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Abstract

In this paper a new method which extends the classical
metod of successive averages (MSA) used in flow
assignment problems to the stochastic flows based on
fuzzy agregation is developed. The link capacities
assigment is of minimum risk type and the measurements
on the traffic patterns flowing through these links are time
limited (that is, the congestion processes are predicted
and tracked using a minimum quantity of information
about the system history). A regresison model for
identification of the fuzzy parameters is considered. The
application of this method to multistage decision making
in stochastic flows assignment in digital communication
networks is applied for the case of link capacities with
Gaussian modulation.

1 Introduction and M otivation

To fadlitate the system operations in general flow
networks sich as telecmmunication burst switching,
channel handover, dynamic link all ocations and switching
of flow commodities, multistage dedsion procedures are
employed based on red-time measurements or estimated
of the incomming flow patterns. The measurement of the
traffic patterns in order to acoommodate the incoming
traffic to the available link cgpadtiesis a airrent limiting
fador for traffic control in the multistage communicaion
networks ([1]). The motivation for estimating the mean
flow patterns comes from the adual routing/flow
assgnment protocols implemented in the burst-switched
networks which need an extended description of the traffic
parameters in order to cope with a large variety of
information sources.

The measurement on the flow patterns provides only a
fuzzy information about what these flows dould be. The
estimation of the parameters of a system requires the
seledion of asuitable dassof functions or modelsin order
to approximate the input-output behaviour of the system
under analysis in the best pasdgble manner. A new method

which extends the dasdcd metod o successve averages
(MSA) to the stochastic flows is formulated as a fuzzy
succesdve averaging processwith the goal of controlling
the system performance when fuzzy parameters of the
flow patterns are available. The gplication of this method
to multi stage dedsion making problems as traffic flows in
digital communicaion nretworks is analysed and
simulation results are presented for the cae of link
capacities with Gaussian modulated constraints.

2 Predictive Dynamic Network User Equilibrium
2.1 Dynamic Network M odel

We @nsider a flow network with multiple origins and
multi ple destinations (MOMD). The traffic is represented
by a direded graph with nodes and dreded links. The
period d analyis is denoted by [0, T]. A time dependent
origin-destination demand is assumed to be known and
given as d_(t) which denotes the traffic demand to the
destination node s departing from the origin node r at time
t ([4]). Let P_(t) be the set of paths between OD pair r-s
for those travellers leaving their origin node r at time t.
Asaming that the traffic flow leaving originr at time t via
path p between OD pair r-s is f_(t), the flow

conservation equations can be written as

d,®= Y £, Orst (1)

pOR, (1)

Denote by A (t) the aumulative arival curve rerding
the number of bursts enteringthelink a at time t and D_(t)

as the awmulative departure aurve recording the number of
bursts departing from link a at time t. Assuming that the
network is empty a time t=0, then we have
A (t) 2 D,(t). The number of bursts crossng the link a at

timet can be calculated as

X (1) = A (t) - D,(t), Oat )



Let | and n_ be respedively the length and number of

virtual circuitson link a. The burst traffic density on link a
at timet becomes

k=2 pat 3)
I n

a a

A speed-density relationship is assumed for eachaliak
u (t) =U_(k (1), Oat 4)

where u_(t) is the average speed on link a at time t and
U, (D1 is a particular speed-density relationship for the link
a.

Two kind of capadties are defined in the model, namely,
the flow capacity and the spatial capacity. The flow

cgpadty, C, =max, {kU,(k)} on link a is implicitly
considered from the speed-density relationship for the
link. The spatial cgpadty of a link a is defined by the

saturation density of the link as K_, where the quantity
| n K_ denotes the maximum number of bursts that can be

a a a

virtually piped in the linka. Therefore, we have
x, ()<l nK, Oat (%)

Let z= A (t) be the zth burst entering the link a at time t.
From FIFO principle, this burst will be leaving the link a
by time D:(z) and hence, the travel time on link a for a
burst entering the link at timtebecomes

7,() =D, (A 1) -t (6)

where T_(t) isthe travel time aburst spent on link a when

it enters the link at time t. The travel time is assumed to
consist of two components. the propagation time dong the

link T:(t) and the queueing time & the end of the link
T!(t). The propagation time is determined by the
following equation

t+r: (t) dw
| =1, (7)

u,(w) )

where | is the length of the link a and the average speed
u, is obtained from equation (4). When a link reades its

spatial capadty, bursts from the immediate upstream link
cannot enter the link and these bursts will then queue up at
the end of the immediate upstream link, which will be

discharging onto the link when its density falls below the
saturation density value & a later time. The queueing time
on a linka (if any) is determined by

M) =7, -5, Dat ®)

Let L () =(a,a,...,a,)OP(t) be asequence of m
conseautive links on the path p between OD pair r-s for
bursts provided at timetand T__, Da L _(t) bethetime
these bursts leare the link a while on the way to
destination nods. We have

T, =T +1.(T

rsp rspa,, v,

) i=12,...,m 9)

with T_, =t. The actual travel time on the path becomes

r’rg) (t) = Trs)am -t (10)

where T__ is the arival time & the destination node s,

when a burst embarked onto the network at time t travels
on pathp between OD pair-s.

If for any travellers between any OD pair leaving their
origin a any instant, the adual travel times that these
travellers experienced on any used routes are equal and
minimal and the adual travel times that these travellers
would experience on any unused routes are greaer than or
equal to the minimum adual travel time on used routes,
then the network is in a dynamic equilibrium.

Define the function [w], = max{0, w}. The predictive
dynamic equilibrium conditions are satisfied if and only if

f,0[n,0-n,0] =0 Orstpg (A1)

The predictive user equili brium conditions are eguivalent
to the following minimisation problem

minz(f)= Y [ 1,0, 0-n,0Ld @2

Or,s,p.q
subject to

d.®= 5 f,0, Orst (13)

pOP, (1)
frsp(t) 20, Or,st,pOP(t) (14)

where f={f_(t), Or,st,p} is the vedor of control

variables in the problem. This is a multi stage optimizaion
problem for which various solution techniques exist.



2.2 Deterministic Successive Averaging Method

One of the possble techniques that can be used to solve
the dynamic eguili brium problem is the method successve
averages (MSA). At every iteration, for ead OD pair at
ead instant, the path with minimum predictive travel time
between the OD pair for travell ers embarked at the instant
is first determined by a time dependent shortest path
agorithm, based on the network loading conditions in the
previous iteration. The revised flow pattern is then
cdculated by spreading at ead instant the traffic demand
evenly among all the paths that have been obtained from
al the previous iterations and the newly generated
minimum paths obtained in the current iteration.

Let £ ={f"; Or,st,pOP"} be the flow vedor at

spt !
the nth iteration, where P." isthe set of all paths obtained

from all iterations o far and f (), the corresponding path

flow values. These path flows are then loaded onto the
network and the auxiliary set of time-dependent shortest
paths for al OD pair for al time intervals. We denote by

Y ={y,, Or,st} is the set of shortest paths for a burst

travelling to the destination node s from the origin node r
embarked at time

Proposition 1. If the auxiliary path is newly generated,
ie, P”ny, =0, the updated path flow vedor is
determined by

f"ifpop®

wn _ Jn+l ™ .
frg)l - 1 ) (15)

n+1drst ifp=vy,

for al r, s, t and the set of used paths at the (n+21)th
iteration is updated as P = P" Oy . If the auxiliary

path is an old path, i.e., y, 0P, the updated path flow
vector becomes

n _w

—f ifpzy
rspt rs
fr;r;ﬂ) = nl+l . 1 (16)
—f"+——d_ ifp=
n+1 rspt n+1 rs p yra

and the set of used peaths remains unchanged, i.e.,
P(”’l) - P(”)
rst ¢t

| |

The a&ove mentioned procedure is repeded urtil certain
convergence citeria ae satisfied. Due to the discrete

nature of the model, the duality gap can be anployed as
the convergence criteria:

(n+1) _ o (n+1)

(n)
z frspt nrspt nrsyrqt
G(n+1) - r,st,pOPy (17)
> dun
r,s;t
where """ is the travel time on a path p after the path

rspt
flow vedor at the nth iteration has been loaded onto the
network and . is the minimum travel time on path y_

determined from the shortest path solution. The MSA
algorithm is stopped when eith&"” < orn>n__ .

3 Fuzzy Successive Averaging Method

We onsider now the general framework where the flow
assgnment problem is regarded as a multistage
optimization problem. We introduce the uncertainties on
the demand patterns and the delay times experienced by
the burst while travelling along the links of the
communication network ([4]).

3.1 Fuzzy Multistage Optimization

Consider the standard notation in the antrol literature for
a finite automaton V ={U, X,d}, where U, X are finite
sets cdled the dedsion or control and the state spaces and
J: XxU - X isthe state transtion map ([3], [5], [6]). The
state equation is thus given by

X(t+1) = o(x(t), u(t)),t=0, 1,...,T-1 (18)

with T the final time and x(0) O X is the initial state. In
the context of this paper, the state is considered to be the
number of bursts crossng the communicaion links at time
t and the mntrol are the dedsion variables in the flow
assgment problem. A fuzzy control constraint u is a

fuzzy subset of U defined by the membership function
w:U - [0, 1] and afuzzy state target u' is afuzzy subset
of X defined by the membership function u': X - [0, 1].
We asame the existence of the fuzzy control constraints
{u,, py,... .}, where p, is relevant to the cntrol
input U, at timei, 0<i<T-1. Suppose dso that a fuzzy
goal u isimposed on the final state x,. A fixed input
sequence {u,, u,,...,u _ } corresponds to the fuzzy
decision

U ' =UxUx...xU (19)

given by the fuzzy interaction equation



u(ug, U, ) = pg(u)) O (u)0-

, (20)
0 HT—l(uT—l) O Hy (XT)

where we have written u =u(i) and x, =x(T) is
cdculated for agiven x(0) O X from the state equation. A
fyzzy decison for the &ove problem is given by

(U, U,...,U,_,) OU" such that

u(@,, a,...,u,_ )= mameu(uo,ul,. u_) (22)

e 1
Uy Uy e

Leting

S(x) = ) muaxDJ uu, U, u) (22)

when the system starts in state x at time k and optimal
control sequence is used, we have

S(x) = TgX{uk(uk) D{{ﬂ?ﬁ,{“k“(“kﬂ) m}}u..

DHT—l(uTq) O IJ'T (XT )|Xk+1 =o(x, U, )}

(23)

or equivalently

(9 = max{u, (u) 08, (8(x u )} (24)

S (X) = 5 (x) (25)

for k=0, 1,...,T —=1. The solution of this problem is of
dynamic programming type and can be found by badkward
iteration in order to oltain the optimal multi-stage
decision(y,, U,,...,U, ).

3.2 Fuzzy Mapping Extension

Definition 1. A fuzzy mapping F: X - Y isafuzzy set on
X xY with membership functiop_(x,y).
||

Definition 2. A fuzzy function F(x) is a fuzzy set on Y
with membership functiop, ., (y) = 1. (X, y).
||

Definition 3. Let A be afuzzy subset on X defined by
membership function p, (x). Thefuzzy set F(A) onYisa
fuzzy mapping of a fuzzy set defined as

e = O(1, (0 O (x,y), for all y 0Y - (26)

where ] stands for min anfl] stands for max.

Consider the fuzzy automaton V = {U, X, 8, F(U), F(X)} ,
where U, X are finite sets cdled the control and the state
spaces respedively and o: XxU - X and F(U), F(X)
are the sets of fuzzy controls and states, respedively. The
state equation if given by

Houy (X +D) = 1y, =

(27)
= O(u, (V) O, (v X(t+ 1))

for adl x(t+)OX and t=0, 1,...,T-1, with
V =XxU, v=(x(t),u(t)), vOV and V is a fuzzy set
on V representing the fuzzy state x(t) with fuzzy control
u(t) having the membership function

H, (xu) = () O (U) (28)

Suppose further the eistence of fuzzy constraints
{uy, ity }, 1 OF(U), where p, is imposed on
theinput u, 0<i<T -1 and aso that afuzzy goa (. is
imposed on tne final statT).

3.3 Fuzzy Averaging as Aggregation Operation

Aggregation operations generally defined on fuzzy sets are
operations by which several fuzzy sets are combined to
produce a single set and are defined by a function

h[o, 11" - [0, 1] (29)

for some n=2. When applied to n fuzzy sets
ALA,,...,A defined on X, h produces an aggregate
fuzzy set A by operating on the membership grades of
eachx O X in the aggregated sets ([5]). Thus

My (X) = h(, (%), M, (X)s0 M, (X)) (30)

Fuzzy unions and intersedions can be viewed as eda
aggregation operations that are symmetric, usualy
continuous and required to satisfy some alditional
boundary conditions. They produce ajgregates of the n-
tuple a,a,...,a having values  between

min{a,a,...,a } ad max{a,a,,...,a }. The fuzzy

averaging operations are aggregation operations for which

min{a,a,,...,a } <h(a,a,...,a)<

(31)

<max{a,a,,...,a }
The standard max and min operations represent
boundaries between the averaging operations and the
fuzzy unions and intersedions, respedively. One speda



class of averaging operation is represented by the
generalized means defined by

a a a \Ya
L Rl j (32)

ha(al,az,...,an):( "

where a OR, a #0, is a parameter by which different
means can be obtained such that
h_(a,a,...a)=min{a,a,...,a}<
<h(a,a,...,a)<
<max{a,a,,...,a } =
=h (a,a,...,a)

(33)

Proposition 2. For fixed arguments, the function h_ is
monotonic increasing with . For a - 0, the function h,
becomes thgeometric mean

h(a.a,...,a)=(aa-a)" (34)
for a - —1, it becomes thbarmonic mean
h - n 35
1(808,,8) = (35)
—+— et —
a & a,
and fora - 1, it becomes tharithmetic mean
+a +---+a
M%%mﬂﬁii%—i (36)
| |

When it is desirable to acomodate variations in the
importance of individual aggregated sets, the function h,

can be generdized into weighted generalized means as
defined by the formula

. Yo
ha(al,a?,...,an;wl,wz,...,wn):(ZWiaf’) (37)

where w, 2 0, i ON _, are weights that expressthe relative
importance of the aggregated sets satisfying the constraint

S w, =1
2"

For fixed arguments and weights, the weighted
generalized mean is monotonic increasing with

(38)

4 Bayesian I nference of Aggregation Weights

Since there is a flexibility in the dhoice of the weights in
the weighted generalized mean, we would like to relate
these weights to the relative ranking of the successve
stages in the fuzzy multistage optimizaion problem. This
ranking is intended to keep tradk on the splitti ng rates of
the traffic and in order to do so, we introduce the
asuumption of the statistica dependencies of the splitti ng
rates on the compund demand petterns (denoted in the
subsequel by z,) and on the delays within the links in the

communication network. The model of these dependencies
that we consider for a particulat link is the following

rI = XIWI + El’ W[ = glwl—l + r][ (39)

for t=1...,T, where &€ are i.i.d. random variables
N(0,0°), the n, are i.i.d. N(0,Ac”), with A, o° >0
parameters that are to be etimated and & and 1,
uncorrelated noises for al time instants t and s ([7], [8])..
We asamethat {g } isafixed, nonstochastic sequence of
scdars . We assume that the parameter w, is unkrnown
with its uncertainty expressed by a normal distribution
N(W,,, 0°R,,), where the hyperparameters W,, and R,
are known. Esentidly, the Bayesian inference on the
fuzzy aggregation weights is the problem of smoothing the
regresson parameter w = (w,,...,W,) given an available
datarecord r' = (r,....r.)([2, [9], [1Q]) . The mean and
variance of w, given the information up to time s are

2
tls?

denoted byw,, andd,_, respectively, i.e.,

W, = E[Wl

t

rs], 6: = E[(W -W,.)*

tls t t

r°] (40)

for s=1,...,T. The mean and variance of r, given the

information uwp to time s is given by f  and fl‘s,
respectively, i.e.,
.= E[fr]. £ = E{e -6)7]r] (41)

for s=1,...,T. Under the ssauumptions of the model, it is
possble to derive the conditional distributions of w, and

r, given the information up tB1.

Proposition 3. If we a3ume that the posterior distribution
of w_, givenr'™, then we have

=N (wt—l,t—l,)\ ’ 02 R—l\t—l‘/\ ) (42)

-1



= N(ﬁ\t—l,). ' 02 R\t—l,)« ) (43)

t‘r“,A

rt‘r”,s = N(ﬁ\tfl,)ﬂ o’ ft\t—l,)«) (44)

where
n RN _ 2
Wz\z—m - gzwt—m—l,/\’ Rh—m - g[ R—l\l—l,/\ +A (45)

A _ A Fy —_ L2
rt\t—l,). - XtWt\t—l,).’ ft\t—l,). - Xt R\t—m +1 (46)
| |
Proposition 4. The Bayesian theorem allows to compute
the cnditional distribution of w, given r' and A
according to the following equations

Wl‘r“). = N(WI\L/\’ a-tz\w\ = UZR\LA) (47)
~ —\R £-1 A
Wth,/\ - W{\t—l‘/\ + Rh—l,/\ Xl fth—l,/\ (rl - XIWI\I—L/\) (48)
2 22~
Rh,/\ = Rh—l‘/\ - Rh—l,/\ Xl fmil‘/\ (49)
|

These ae Kaman filtering type of updating equations for

the mean and variance of. The set 8=(0c°,A) of
parameters that were left unspedfied are cmputed using
the maximization of the likelihood function expressed in
terms of the mnditional distribution of the flow splitti ng
rates r t =1,...,n. Using the multiplicaive theorem

‘rH’B!

of the total probability we have

16" O f(r,...,r|6) O
O f(r1|9f(r2|r1,9)... f(r|r"™,0)

l n/2 n R 73/2
() f1

1 & (=f,)
x expl = —— Z LS
20 t=1 ft\tfl‘)n
where ftw and 1 _,, are produced by Kalman filter type

of updating equations.
5 Conclusions

The input-output system whose parameters are modeled as
random processs is the the switching board ading in a
given node of a multihop communication network. The
switching operation in a @mmunicaion node is
intrinsicaly a stochastic process and this has been the
most important reason which motivated us to consider it as
a regresson model. In pradice the delay-throughput

balance is the main criterion in various switching design
architedures. Although there ae some simulation
techniques deding with the estimation of the parameters
of the delay pattern based on the long term average flows,
these techniques do not work when they are gplied to
purely stochastic processes as it is the cae with switching
nodes working urder bursty and congestion sensitive
regimes.

The parameter estimation based on the Bayesian inference
about the input-output behaviour of the switching
operation considered here @ the dasdcd dynamic flow
assgnment is extendind the &ility of the fuzzy
aggregation to behave & successve time averaging. The
dynamicd performances of the mixture process generated
by multiple bursty traffic patterns are to be analyzed in
both as modelling issue and as a simulation task.
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