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Abstract

In this paper a new method which extends the classical
metod of successive averages (MSA) used in flow
assignment problems to the stochastic flows based on
fuzzy agregation  is developed. The link capacities
assigment is of minimum risk type and the measurements
on the traffic patterns flowing through these links are time
limited (that is, the congestion processes are predicted
and tracked using a minimum quantity of information
about the system history). A regresison model for
identification of the fuzzy parameters is considered. The
application of this method to multistage decision making
in stochastic flows assignment in digital communication
networks is applied for the case of link capacities with
Gaussian modulation.

1  Introduction and Motivation

To facilit ate the system operations in general flow
networks such as telecommunication burst switching,
channel handover, dynamic link allocations and switching
of flow commodities, multistage decision procedures are
employed based on real-time measurements or estimated
of the incomming flow patterns. The measurement of the
traff ic patterns in order to accommodate the incoming
traff ic to the available link capacities is a current limiting
factor for traff ic control in the multistage communication
networks ([1]). The motivation for estimating the mean
flow patterns comes from the actual routing/flow
assignment protocols implemented in the burst-switched
networks which need an extended description of the traff ic
parameters in order to cope with a large variety of
information sources.

The measurement on the flow patterns provides only a
fuzzy information about what these flows should be. The
estimation of the parameters of a system requires the
selection of a suitable class of functions or models in order
to approximate the input-output behaviour of the system
under analysis in the best possible manner. A new method

which extends the classical metod of successive averages
(MSA) to the stochastic flows is formulated as a fuzzy
successive averaging process with the goal of controlli ng
the system performance when fuzzy parameters of the
flow patterns are available. The application of this method
to multistage decision making problems as traff ic flows in
digital communication networks is analysed and
simulation results are presented for the case of link
capacities with Gaussian modulated constraints.

2  Predictive Dynamic Network User Equilibrium

2.1  Dynamic Network Model

We consider a flow network with multiple origins and
multiple destinations (MOMD). The traff ic is represented
by a directed graph with nodes and directed links. The
period of analyis is denoted by 0, T . A time dependent
origin-destination demand is assumed to be known and
given as d t

rs
( )  which denotes the traff ic demand to the

destination node s departing from the origin node r at time
t ([4]). Let P t

rs
( ) be the set of paths between OD pair r-s

for those travellers leaving their origin node r at time t.
Assuming that the traff ic flow leaving origin r at time t via
path p between OD pair r-s is f t

rsp
( ), the flow

conservation equations can be written as

d t f t r s t
rs rsp

p P t
rs

( ) ( ) , ,
( )

= ∀
∈

∑                    (1)

Denote by A t
a
( )  the cumulative arrival curve recording

the number of bursts entering the link a at time t and D t
a
( )

as the cumulative departure curve recording the number of
bursts departing from link a at time t. Assuming that the
network is empty at time t = 0, then we have
A t D t

a a
( ) ( )≥ . The number of bursts crossing the link a at

time t can be calculated as

x t A t D t a t
a a a
( ) ( ) ( ), ,= − ∀                      (2)



Let l
a
 and n

a
 be respectively the length and number of

virtual circuits on link a. The burst traff ic density on link a
at time t becomes

k t
x t

l n
a t

a

a

a a

( )
( )

, ,= ∀                            (3)

A speed-density relationship is assumed for each link a as

u t U k t a t
a a a
( ) ( ( )) ,= ∀,                         (4)

where u t
a
( ) is the average speed on link a at time t and

U
a
( )⋅  is a particular speed-density relationship for the link

a.

Two kind of capacities are defined in the model, namely,
the flow capacity and the spatial capacity. The flow
capacity, C k U k

a k a a a
a

= max ( ): ? on link a is implicitly

considered from the speed-density relationship for the
link. The spatial capacity of a link a is defined by the
saturation density of the link as K

a
, where the quantity

l n K
a a a

 denotes the maximum number of bursts that can be

virtually piped in the link a. Therefore, we have

x t l n K a t
a a a a
( ) , ,≤ ∀                       (5)

Let z A t
a

= ( ) be the zth burst entering the link a at time t.

From FIFO principle, this burst will be leaving the link a

by time D z
a

−1( )  and hence, the travel time on link a for a

burst entering the link at time t  becomes

τ
a a a

t D A t t( ) ( ( ))= −−1                        (6)

where τ
a

t( )  is the travel time a burst spent on link a when

it enters the link at time t. The travel time is assumed to
consist of two components: the propagation time along the

link τ
a

c t( )  and the queueing time at the end of the link

τ
a

q t( ) . The propagation time is determined by the

following equation

d

u
l

a
t

t t

a

a

c ω

ω

τ

( )

( )+I =                            (7)

where l
a
 is the length of the link a and the average speed

u
a
 is obtained from equation (4). When a link reaches its

spatial capacity, bursts from the immediate upstream link
cannot enter the link and these bursts will t hen queue up at
the end of the immediate upstream link, which will be

discharging onto the link when its density falls below the
saturation density value at a later time. The queueing time
on a link a (if any) is determined by

τ τ τ
a

q

a a

ct t t a t( ) ( ) ( ), ,= − ∀                    (8)

Let L t a a a P t
rsp m rs

( ) ( , ,..., ) ( )= ∈
1 2

 be a sequence of m

consecutive links on the path p between OD pair r-s for
bursts provided at time t and T

rspa
, ∀ ∈a L t

rsp
( )  be the time

these bursts leave the link a while on the way to
destination node s. We have

T T T i m
rspa rspa a rspa

i i i

= + =
− −1 1

12τ ( ) , ,...,,                 (9)

with T t
rspa

0

= . The actual travel time on the path becomes

η
rsp rspa

t T t
m

( ) = −                              (10)

where T
rspa

m

 is the arrival time at the destination node s,

when a burst embarked onto the network at time t travels
on path p between OD pair r-s.

If for any travellers between any OD pair leaving their
origin at any instant, the actual travel times that these
travellers experienced on any used routes are equal and
minimal and the actual travel times that these travellers
would experience on any unused routes are greater than or
equal to the minimum actual travel time on used routes,
then the network is in a dynamic equilibrium.

Define the function w w+ = { }max ,0  . The predictive
dynamic equilibrium conditions are satisfied if and only if

f t t t r s t p q
rsp rsp rsq

( ) ( ) ( ) , , , , ,η η− = ∀
+

0        (11)

The predictive user equili brium conditions are equivalent
to the following minimisation problem

min ( ) ( ) ( ) ( )
, , ,

f
fZ f t t t dt

rsp rsp rsq

T

r s p q

= −
+

∀
I∑ η η

0
         (12)

subject to

d t f t r s t
rs rsp

p P t
rs

( ) ( ), , ,
( )

= ∀
∈

∑                          (13)

f t r s t p P t
rsp rs

( ) , , , , ( )≥ ∀ ∈0                           (14)

where f = ∀f t r s t p
rsp

( ), , , , ; @ is the vector of control

variables in the problem. This is a multistage optimization
problem for which various solution techniques exist.



2.2  Deterministic Successive Averaging Method

One of the possible techniques that can be used to solve
the dynamic equili brium problem is the method successive
averages (MSA). At every iteration, for each OD pair at
each instant, the path with minimum predictive travel time
between the OD pair for  travellers embarked at the instant
is first determined by a time dependent shortest path
algorithm, based on the network loading conditions in the
previous iteration. The revised flow pattern is then
calculated by spreading at each instant the traff ic demand
evenly among all the paths that have been obtained from
all the previous iterations and the newly generated
minimum paths obtained in the current iteration.

Let f ( ) ( ) ( ); , , ,n

rspt

n

rst

nf r s t p P= ∀ ∈ ; @  be the flow vector at

the nth iteration, where P
rst

n( )  is the set of all paths obtained

from all it erations so far and f
rspt

n( ) , the corresponding path

flow values. These path flows are then loaded onto the
network and the auxili ary set of time-dependent shortest
paths for all OD pair for all ti me intervals. We denote by
Y y r s t

rst
= ∀, , , : ? is the set of shortest paths for a burst

travelli ng to the destination node s from the origin node r
embarked at time t.

Proposition 1. If the auxili ary path is newly generated,

i.e., P y
rst

n

rst

( ) ∩ = ∅, the updated path flow vector is

determined by

f

n

n
f p P

n
d p y

rspt

n
rspt

n

rspt

n

rst rst

( )

( ) ( )

+ = +
∈

+
=

%
&K

'K
1 1

1

1

 if 

 if 
                       (15)

for all r, s, t and the set of used paths at the ( )n +1 th

iteration is updated as P P y
rst

n

rst

n

rst

( ) ( )+ = ∪1 . If the auxili ary

path is an old path, i.e., y P
rst rst

n∈ ( ) , the updated path flow

vector becomes

f

n

n
f p y

n
f

n
d p y

rspt

n
rspt

n

rst

rspt

n

rst rst

( )

( )

( )

+ = +
≠

+ +
=

%
&K

'K
1 1

1

1 1

                  if 

+
1

  if 
                 (16)

and the set of used paths remains unchanged, i.e.,

P P
rst

n

rst

n( ) ( )− =1 .
■

The above mentioned procedure is repeated until certain
convergence criteria are satisfied. Due to the discrete

nature of the model, the duality gap can be employed as
the convergence criteria:

G

f

d

n

rspt

n

rspt

n

rsy t

n

r s t p P

rst rsy t

n

r s t

rst

rst

n

rst

( )

( ) ( ) ( )

, , ,

( )

, ,

( )
+

+ +

∈

+
=

−∑

∑
1

1 1

1

η η

η
                   (17)

where η
rspt

n( )+1  is the travel time on a path p after the path

flow vector at the nth iteration has been loaded onto the

network and η
rsy t

n

rst

( )+1  is the minimum travel time on path y
rst

determined from the shortest path solution. The MSA

algorithm is stopped when either G n( )+ <1 ε  or n n>
max

.

3  Fuzzy Successive Averaging Method

We consider now the general framework where the flow
assignment problem is regarded as a multistage
optimization problem.  We introduce the uncertainties on
the demand patterns and the delay times experienced by
the burst while travelli ng along the links of the
communication network ([4]).

3.1  Fuzzy Multistage Optimization

Consider the standard notation in the control lit erature for
a finite automaton V U X= { }, ,δ , where U X,   are finite
sets called the decision or control and the state spaces and
δ : X U X× →  is the state transtion map ([3], [5], [6]). The
state equation is thus given by

x t x t u t( ) ( ( ), ( ))+ =1 δ  , t T= −0 1 1, ,...,       (18)

with T the final time and x X( )0 ∈  is the initial state. In
the context of this paper, the state is considered to be the
number of bursts crossing the communication links at time
t and the control are the decision variables in the flow
assigment problem. A fuzzy control constraint µ  is a
fuzzy subset of U defined by the membership function
µ: ,U → 0 1  and a fuzzy state target ′µ  is a fuzzy subset

of X defined by the membership function ′ →µ : ,X 0 1 .
We assume the existence of the fuzzy control constraints

µ µ µ
0 1
, , ..., 

1 T −: ?, where µ
i
 is relevant to the control

input U
i
 at time i, 0 1≤ ≤ −i T . Suppose also that a fuzzy

goal ′µ
T
 is imposed on the final state x

T
. A fixed input

sequence u u u
T0 1 1

, , ..., −: ? corresponds to the fuzzy

decision

U U U UT = × × ×�                            (19)

given by the fuzzy interaction equation



µ µ µ

µ µ

( , ,..., ) ( ) ( )

( ) ( )

u u u u u

u x

T

T T T T

0 1 1 0 0 1 1

1 1

−

− −

= ∧ ∧

∧ ∧ ′

�

                            
              (20)

where we have written u u i
i

= ( )  and x x T
T

= ( ) is

calculated for a given x X( )0 ∈  from the state equation. A
fyzzy decision for the above problem is given by

( , ,..., )u u u U
T

T

0 1 1
 − ∈  such that

µ µ( , ,..., ) max ( , ,..., )
, ,...,

u u u u u u
T

u u u U
T

T

T0 1 1 0 1 1
0 1 1

  
 

−
∈

−=
−

      (21)

Leting

S x u u u
k

u u U
k k T

k T

( ) max ( , ,..., )
,...,

=
− ∈

+ −
1

1 1
µ                  (22)

when the system starts in state x at time k and optimal
control sequence is used, we have

S x u u

u x x x u

k
u U

k k
u u

k k

T T T T k k

k k T

( ) max ( ) max ( )

( ) ( ) ( , )

,...,

= ∧ ∧ ∧

∧ ∧ ′ =

∈
+ +

− − +

+ −

µ µ

µ µ δ

: : ?J LJ
?

1 1

1 1

1 1 1

�

             

     (23)

or equivalently

S x u S x u
k

u U
k k k k

k

( ) max ( ) ( ( , ))= ∧
∈

+µ δ
1: ?            (24)

S x x
T T
( ) ( )= ′µ                                (25)

for k T= −0 1 1, ,..., . The solution of this problem is of
dynamic programming type and can be found by backward
iteration in order to obtain the optimal multi -stage
decision ( , ,..., )u u u

T0 1 1
 

− .

3.2   Fuzzy Mapping Extension

Definition 1. A fuzzy mapping F: X Y→  is a fuzzy set on
X Y×  with membership function µ

F
( , )x y .

■

Definition 2. A fuzzy function F( )x  is a fuzzy set on Y
with membership function µ µ

F F( )
( ) ( , )

x
y x y= .

■

Definition 3. Let A be a fuzzy subset on X defined by
membership function µ

A
( )x . The fuzzy set F A( )  on Y is a

fuzzy mapping of a fuzzy set defined as

µ µ µF A A F( )
( ) ( ) ( , )y x x y

x X

= ∨ ∧
∈
0 5, for all y Y∈    (26)

where ∧ stands for min and ∨ stands for max.
■

Consider the fuzzy automaton 
~

, , , ( ), ( )V U X F U F X= { }δ ,
where U, X are finite sets called the control and the state
spaces respectively and δ : X U X× →  and F U( ), F X( )
are the sets of fuzzy controls and states, respectively. The
state equation if given by

µ µ

µ µ

δ

δ

x t v

v V
v

x t

v v x t

( ) ( )
( ( ))

( ) ( , ( ))

+

∈

+ = =

= ∨ ∧ +

1
1

1 0 5                    (27)

for all x t X( )+ ∈1  and t T= −0 1 1, ,..., , with
V X U= × , v x t u t= ( ( ), ( )), v V∈  and V is a fuzzy set
on V representing the fuzzy state x( )t  with fuzzy control
u( )t  having the membership function

µ µ µV x u
( , ) ( ) ( )

( ) ( )
x u x u

t t
= ∧                   (28)

Suppose further the existence of fuzzy constraints
µ µ µ

0 1 1
, , ..., 

T −: ?, µ
i

F U∈ ( ) , where µ
i
 is imposed on

the input u
i
, 0 1≤ ≤ −i T  and also that a fuzzy goal ′µ

T
 is

imposed on tne final state x( )T .

3.3  Fuzzy Averaging as Aggregation Operation

Aggregation operations generally defined on fuzzy sets are
operations by which several fuzzy sets are combined to
produce a single set and are defined by a function

h n: , ,0 1 0 1  →                         (29)

for some n ≥ 2. When applied to n fuzzy sets
A A A

1 2
, , ...,

n
 defined on X, h produces an aggregate

fuzzy set A by operating on the membership grades of
each x X∈  in the aggregated sets ([5]). Thus

µ µ µ µA A A A
( ) ( ( ), ( ),..., ( ))x h x x x

n

=
1 2

              (30)

Fuzzy unions and intersections can be viewed as special
aggregation operations that are symmetric, usually
continuous and required to satisfy some additional
boundary conditions. They produce aggregates of the n-
tuple a a a

n1 2
, , ...,  having values between

min , ,...,a a a
n1 2: ? and max , ,...,a a a

n1 2: ?.  The fuzzy

averaging operations are aggregation operations for which

min , ,..., ( , ,..., )

max , ,...,

a a a h a a a

a a a

n n

n

1 2 1 2

1 2

: ?
: ?

≤ ≤

≤                            
            (31)

The standard max and min operations represent
boundaries between the averaging operations and the
fuzzy unions and intersections, respectively. One special



class of averaging operation is represented by the
generalized means defined by

h a a a
a a a

n
n

n

α

α α α α

( , ,..., )
1 2

1 2

1

=
+ + +�

��
�
��

�

            (32)

where α ∈R , α ≠ 0, is a parameter by which different
means can be obtained such that

h a a a a a a

h a a a

a a a

h a a a

n n

n

n

n

−∞

∞

= ≤

≤ ≤

≤ =

=

( , ,..., ) min , ,...,

( , ,..., )

max , ,...,

( , ,..., )

1 2 1 2

1 2

1 2

1 2

: ?

: ?
                          

                          

                          

α
             (33)

Proposition 2. For fixed arguments, the function hα  is

monotonic increasing with α . For α → 0, the function hα

becomes the geometric mean

h a a a a a a
n n

n

0 1 2 1 2

1( , ,..., ) ( )= �                     (34)

for α → −1, it becomes the harmonic mean

h a a a
n

a a a

n

n

− =
+ + +

1 1 2

1 2

1 1 1
( , ,..., )

�

                   (35)

and for α → 1, it becomes the arithmetic mean

h a a a
a a a

n
n

n

1 1 2

1 2( , ,..., ) =
+ + +�

                    (36)

■

When it is desirable to accomodate variations in the
importance of individual aggregated sets, the function hα

can be generalized into weighted generalized means as
defined by the formula

h a a a w w w w a
n n i i

i

n

α
α

α

( , ,..., ; , , ..., )
1 2 1 2

1

1

 =
=

∑��
�
�       (37)

where w i
i n

≥ ∈0,  N , are weights that express the relative

importance of the aggregated sets satisfying the constraint

w
i

i

n

=

∑ =
1

1                                   (38)

For fixed arguments and weights, the weighted
generalized mean is monotonic increasing with α .

4  Bayesian Inference of Aggregation Weights

Since there is a flexibilit y in the choice of the weights in
the weighted generalized mean, we would like to relate
these weights to the relative ranking of the successive
stages in the fuzzy multistage optimization problem. This
ranking is intended to keep track on the splitti ng rates of
the traff ic and in order to do so, we introduce the
assumption of the statistical dependencies of the splitti ng
rates on the compund demand patterns (denoted in the
subsequel by �

� ) and on the delays within the links in the

communication network. The model of these dependencies
that we consider for a particulat link is the following

r x w
t t t t

= + ε ,  w g w
t t t t

= +−1
η                 (39)

for t T= 1, ... , , where ε t  are i.i.d. random variables

N( , )0 2σ , the η
t
 are i.i.d. N( , )0 2λσ , with λ σ,  2 0>

parameters that are to be estimated and ε
t
 and η

s

uncorrelated noises for all ti me instants t and s ([7], [8])..
We assume that g

t: ? is a fixed, nonstochastic sequence of

scalars . We assume that the parameter w
0
 is unknown

with its uncertainty expressed by a normal distribution

N w R(
�

, )
0 0 0 0

 2σ , where the hyperparameters 
�

w
0 0

 and R
0 0

are known. Essentially, the Bayesian inference on the
fuzzy aggregation weights is the problem of smoothing the
regression parameter w w w

T
= ( ,..., )

1
 given an available

data record r r rT

T
= ( ,..., )

1
([2], [9], [10]) . The mean and

variance of w
t
 given the information up to time s are

denoted by 
�

w
t s

 and 
�

σ
t s

2 , respectively, i.e.,

�

w E w r
t s t

s= , 
�

(
�

)σ
t s t t s

sE w w r2 2= −           (40)

for s T= 1,..., . The mean and variance of r
t
 given the

information up to time s is given by 
�

r
t s

 and 
�

f
t s

,

respectively, i.e.,
�

r E r r
t s t

s= , 
�

(
�

)f E r r r
t s t t s

s= − 2               (41)

for s T= 1,..., . Under the assumptions of the model, it is
possible to derive the conditional distributions of w

t
 and

r
t
 given the information up to t-1.

Proposition 3. If we assume that the posterior distribution

of w
t −1

 given r t −1, then we have

w N w R
t r t t t tt− − − − −− ≈

1 1 1

2

1 11
, , , ,

(
�

, )
λ λ λσ               (42)



w N r R
t r t t t tt− ≈ − −1 1 1, , ,

(
�

, )
λ λ λσ 2                    (43)

r N r f
t r t t t tt− ≈ − −1 1

2

1, , ,
(
�

,
�

)
θ λ λσ                      (44)

where

� �

, ,
w g w

t t t t t− − −=
1 1 1λ λ ,  R g R

t t t t t− − −= +
1

2

1 1, ,λ λ λ          (45)

� �

, ,
r x w

t t t t t− −=
1 1λ λ ,  

�

, ,
f x R

t t t t t− −= +
1

2

1
1λ λ             (46)

■

Proposition 4. The Bayesian theorem allows to compute

the conditional distribution of w
t
 given r t  and λ

according to the following equations

w N w R
t r t t t t t tt

, , , ,
(
�

,
�

)
λ λ λ λσ σ≈ = 2 2                  (47)

� �

�

(
�

)
, , , , ,

w w R x f r x w
t t t t t t t t t t t t tλ λ λ λ λ= + −− − −

−

−1 1 1

1

1
          (48)

R R R x f
t t t t t t t t t, , , ,

�

λ λ λ λ= −− − −

−
1 1

2 2

1

1                     (49)
■

These are Kalman filtering type of updating equations for

the mean and variance of. The set θ σ λ= ( , )2  of
parameters that were left unspecified are computed using
the maximization of the likelihood function expressed in
terms of the conditional distribution of the flow splitti ng
rates r

t r
t−1

,θ
, t n= 1,..., . Using the multiplicative theorem

of the total probability we have

l r f r r

f r f r r f r r

f

r r

f

n

n

n

n

n
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t

n

t t t
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n
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(
�

)

exp
(

�

)
�

,

,

,

θ θ

θ θ θ

σ

σ

λ

λ

λ

∝ ∝
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× −
−
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−

−

=
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−=
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1
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1 1

2
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1
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1

2
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1

1

2

�

                     (50)

where 
�

,
f

t t −1 λ  and 
�

,
r

t t −1 λ  are produced by Kalman filter type

of updating equations.

5  Conclusions

The input-output system whose parameters are modeled as
random processes is the the switching board acting in a
given node of a multihop communication network. The
switching operation in a communication node is
intrinsically a stochastic process and this has been the
most important reason which motivated us to consider it as
a regression model. In practice, the delay-throughput

balance is the main criterion in various switching design
architectures. Although there are some simulation
techniques dealing with the estimation of the parameters
of the delay pattern based on the long term average flows,
these techniques do not work when they are applied to
purely stochastic processes as it is the case with switching
nodes working under bursty and congestion sensitive
regimes.

The parameter estimation based on the Bayesian inference
about the input-output behaviour of the switching
operation considered here as the classical dynamic flow
assignment is extendind the abilit y of the fuzzy
aggregation to behave as successive time averaging. The
dynamical performances of the mixture process generated
by multiple bursty traff ic patterns are to be analyzed in
both as modelling issue and as a simulation task.

6   References

[1] R. Breyer, S. Riley, Switched, Fast and Gigabit
Ethernet.Understanding, Building and Mana-ging High
Performance Ethernet Networks, Mcmill an Technical
Publishing, 1999.

[2] A. Celmins, “A Practical Approach to Nonlinear Fuzzy
Regression” , SIAM Journal on Scientific and Statsitical
Computing, Vol. 12, Np. 3, pp. 521-546, 1991.

[3] L. Feng, X. Guang, “A Forecasting Model of Fuzzy Self-
Regression” , Fuzzy Sets and Systems, Vol. 58, pp. 239-
242, 1993.

[4] J. Fili piak, Modelling and Control of Dynamic Flows in
Communication Networks, Springer-Verlag, Berlin, 1988.

[5] J. Fodor, M. Roubens, Fuzzy Preference Modelling and
Multicriteria Decision Support, Kluwer Academic Press,
Dordrecht, 1994.

[6] A. Kaufmann, M.D. Gupta, Introduction to Fuzzy
Arithmetic. Theory and pplications, Van Nostrand
Reinhold Company, New York, 1985.

[7] L. Ljung and T. Soderstrom, Theory and Practice of
Recursive Identification, MIT Press, 1982.

[8] P.R. Kumar and P. Varaiya, Stochastic Systems.
Estimation, Identification and Adaptive Control, Prentice-
Hall, Inc., Englewood Cliffs, NJ, 1986.

[9] A. Murgu, “Fuzzy Clustering of Aggregated Flows for
Traff ic Control in ATM Networks” , in Proceedings of the
6th International Conference on Fuzzy Systems, FUZZ-
IEEE-97, pp.  235--240, July 1-5, 1997, Barcelona, Spain.

[10] A. Murgu, “Fuzzy Interval Input-Output Aggregation of
Switched Traff ic in Communication Networks” , in
Proccedings of the 19th International Conference of the
North American Society (NAFIPS), PeachFuzz-2000, pp.
291-295, July 13-15, 2000, Atlanta, GA, USA.


