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ABSTRACT

In this paper we develop a dynamic game theoretical framework for the large scale dynamic
optimization models that are currently occuring in the planning of traffic streams in a switching
network under the generic description of Trunk Group Management. The dynamic games ap-
proach of the switching process allows the minimization of transmission costs and shaping the
time delays statistics under uncertainty about the traffic patterns. Further extensions of this
approach include statistical information extraction/processing to aggregate the traffic streams
in patterns that are determined on a competitive basis from batches of individual traffic streams.

1. Introduction and Motivation

Before the advent of Gigabit Ethernet, the spped of 100 Mbps was the maximum rate for
Ethernet. For speeds exceeding 100 Mbps, multiple proprietary Fast Ethernet links are needed
to be connected in parallel (e.g., Cisco Fast EtherChannel trunking) ([1]). The ATM technology
had an edge with its 622 Mbps version. The Gigabit Ethernet and the proposed 802.3ad Link
Aggregation/Truncking standard, Ethernet backbones of several gigabits per second can be built.
The Ethernet now scales from 10 to 100 to 1000 Mbps. ATM speeds range from 25 to 622 Mbps.
The Ethernet Link Aggregation proposal works for both switches and servers, whereas ATM
does not allow server Link Aggregation. The 53 bythe ATM cell structure is less efficient than
Ethernet frame structure. For 1 KB frames (Ethernet frames can range from 64 bytes to 1522
bytes), Ethernet protocol efficiency is 0.98, compared to ATM efficiency of 0.9 ([8]). The ATM
attractiveness lies in its radically different approach of integrated LAN/WAN and voice/data
traffic. The ATM Forum has created LAN Emulation (LANE) and a set of other technologies
that enable a smooth migration from legacy LANs to a true ATM environment. If ATM is
used only as a backbone technology (i.e., no ATM attached clients or servers), LANE is not
required. The ATM has been designed by the service provider industry offers state-of-the-art
quality of service (QoS) in the sense that the connections are specified in terms of their bit
rates or bandwidth (CBR, VBR, UBR, ABR) ([8]). The Shared Ethernet offers a zero level
QoS. The QoS is necessary if a network is overloaded and sporadic delays are a normal part
of the network operation. For wide area networks (WANs), the links always run close to full
capacity and the QoS becomes important. For applications in which the peak data rate is much
larger than the average data rate, statistical multiplexing is used to share the link bandwidth
most efficiently among the competing data streams. The amount of memory needed for efficient
statistical multiplexing is highly dependent on the ratio of the link rate to the peak transmission
rate of individual streams ([4]). The objective of this paper is to encapsulate in a closed form
a dynamic game theory mathematical model for the issue of handling the traffic uncertainties
which have to be handled by the communication network in order to preserve and guarantee the
desired QoS level. The switching envelope method provides a statistical setting of the reference
intervals for carrying out the complexity of uncertainties in the traffic streams when they are
aggregated within the communication links.



2. Dynamic Network Planning Model

2.1. Notation and Assumptions

Let us consider N : {1, . . . , |N |}, the set of nodes throughout the planning horizon. It is assumed
that |N | is a given parameter and the locations of the nodes are given in advance (the switching
and crossconnect locations are known in advance and are predimensioned). The minimum total
costs can be achieved by minimizing the total link associated costs. Let L : be the set of possible
bidirectional links, a subset of L̄ = {(i, j)| i < j, i, j ∈ N} which is the set of all bidirectional
links, (i, j) ≡ (j, i), because the links are bidirectional. Consequently,

max{|L|} =
|N |(|N | − 1)

2
⇒ L = L̄ (1)

Let us denote by K : {1, 2, . . . , |K|}, the set of communicating origin/destination (OD) pairs
of nodes or equivalently, commodities. Each commodity has a single origin node and a single
destination node. Finally, let T : {1, 2, . . . , |T |} be the set of time periods in the planning horizon.
The period t refers to the unit period from time point t to (t + 1). We assume that links and
switching regimes can be installed during any point in time within a time period. The costs
incurred during the period are assumed to take place at the beginning of the time period in which
the changes take place. Let γt

k be the estimated traffic demand for commodity (origin-destination
pair) k at period t. We assume that Fij(t) is the fixed cost of putting a switching regime on link
(i, j) at period t and that Fij(t) values are nonincreasing over time, taking into account the time
value of money. If gij(t) is the fixed cost of installing a cable on link (i, j) at period t, this cost
is incurred each time the link capacity is expanded. The cost of augmenting a unit capacity for
link (i, j) at period t cij(t) and maintaining it from period t through period |T | cij(t) has values
that are decreasing over time, that is cij(t) > cij(t + 1), t ∈ T . All Fij(t), gij(t), cij(t) are the
present values of the associated dicounted costs. The decision variables used in formulating the
model consist of the topological variable yij(t) defined as

yij(t) =

{

1, if a switching regime is installed on link (i, j) at period t
0, otherwise

(2)

By definition, yij(t) ≤ yij(t+1). Let us consider zij(t) as the aggregated capacity augmentation
variable,

zij(t) =

{

1, if the capacity of link (i, j) is augmented during period t
0, otherwise

(3)

and qij(t), a continuous variable which is the capacity of link (i, j) at period t. Link capacities
are nondecreasing over time. Finally, let xijk(t) be the directed flow of commodity k flowing
from node i to j on link (i, j) or (j, i) at period t.

2.2. Dynamic Switching Model

There are three types of cost terms, that is, the fixed cost of the switching regimes, the fixed
cost of links and the cost of flow shaping. Let TC be the total cost defined as

TC =
∑

t∈T

∑

(i,j)∈L

(Fij(t)(yij(t) − yij(t− 1)) + gij(t)zij(t) + cij(t)(qij(t) − qij(t− 1))) (4)

or
TC =

∑

t∈T

∑

(i,j)∈L

(fijyij(t) + gij(t)zij(t) + hij(t)qij(t)) (5)

where we introduce the cost increments

fij(t) = Fij(t) − Fij(t+ 1) ≥ 0, t ∈ T, (i, j) ∈ L (6)



hij(t) = cij(t) − cij(t+ 1) ≥ 0, t ∈ T, (i, j) ∈ L (7)

The dynamic optimization problem can be stated as follows

Problem (P)

ZT = min{
∑

t∈T

∑

(i,j)∈L

(fij(t)yij(t) + gij(t)zij(t) + hij(t)qij(t))} (8)

subject to

∑

j∈N

xijk(t) −
∑

j∈N

xjik(t) =







γk(t), if i = Ok

−γk(t), if i = Dk, i ∈ N, k ∈ K, t ∈ T

0, otherwise
(9)

∑

k∈K

(xijk(t) + xjik(t)) ≤ qij(t), (i, j) ∈ L, t ∈ T (10)

qij(t) − qij(t− 1) ≥ 0, (i, j) ∈ L, t ∈ T (11)

qij(t) ≤Myij(t), (i, j) ∈ L, t ∈ T (12)

qij(t) − qij(t− 1) ≤Mzij(t), (i, j) ∈ L, t ∈ T (13)

yij(t) − yij(t− 1) ≥ 0, (i, j) ∈ L, t ∈ T (14)

yij(t), zij(t) = 0, 1, (i, j) ∈ L, t ∈ T (15)

xijk(t), xjik(t) ≥ 0, (i, j) ∈ L, k ∈ K, t ∈ T (16)

where, Ok and Dk represent the origin and the destination of commodity k, and

M = max
t∈T

{
∑

k∈K

γk(t)} (17)

By definition, we consider that

q0ij = y0
ij = 0, ∀(i, j) ∈ L (18)

In the above formulation, the routing variables {xijk(t), xjik(t)} support the flow of each com-
modity and satisfy the flow conservation constraints (9) and the link capacity constraints (10).
The constraints (11) and (14) and the expression (5), ensure that there is no capacity contraction
and/or trunk switching regime disconnection.

2.3. Flow Balance Equations for Buffered Traffic

We introduce new flow balance equations where we assume that at each node i ∈ N there a
buffer of size Bi. Then

∑

j∈N

xjik(t) −
∑

j∈N

xijk(t) =







bik(t) − γk(t), i = Ok, k ∈ K, t ∈ T

bik(t) + γk(t), i = Dk, k ∈ K, t ∈ T

bik(t), i ∈ N, k ∈ K, t ∈ T

(19)

where bi(t) is the vector of traffic rates for the buffer of node i at time step t, that is,

bi(t) = [bi1(t), bi2(t), . . . , bik(t)]T ∈ R|K| (20)

with
0 ≤ δ

∑

k∈K

bik(t) ≤ Bi, ∀i ∈ N, ∀t ∈ T (21)



for a time discretization step δ such that t→ (tδ, (t+1)δ). Let us assume that we have a solution
for the initial problem (P) for time t, {yi,j(t), zij(t), qij(t), xijk(t), xjik(t), (i, j) ∈ L, k ∈ K}.
We would like ’ to find M ′ such that (12) and (13) are meet jointly

∑

j∈N

x′ijk(t) −
∑

j∈N

x′jik(t) =
∑

j∈N

xijk(t) −
∑

j∈N

xjik(t) − bik(t) (22)

It follows from (10) and (12) that
∑

k∈K

(xijk(t) + xjik(t)) ≤ qij(t) ≤Myij(t) (23)

∑

k∈K

(x′ijk(t) + x′jik(t)) ≤ (M +
∑

k∈K

bik(t))yij(t) = (M +Bi)yij(t) ≤M ′yij(t) (24)

which we obtain
M ′ = M + max

i∈N
Bi (25)

3. Linear Input-Output Traffic Aggregation

In this section we present the main concepts related to the switching of the traffic flows in the
ATM networks (considered as data micro/macro streams) when it is regarded as input-output
aggregation process ([5]). Since the efective capacity of a switched link is scalled down according
to the average value of the topological variable yij(t) within a planning cycle, we will consider
this variable as the only control variable for shaping the output traffic patterns ([6]).

3.1. Preliminaries

Suppose that an n × n input-output matrix A is to be aggregated from n data micro streams
denoted by N = {1, ..., n} to m macro streams, M = {1, ...,m}, with m < n. Let an m × n

matrix S indicate which micro streams are to be combined, that is, for all i ∈ M and j ∈ N ,
si,j = 1 if micro stream j is to be included in macro stream i and si,j = 0, otherwise. Thus,
S is a 0-1 matrix with exactly one 1 in every column and at least one 1 in every row (S is a
column stochastic matrix). Let an n × m matrix T indicate the proportional weights of each
micro stream in its macro aggregate. For all i ∈ M and j ∈ N , tji ∈ [0, 1] if the micro stream
j is included in macro stream i and tji = 0, otherwise. The sum of the weights of the micro
streams assigned to a givean macro stream is assumed to be 1. Consequently, T is also column
stochastic. The input-output aggregator is computed as the matrix SAT. There are also other
methods of matrix aggregation such as

1. Aggregation where S may contain any positive weights.

2. Aggregation chosen to optimize a particular objective function.

Other possibilities include the application of the above procedure to the (I − A)−1 matrix to
obtain S(I−A)−1T and then compute the aggregation of A as I−S(I−A)−1T. We may also use
the micro streams as data to estimate an aggregated matrix, using a variant of the econometric
estimation techniques for estimating input-output models. Also, we may first aggregate the
columns to produce a rectangular model with m macro streams and then convert the rectangular
model to a square m×m model.

3.2. Functional Form of General Aggregators for Traffic Switching

Let us consider a general aggregator f mapping n× n input-output matrices into m×m input-
output matrices, m < n. Denote the set of real n×m matrices by Mn,m. When n = m, Mn,m

is abbreviated as Mn. We consider an open input-output model with n streams given by

x = Ax + y (26)



where x ∈ Rn is an output vector, y ∈ Rn is a final demand vector and A ∈ Mn is an input-
output matrix. For an input-output matrix A = (aij), then the entry aij can be interpreted
as the amount of commodity i necessary in the production of a unit of commodity j, given the
technology represented by A. Thus, 1 −

∑

i aij is the value added per unit of production of
commodity j, which is assumed positive. In this event, the matrix A has nonnegative entries
and column sums all less than 1. Such a matrix is usually called (strictly) column substochastic
since a column stochastic matrix is a nonnegative one with column sums of 1.

Definition 1. By an input-output matrix we simply mean a square column substochastic matrix.
The input-output equation

y = (I − A)x (27)

can be used to transform an output vector to a final demand. Conversely, since A is column
substochastic, (I−A) must be nonsingular, so that x = (I−A)−1y can be used to transform a
final demand vector to an output vector. Since A is substochastic, the inverse matrix (I−A)−1

is nonnegative and A is irredicible, then (I − A)−1 is strictly positive

Definition 2. An input-output matrix aggregator is a function f : Mn → Mm that maps
the n × n input-output matrices into m × m input-output matrices with m < n. The (k, l)
element of the matrix f(A) will be denoted by f(A)kl. An input-output matrix B will be
referred to as an aggregation of the input-output matrix A if it is the result of some aggregator
applied to A.

Considering that the input-output models are linear, one natural assumption is that the ag-
gregator is linear. We call an input-output matrix B a standard aggregation of the input-output
matrix A if B is the result of some standard aggregator applied to A. The following theorem
characterizes the functional form of the standard aggregators.

Theorem 1. An input-output aggregator f : Mn → Mm is standard if and only if f may
be represented as

f(A) = SAT (28)

in which S ∈ Mm,n is a 0-1 column stochastic matrix, T ∈ Mn,m is a column stochastic and
ST = I ∈Mm.

Remark 1. In the context of the theorem, the statement ST = I simply means that the
nonzero entries of T are contained among the positions indicated by the 1’s of ST . If h maps N
onto M , then the 0-1 matrix S ∈Mm,n is a 0-1 column stochastic matrix with no row containing
only 0s. The matrix S is called a partitioning matrix and the function h mapping N onto M
given by h(j) = i if sij = 1 is called the function representation of S.

3.3. Properties of Input-Output Aggregation Process

The features of the input-output matrix A are, in general, preserved by a standard aggregator
B = SAT.

Theorem 2. Suppose S ∈ Mm,n is a partitioning matrix, T ∈ Mn,m is column stochastic
and ST = I. Then TS is a column stochastic, idempotent matrix of rank m.

Remark 2. The above theorem implies that the set of eigenvalues of TS includes 1 with
multiplicity m and 0 with multiplicity (n−m), since TS is idempotent. It can be established a
close relationship between the standard aggregators and the notion of matrix similarity.



4. Dynamic Games in Switching Statistical Flow Batches

In this section, we apply the switching envelope method for dynamic games ([3], [7]) to describe
the flow batches in the traffic aggregation mechanism. We associate with the traffic regimes two
player A and B that are competing for network resources while having different goals. That
is, the player A is interested in maximizing the thoughput of the traffic accross the switching
system, while the player B wants to reduce the delays occuring in the switching system. Since
the state of the switching system is not known apriori, we treat this competition as a game
against nature.

4.1. Game Formulation of Input-Output Aggregation

Let us consider a rectangular game that is associated with the aggregation matrix defined in
Section 3, that has the elements

aij , i = 1, 2, . . . ,m; j = 1, 2, . . . , n. (29)

For player A there is an optimal strategy, in other words, relative frequencies

X∗ = [x∗1, x
∗
2, . . . , x

∗
m] (30)

such that if he plays line (1) with the frequency x∗1, line (2) with that of x∗2, . . .,line (m) with
that of x∗m, he is certain of at least making a profit equal to the value of the game. For player
B there is an optimal strategy or relative frequencies

Y∗ = [y∗1 , y
∗
2 , . . . , y

∗
n] (31)

such that if he plays column (1) with the frequency y∗1 , column (2) with that of y∗2 , . . ., column
(n) with that of y∗n, he is certain of not losing more than the value v of the game. An optimal
strategy for each player is formed from the solution of m+n+2 equations or inequalities, which
are not strict, with m+n+1 unknowns x1, x2, . . . , xm, y1, y2, . . . , yn, v. The xi and yj terms are
positive, but v can be any real number.

x1 + x2 + · · · + xm = 1

a11x1 + a21x2 + · · · + am1xm ≥ v

a12x1 + a22x2 + · · · + am2xm ≥ v

...

a1nx1 + a2nx2 + · · · + amnxm ≥ v

xi ≥ 0, i = 1, 2, . . . ,m.

(32)

y1 + y2 + · · · + yn = 1
a11y1 + a12y2 + · · · + a1nyn ≤ v

a21y1 + a22y2 + · · · + a2nyn ≤ v

...

am1y1 + am2y2 + · · · + amnyn ≤ v

yj ≥ 0, j = 1, 2, . . . , n.

(33)



There is always a solution to the system formed by (32) and (33). Let

X∗ = [x∗1, x
∗
2, . . . , x

∗
m] and Y∗ = [y∗1 , y

∗
2 , . . . , y

∗
n] (34)

be one solution. If there are several, any linear form produced by the X∗ terms, on the one
hand, and by the Y∗ terms, on the other, of which the coefficients are nonnegative and of a sum
equal to 1 (convex weighting), is also a solution. Hence for A, there are, in this case, r optimal
strategies with any two of which, for example X∗′

and X∗′′

, we form the infinity

X∗′′′

= λ1X
∗′

+ λ2X
∗′′

(35)

where λ1, λ2 ≥ 0, λ1 + λ2 = 1. Similary, if there are s optimal strategies for B. There is only
one value for v. If X∗ = [x∗1, x

∗
2, . . . , x

∗
m] is an optimal strategy for A and

a1jx
∗
1 + a2jx

∗
2 + · · · + amjx

∗
m > v (36)

then
y∗j = 0 (37)

but the converse is not always true. Similary, if Y∗ = [y∗1 , y
∗
2 , . . . , y

∗
n] is an optimal strategy of

B and
ai1y

∗
1 + ai2y

∗
2 + · · · + ainy

∗
n < v (38)

then
x∗i = 0 (39)

Remark 3. In the equations (30)-(31), the frequencies x1, x2, . . . , xm and y1, y2, . . . , yn are
the normalized counterparts of the similar quantities from the input-output traffic aggregation
model to the corresponding capacities of the input/output links in a switching node.

4.2. Bayes Strategy for Switching Envelope Estimation

If there are two states of nature and two final decisions, we take the cost of a draw, which is
constant, as the unit of money. In addition, if consider r′ and r′′ two quantities that are not
altered by a translation of the set of points representing the strategies ([7]), we can express the
loss matrix in the following

E1 E2

[

0 w12

w21 0

]

(40)

with ω12 > 0 and ω21 > 0 by adding or removing a suitable number from each line. The
knowledge of the two laws of probability ([2]) πE1

(X) and πE2
(X) which correspond to the

states E1 and E2 of nature enable us to find the laws g1(z) and g2(z) of

z =
πE2

(X)

πE1
(X)

(41)

Given an uncertain variable Z for which the law of probability is g(z), we call n̄(−b, a) the
expected number of values to be drawn before reaching or exceeding one of the limits. Here,
$(−b, a) the probability of reaching or passing the higher bound (hence 1 − $ is the similar
probability for the lower bound). The exact relation which determines n̄ and $ as a function of
g(z) and of the bound is not known, but approximate values can be obtained in the following
manner.

1. We seek the root which was not 0 in the equation in t:

∑

z

etzg(z) = 1 (42)



2. We assume that
E =

∑

z

zg(z) (43)

3. If −b < 0 < a, we have

$(−b, a) =
1 − e−bt

1 − e−(a+b)t
(44)

n̄(−b, a) =
a$(−b, a) + b[1 −$(−b, a]

E
(45)

4. If crossing bounds a and b costs Wa and Wb, respectively, with 1 atill the cost of the cost
of drawing a value Z, the scoring rule counts, as an average

n̄(−b, a) =
a$(−b, a) + b[1 −$(−b, a]

E
(46)

5. If we can determine ρ1(−b, a) and ρ2(−b, a) as loss depend on g1(z) and g2(z) respectively,
then r′ and r′′ are respective solutions of the following two equations

ω12 = 1 + r′ + ω12

∑

z≥0

g1(z) + r′ω21

∑

z≤−b0

g2(z)

+
∑

−b0<z<0

[ρ1(−b0 + z,−z)g1(z) + r′ρ2(−b0 + z,−z)g2(z)]
(47)

ω21 = 1 + r′′ + ω12

∑

z≥b0

g1(z) + r′′ω21

∑

z≤0

g2(z)

+
∑

0<z<b0

[ρ1(−z, b0 − z)g1(z) + r′′ρ2(−z, b0 − z)g2(z)]
(48)

where
b0 = ln r′′ − ln r′ (49)

6. Conversely, if we obtain r′ and r′′, we can construct the corresponding table of loss. The
two equations are linear in ω12 and ω21.

We can also find r′ and r′′ by successive approximations. To do so, we take ρ for a priory
probability of E1 and ρ(p) for the loss of Bayes’s strategy against p ([9], [10]). The method
consists of finding an increasing sequence of lower bounds L′′

n(p) and a decreasing sequence of
upper bounds L′

n(p), i.e.,
L′′

n < ρ(p) < L′
n (50)

which aproach ρ(p). To do so, we use the formulas

Ln(p) = min[ψ(p), 1 +
∑

X

{pπE1
(X) + (1 − p)πE2

(X)}Ln−1(
pπE1

(X)

pπE1
(X) + (1 − p)πE2

(X)
)] (51)

with
ψ(p) = min[pω12, (1 − p)ω21] (52)

Here, L′
n is obtained for the initial value L′

0(p) = ψ(p) and L′′
n by taking L′′

0(p) = 0. Each
function Ln(p) has two corresponding values of p: p1 and p2 < p1, which are two solutions of
the question

ψ(p) = 1 +
∑

X

{pπE1
(X) + (1 − p)πE2

(X)}Ln−1(
pπE1

(X)

pπE1
(X) + (1 − p)πE2

(X)
) (53)

then (1−p1)
p

approaches r′ and (1−p2)
p2

approaches r′′.
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