
� 	 � 	

�

� �
�

F P F
�

��X X
(5)

is the probabilit y density of X  (mixture of density function). The comparison of � 	� �P F X  for

different K  is equivalent to comparing the posterior probabilit y � 	�0 # X . For equal cost, the

Bayesian classifier is essentially a maximum posterior probabilit y classifier. In the case of
multiple classes of observations, assume a sequence of pattern vectors � �� Å ����� �X X X  is

observed and that all vectors in the sequence come from the same class, either �#  or �# . The

two hypotheses are

� �� Å � Å �� Å������ ( # I N� �X (6)

! !� Å � Å �� Å������"( # I N� �X (7)

Using the likelihood ratio test

! # !
# !

# # !

� � ����� 	
� � ����� 	

� � ����� 	

$
$ $

$

F

F
- � - �

X X X
X X X

X X X

(8)
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where � �� � ����� 	��F X X X  is the likelihood function of the sequence given that � �#�X ,

�� Å������I N� , since the samples are observed randomly, it is reasonable to assume that
� �� Å ����� �X X X  are independent and identically distributed, that is,

� �

�

� � ����� 	 � 	� ÅÅ �� Å�

�

� �� �

�

F F K
�

� ��X X X X
(9)

The members of the finite sequence � �� Å ����� �X X X  belong to the same class, either �#  or �# .

When they belong to �# , the random samples are all distributed according to

� �� 	 � 		 	F # F�X X  and the independence should be in terms of the conditional densities with

�K � . Similar for �# . This type of independence is called conditional independence. Let us

assume that each � 	
F X  is an . -dimensional Gaussian density function with mean vector �M

and covariance matrix �2 , that is,


 �
� 
�

� 	 � � � 	 �� 	 EXP � 	 � 	
�

� �

� � � � � � �F ' Q
�

� �  ¯
� � � � �¡ °

¡ °¢ ±
X X M 2 2 X M 2 X M

(10)

For two classes with � �� �2 2 2  and � � ���P P� � , the discriminant function is a linear

function, that is,

� � �

� � � � � �

�
� 	 � 	 � 	

�

� � �

$
� � �

� � � � �X X 2 M M M 2 M M 2 M
(11)

and the decision surface is a hyperplane. If we define the statistic
�

� �� 	
�

S
�

� �X 2 M M (12)

and let
� �

� � �   

�
� 	

�

! !

S
" "

� �M 2 M M 2 M
(13)

the classification will be based on whether �S S� . Given that ##�X , we have the following

first and second order conditional expectations

# #

# $ # # # $ #� 	 � 	 � 	
%

& &

% S # F D
' '

(
  ¯ � � � �¡ °¢ ± ¨ X 2 M M X X M 2 M M (14)

) *

* ) * ) * *

* *

) * * * ) *

� 	 � 	 � 	

ÅÅÅÅÅÅÅÅÅÅ � 	 � 	 � 	

+

, ,

, ,

% S # F D
'

(

' '

  ¯ � � � �¡ °¢ ±

� � � �

¨ M M 2 XX M M X X

M M 2 2 M M 2 M M

(15)

The variance is

	 

-

- .

. . . - . - .6AR � 	 � 	
/

S # % S # % S #
0  ¯   ¯   ¯� � � � �¡ ° ¡ ° ¡ °¢ ± ¢ ± ¢ ± M M 2 M M

(16)

Similarly,
1

2 2 2 1� 	
/

% S #
0  ¯ � �¡ °¢ ± M 2 M M (17)

2 16AR 6ARS # S #  ¯   ¯�¡ ° ¡ °¢ ± ¢ ±
(18)
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We can define a measure of separation

	 

�

� �� �

� � � �

�

� 	 � 	
6AR

�% S # % S #
D

S #

�

  ¯   ¯�¡ ° ¡ °¢ ± ¢ ±� � � �
  ¯
¡ °¢ ±

M M 2 M M

(19)

which is called the "signal-to-noise" ratio. Since S  is a linear combination of the components
of the Gaussian random vector X , it is Gaussian distributed with the density function

� �

� � � � �� 	 � 	 � � � 	� 	
�

H S H S # ' S D
�

� � �M 2 M M (20)

3. Systems with Interval Dynamics

3.1. General Framework

In the discrimination model of the multistream aggregation, some system parameters such as
certain elements of the system’s covariance matrix are not precisely known or gradually
change with time, then the Kalman filtering algorithm cannot be applied directly. We consider
a version of robust Kalman filtering scheme ([1]). Let us consider the nominal system

�� � � � �� � �X ! X " U (21)

� � � �� �Y # X V (22)

where � Å	 	! "  and 	#  are known N Nq , N Pq  and Q Nq  matrices respectively, describing

the traffic stream clasees dynamics, with � � ÅP Q Nb b . We assume that


%   ¯ �¢ ±U � ,  
�

� � � �
% E  ¯ �¢ ±U U 1 (23)

�%   ¯ �¢ ±V � ,  
�

� � � ��% E  ¯ �¢ ±V V 2 (24)

�

� �%   ¯ �¢ ±U V � , �

�

�%   ¯ �¢ ±X U � , �

�

�%   ¯ �¢ ±X V � (25)

for all � Å �� Å�����K L � , with �1  and �2  being positive definite and symmetric matrices. If all

the constant matrices �! , �"  and �#  are known, then the Kalman filter can be applied to the

nominal system, which yields the optimal estimates \ ^e�X  using the measurement data \ ^�Y
in a recursive scheme. If some of the elements of this system are unknown or uncertain, a
modification of the entire setting for filtering is necessary. Suppose that the uncertain
parameters are only known to be bounded, that is,

� Å
�

� � � � � � �
  ¯� �% � � % � %¡ °¢ ±! ! ! ! ! ! ! (26)

� Å
�

� � � � � � �
  ¯� �% � � % � %¡ °¢ ±" " " " " " " (27)

� Å
�

� � � � � � �
  ¯� �% � � % � %¡ °¢ ±# # # # # # # (28)

for �� Å�����K � , where �%! , �%"  and �%#  are constant bounds for the unknowns. The

corresponding system
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� � �� � � � �� � �X ! X " U (29)

� � � �� �Y # X V (30)

is called the interval system. The physical realization of the interval matrices (26)-(28) are
prescribing the traffic stream class assignment during the real-life operation of the network.

Proposition 1. Let � � �� Å � Å) ) *  and �*  be intervals with

� �) *�  and � �) *� (31)

Then for any operation \ ^� � ��� � � � ¸ , it follows that

� 	 � 	) ) * *� � � (32)
❚

Corollary 1. (Monotonic Inclusion Property). Let )  and *  be intervals and let 
 ��  and
Y *� . Then

X Y ) *� � � (33)

for all \ ^� � ��� � � � ¸ .                                                                                                                  ❚

3.2. Rational Interval Functions

Let 
3  and �3  be intervals in �  and � ��F 3 3l  be a real-valued function. Denote by ��4

and ��4  the families of all subintervals of �3  and �3 , respectively. The interval-to-interval

function, � ��
� � �F 4 l 4  is defined by

\ ^��� 	 � 	 � Å
� �F 8 F X 3 X 8 8� � � � 4 (34)

is called the united extension of the point-to-point function F  on �3 . Its range is

\ ^� 	 � 	
�

� �F 8 F X�� * (35)

Proposition 2. The following property of the united extension �  �
! " "

F 4 l 4  is a direct

consequence of the above definition

�� Å
"

8 9 � 4  and 8 9�  º  � 	 � 	
# #

F 8 F 9� (36)

❚

An interval-to-interval function &  of N  variables, $ %� Å ����� &8 8 8 , is said to have the

monotonic inclusion property if

� Å ������' '8 9 I N� �  º  $ $� ����� 	 � ����� 	& && 8 8 & 9 9� (37)

Not all the interval-to-interval functions have this property. All united extensions have the
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monotonic inclusion property. An interval-to-interval function is called interval function for
simplicity. Interval vectors} and interval matrices are similarly defined. An interval function is
said to be rational and it is called a rational interval function, if its values are defined by a
finite sequence of intervals arithmentic operations. All the rational interval functions have the
monotonic inclusion property. Let �� ����� 	�F F X X�  be an ordinary N -variable real-valued

function and be intervals. An interval function, � �� � ����� 	�& & 8 8 8� , is said to be an

interval extension of F  if

� � �� ����� 	 � � ����� 	� �& X X F X X X� (38)

for all � �X 8� , ������I N� . Not all the interval extensions have the monotonic inclusion

property.                                                                                                                                       ❚

Proposition 3. If &  is an interval extension of F  with the monotonic inclusion property, then

the united extension 
�

F  of F  satisfies

� �� ����� 	 � ����� 	
�

� �F 8 8 & 8 8� (39)

❚

Corollary 2. If &  is a rational interval function and is an interval extension of F , then

� �� ����� 	 � ����� 	
�

� �F 8 8 & 8 8� (40)

❚

Corollary 2 provides a means of f inite evaluation of upper and lower bounds on the value-
range of an ordinary rational function over an N -dimensional rectangular domain in 

��
 ([3]).

3.3. Interval Expectation and Variance

Let � 	F X  be an ordinary function defined on an interval 8 . If F  satisfies the ordinary
Lipschitz condition

� 	 � 	F X F Y , X Y� b � (41)

for some positive constant ,  which is independent on � ÅX Y 8� , then the united extension�
F  of F  is said to be a Lipschitz interval extension of F  over 8 . Let .  be a positive integer

and let us subdivide an interval < >� ÅA B 8�  into .  subintervals, �� �� Å8 8 8  ¯� ¢ ± , …,

� Å	 	 	8 8 8  ¯� ¢ ± , such that

� � 
 
 	 	A 8 8 8 8 8 8 B� � � � � � � �" (42)

For any � 	F " 8� , let &  be a Lipschitz interval extension of F  defined on all �8 ,

������I .� . Assume that &  satisfies the monotonic inclusion property. Using the notation

< > �� � � Å 	 � 	



�
 �

B A
3 & A B & 8

. �
�

� �
(43)

we have

< > < >� � �� 	 � � Å 	 LIM � � Å 	
�

� ��� �F T DT 3 & A B 3 & A B

�
���

� �¨ �
(44)
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If we recursively define

� � � �� Å������ � �9 3 9 K� �� � � (45)

where � �9 3�  and < >� � � Å 	� �3 3 & A B� , then \ ^�9  is a nested sequence of intervals that

conveges to the exact value of the integral in the equation (44). Let 8  be an interval of real-
value random variables of interest and let

�

�
� � 	

� 	 EXP � ÅÅ
� �

�

� �

X
F X X 8

N

QT T

  ¯�¡ °� � �¡ °
¢ ±

(46)

be an ordinary Gaussian density function with known mean �N  and variance ��T � . Then
� 	F X  has a Lipschitz interval extension. The interval expectation is defined as

< >

�

�
� 	

� 	 EXP �Å
� �

	

	 	

X X
% 8 XF X DX DX X 8

N

QT T


 


�
 �


  ¯�¡ °� � � �¡ °
¢ ±

¨ ¨
(47)

and the interval variance is defined as

< > < >	 

� �

� �

�

6AR � 	 � 	

� 	 � 	
ÅÅÅÅÅÅÅÅÅ EXP �Å

� �

	

	 	

	 	

8 % 8 % 8 X F X DX

X X
DX X 8

N

N N

QT T




�




�


  ¯� � � � �¡ °¢ ±

  ¯� �¡ °� � �
¡ °¢ ±

¨

¨

(48)

The integrals in (47) and (48) are both well defined. This can be easily verified based on the
definite integral defined above, with A l�d  and B l d . The conditional interval
expectation with respect to another real interval 9  of  real-valued random variables is defined
as

< >

�

�

� � 	
� 	

� 	

� 	
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ EXP �ÅÅ

� �


�


� 
�

F X Y
% 8 Y 8 XF X Y DX X DX

F Y

XX
DX X 8

N

QT T

� �

�� ��
�

��

� � � �

  ¯�¡ °� � �¡ °
¡ °¢ ±

¨ ¨

¨

(49)

and the conditional variance

< > 	 
 < >

< >

< >

� �

�

� �

�

6AR � 	 � 	

� � 	
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ � 	

� 	

� 	 � 	
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ EXP �Å

� �


8 Y 9 % X Y 9 X % X Y 9 F X Y DX

F X Y
X % X Y 9 DX

F Y

X % X Y 9 X
DX X 8

N

N

QT T

�

��
�

��
�

��

  ¯� � � � � � � �¡ °¢ ±

� � � �

  ¯� � �¡ °� � �
¡ °¢ ±

¨

¨

¨
�

� �

(50)

Proposition 4. In the above equations, we have �

�� 	� ��
�

�

Y N T
N N

T

�
� ��

(51)
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� �
� �

�
�� ��

�
�

T T
T T

T
� ��

(52)

where
< > < > < > < >

� �
< >

� �
� Å � Å�� �� % 89 % 8 % 9 % XY % X % Y X Y 8T T� � � � � � (53)

❚

Proposition 5. The conditional expectation is given by

< > � �
< >

�
�

�� 	 �Å
��
�

% 8 Y 9 % X Y % Y X 8
T

T
� � � � �

(54)

and the conditional variance is given  by

< > � �
� �

�6AR 6AR � Å
�� ��

�
8 Y 9 X X 8

T T

T
� � � �

(55)

❚
4. Interval Kalman Filtering for Traffic Class Estimation

The interval system previously defined has an upper boundary system defined by all upper
bounds of elements of its interval matrices

	 � 	 � 	
 
 
 
 
 
 
� � � % � � %X ! ! X " " U (56)

� 	
 
 
 
 
� � % �Y # # X V (57)

and a lower boundary system using all lower bounds of the elements of its interval matrices

	 � 	 � 	
 
 
 
 
 
 
� � � % � � %X ! ! X " " U (58)

� 	
 
 
 
 
� � % �Y # # X V (59)

By performing the standard Kalman filtering for these two boundary systems, the resulting
two filtering trajectories do not encompass all possible optimal solutions of the interval
system. There is no specific relation between these two boundary trajectories and the entire
family of optimal filtering solutions ([7]). The two boundary trajectories and their neighboring
ones are generally intercrossing each other due to the noise perturbations ([6]).

Interval Kalman Filtering of Traffic Streams Class Assignment

1. Main Process

� �e

 


%   ¯� ¢ ±X X (60)

	 	 	 	e e e �Å �� Å�����

 
 
 
 
 
 
 


 
 
 
 
 
 
 
 K� � � �  ¯� � � �¢ ±X ! X ' Y # ! X (61)

2. Co-Process

� �6AR
� �

  ¯� ¢ ±0 X (62)
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� � � � � � �� 	 � 	
� � � � � � � �

� � � � � � �
� � � � � � �

� �- ! 0 ! " 1 " (63)

�

� �� 	 � 	
� � � � � � � �

� � � � � � �

	

	 	
  ¯� �¢ ±' - # # - # 2 (64)

� � 	 � Å ��Å�����
�

� � � � � � � � �

� � � � � � � � � K
	

  ¯   ¯� � � � �¢ ± ¢ ±0 ) ' # - ) ' # ' 2 ' (65)

The filtering result produced by the interval Kalman filtering scheme is a sequence of interval

estimates \ ^e



�X  that contains all possible optimal estimates \ ^e�X  of the state vectors \ ^�X
which the interval system may generate. The filtering result produced by this interval Kalman
filtering scheme is inclusive, but generally conservative in the sense that the range of interval
estimates is often unnecessarily wide in order to include all possible optimal solutions. The
interval data vector 




�Y  in the interval Kalman filtering scheme is an uncertain interval vector

before its realization, i.e., before the data are actually being obtained, but it will be an ordinary
constant vector after it has been measured and obtained.

5.  Concluding Remarks

For the service providers, the physically provisioning of the ATM links as well as the need to
manage the ATM and IP layers separately, add complexity to the network. With multi -
protocol label switching (MPLS), layers 2 and 3 of the network are effectively merged into
one as it allows the routing of IP packets using "enhanced" aggregated functionality to be
managed from one point of the network onwards. A combination of MPLS with other IP QoS
protocols, such as DiffServ and RSVP can offer carrier class IP VPNs to its customers. The
interval Kalman filtering performing a task of prediction and classification of the traff ic
stream features in the appropriate solution of these issues.
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