Input-Output Statistical Inference for Switching Processes
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ABSTRACT

This paper deals with the on-line change detection problem of Markov Modulated Poisson Processes (MMPPs) in the
framework of switching systems. The dependency between the input and output statistical patterns in a black box viewpoint
is analyzed. The abrupt change is treated as a transition from a state of the underlying Markov chain to another. We
derive a generalized likelihood ratio (GLR) statistical test to detect the abrupt changes, simultaneously with the estimation

of unknown distribution parameters using a likelihood scheme. The input-output mapping has a black-box representation in

the class of ARMAX models.
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1. Introduction and Motivation

There are two main approaches to finding the relations between input and output of particular system. First one is
a model-based approach, in which we should take into account by some reason the model of considered phenomena
and describe it with a set of parameters. These parameters are to be estimated via information extraction from
statistical experiment. Through this model with estimated parameters one can establish the relation between the
input and output of the system. In the black box or statistical approach, we do not assume the inner system
functionality be described by some model. Instead of it, models for input-output information flows are considered.
The behaviour of the system is represented by all possible changes in the model parameters for output as a result
of changing the model parameters for input.

The problem of statistical description of switching stochastic service systems is a topic interesting in itself. The
model of input-transactions output of such system is the set of N traffic rate processes which are modelled as
Markov modulated Poisson processes (MMPP). An MMPP is a doubly stochastic Poisson process whose intensity
rate is modulated by an n-state underlying Markov chain. The MMPP is parameterized by a vector of intensities
of the primary Poisson process A € R™ and the matrix of transition probabilities Q € R**"™ of Markov chain. The
relation between parameters of input and output MMPP 1s to be found via jointly performed change detection and
parameter estimation.

It is known that CUSUM test gives the infinimum of the worst mean delay for a class of statistical test, with given
a priori rate of false alarms in the case of known parameters before and after the change. The application of this
test to Markov modulated time series is considered in [7]. In the most realistic situation (for example network
traffic) the parameters before and after the change are not known. On-line change detection algorithm is based on
generalized likelihood ratio (GLR) test for MMPP model of traffic rate process.

2. Problem Statement

Let us define the topology of physical switching network represented as a graph G, = (N, A), where N is the set of
nodes and A is set of links [6]. For each physical link a € A, there are m, channels with a finite capacity. The logical
topology associated with the switching network is represented as a graph Gy = (N, L), where L is the set of logical
links. Fach logical link ! € L corresponds to a simple path in G,. Let denote by W the set of origin-destination
(O-D) pairs and by P, the set of all logical paths,while P, is the set of logical paths that use [ = (¢, j) € L.



pathp e P x; (pacl}ets/second)\, t E/[é, T1, where T is the time horizon. Let us denote/By fj (packets/second)vthe
aggregate rate of flows over the logical links connecting the nodes i and j. Each link a;; = (¢, j) € L has a capacity
C’Z»tj at time step ¢,¢ € [0,T].

For all commodities or traffic classes w € W we assume that input traffic can be represented as n-state MMPP
characterized by the set of parameters {Aﬁf, le}wew , Ain € R*, Qin € R™". The departure flow traffic is also

modelled as n-state MMPP for each commodity with parameters {Aff,ep, fop} for all w e W.

Taking into account capacity constraints of links in network that are reflecting in possible saturation behaviour of
departure traffic for less priority commodities, it can be noted that the number of states for model of departure
traffic may be reduced. In more complicated cases, some criteria of choosing the number of Markov chain states
can be used.

The problem is to analyze both the input and the output traffic patterns determined by the possible changes of
the regime that is associated with the intensity of the primary Poisson process. This problem of traffic analysis is
considered 1n the framework of statistical black-box model identification. The problem of on-line detection in traffic
regime can be formulated as follows. Let 8y - the value of intensity parameter be known before change occurs. Our
goal is to determine the change of regime as quick as it is possible (estimating t, alarm time), second is to find
the estimate #; after change. In the continuation of experiment it is assumed that estimated parameter 6, on the
previous segment of traffic becomes known parameter 8y at the current considered segment of traffic till the new
switch of regime i1s determined. In this sequential scheme the error of estimating of parameter #; on the previous
segment will not influence on the estimating parameter ¢, at the current segment.

2.1. Probabilistic Routing and Statistical Modeling

The statistical viewpoint enable us to determine the behaviour of the system working under routing probabilities in
each node for a given commodity. At each node, the routing probabilities are computed accordingly to an ordering
of forward virtual paths (VPs) at this node, for each pair source-destination [4]. Specifically, let |N (i, k)| = n¥ be
the number of outgoing links from node ¢ handling traffic for a destination of the commodity k. Thus, we have in
each node 7 a routing table for each commodity. Note that such an ordering provides the a priority assignment over
the forward VPs (i,j) y, y = n¥ for the highest priority. Denote the priority of a VP (i, j) for commodity k by
ﬂﬁj. Denote by Pf [empty] the conditional probability that a forward VP (4, j) becomes available first, for cells of
commodity k, when
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where g;; is the utilization of VP (4, j). It can easily be proved that taking into account that busy periods of the
forward VPs are mutually independent, exponentially distributed random variables with parameters 1 — g;,, V& €
N (i, k) and that the probability that VPs (¢, j) has the smallest busy period is

L — 0ij

Pf[@z’j < 0iz] = NG , forall # £ j (2)
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Given the priority assignment and the utilization values of the VPs, we establish the routing probabilities. The
routing algorithm will switch a packet belonging to & to the VP (4, j) with priority y if all of the links with higher
priority are busy and this VP is available. The probability PZ»’} that edge (¢,7) is selected for commodity & with
priority y 1s
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The first term of the equation captures the contribution of the highest priority VPs that are busy for commodity &.
The second term considers the case where all the forward VPS are busy and the link (¢, j) becomes the first empty
one.



A first measure of distance which is called the expected proxzimity (EP) of the node 7 to node j for the commodity
k, and is defined as follows

EP} = Z H — ow) (4)
pEP u U Ep

where P denotes all possible forward paths from 7 to j for commodity & on the routmg table, |p| is the length of a

path measured in hops, and (u,v) is a link between nodes u and v. The measure EP; "7 has relatively large values
when there are few paths p between i and j, but they are short and lightly loaded or there exists a large number
of paths between i and j.

A second measure is the mazimum prozimity (MP) of node ¢ to node j for the commodity k is which is defined as
follows

1
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The maximum proximity provides a finer distinction of the nodes that have better forward paths to destination.

3. Markov Chain Approach to Traffic Class Migration
3.1. Markov Processes for Dynamic Modeling

Definition 3.1. (Markov Modulated Poisson Process (MMPP)). Let X,, be a n-state Markov chain with
matrix of transition probabilities Q. Doubly stochastic Poisson process is called Markov modulated Poisson process
(MMPP) with vector of Poisson arrival rates {A;},.,., if its arrival rate is A; when underlying Markov chain X,
is in the state 1. T O

Remark 3.1. MMPP with n-state is described by a pair of parameters A = {); }1<Z<n and matrix of transition
probabilities Q. The probability ¢;; denotes the probability that the chain, whenever in the state ¢, moves next
(one unit of time later) into state j and can be referred to as a one-step transition probability. The square matrix
Q = [¢gijliesjes, S ={1,...,n} is called the one-step transition matriz. Obviously, the following normalization
constraint should be satisfied

Z qij =1 (6)
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In order to describe the user class dynamic behaviour via MMPP models for discrete Markov chain, let us review
the MMPP driven by a continuous time Markov chain. The differential equation formalism is an important step
towards local scale characterization of events of the stochastic systems represented by the communication networks.

Definition 3.2. (Continuous Time Markov Chain (CTMC)). A stochastic process X = {X;}, ¢t > 0 is
continuous Markov chain with states in S if

gij(s) = Pr[X(t +s) = j|X(t) = 4], ¥i,j €S, Vs >0 (7)

Proposition 3.1. The Chapman-Kolmogorov equation states that

Q(s+t) = Q(s)Q(), Vs >0,t>0 (8)

where Q(0) = L. If we set t = ds, we obtain the following equation

%Q(S) = Q(s)G 9)

where G = ds Q(s)|s=o is the generator matriz of the Markov chain. O



number of arrivals in an interval (0,¢] and J; be the state of the Markov chain at the time step ¢. Define the matrix
Q(n,t),ne S, t >0 with elements [¢;;(n,?)];es jes as follows

gii(n,t) = Pr[Ne=mn, Jy=j|No=0, Jo=i (10)

We call the matrix Q(n,t) the probability transition matrix of double process (N, Ji). Let A be the diagonal
matrix associated with vector of intensities of MMPP, that is, A = diag[A;];es. The matrices Q(n,t), n € S, t > 0,
satisfy the Chapman-Kolmogorov equations

%Q(n,t) = Qn,t)(G—A)+Q(n—1,1)A (11)

Q(0,0) = I,VrnesS t>0 (12)

Multiplying (11) by 2" and summing for n = 0,1, ..., we obtain

L2001 = Z{QUE0) (G- A) 422 {Q( DA (13)

Z{Q(z, )} =0 = 1 (14)

where Z{Q(z,t)} = >_ z"Q(n,1) is the Z-transform of matrix Q(n,t). Solving (13), we get the generating function
n=0

of Q(n,t) as follows

Z1Q(n,0)} =  exp[G(z— DAY (15)

The expected number of arrivals number in the interval (0,¢] can be derived from the expression of the generating
function, that 1s,

UACIURD IR

E[N] = 1
[Ve] 52 (16)
where e = [1,...,1]7 and 7 is the steady state vector of the Markov chain such that 7Q = 7. Finally, we obtain
E[N,] = mAet = > mAit (17)
SES

Remark 3.2. The component 7; of steady state vector 7 can be interpretated as asymptotically reached probability
to be in the state ¢ € S without regard of the history, or it can be expressed as

tli}r&Pr[X()—ﬂX()_ i|=m, Vi,jeS (18)

O

The type of developments presented in this section i1s widely used to characterize the queueing processes associated
to the routing and switching device in the communication network.

3.2. Markov Chain Description of Traffic Migration

Let us consider that the traffic sources dynamics which are characterized by a MMPP process are subject to changes
their operation regimes. We will call this feature, traffic class migration, and we attempt to use the available results
from the theory of discrete Markov chains in order to encode the most significant feature of their behaviour.

Let us denote 7; the first passage time to state j, defined as 7; = min{n > 1, X(n) = j}. The probability distribution
of ; is of great importance in what follows. Let us define

f(n,i,j) =Pri(r; =n), n>1 (19)

and

Zf (n, = Pri(r; < o0) (20)

n>1



Pri[T:OO]:f(OOaiaj):1_f(iaj) (21)

Therefore, f(n,4,j), n=1,2,...,00, is the probability distribution of 7; under the probability Pr; (i.e., given the
Markov chain starts in state ¢). The probabilities considered can be obviously expressed in a way that involves the
Markov chain itself. Then, we have

{rj =1 ={X(1) =7} (22)

{ri=n}={X(m)#j, 1>m>n—1 X(n)=j}, n>2 (23)
{rj =00} ={X(m) #j,m>1} (24)
{rj <00} = {X(m) = j for at least one value of m > 1} = ] {X(m) = j}, (25)
Therefore -
F(,4,5) = Pry[X(1) = j] = p(i, j) (26)
f(n,ig) = Pr[X(m)#j, 1>m>n—1, X(n) =] (27)

= > p(i,i0)p(it, iz) .. .p(in_1,j), n>2 (28)
im#j, (1<m<n—1)

F(00,isd) = PrlX(m) # j, m > 1] (29)
f(i,7) = Pr;[X(m) = j for at least one value of m > 1] = Pri{ U {X(m) = j} (30)
m>1

The last equalities lead to

Pri[X(n) = j] > f(i,j) > D Pri[X(m) = j] (31)
m>1
for all n > 1, where

:glip(n, ) e nglp(m, i,J) (32)

for all states ¢ and j. Tt follows at once that ¢ — j if and only if f(¢,j) > 0 and that ¢ & j if and only if
F(&,0)f(4,4) > 0. Notice that by homogenity we also have

f(1,4,5) = Pr[X(m + 1) = j[X(m) = i] (33)

fn,i, ) =PrX(m+1)#j, 1 <I<n—-1, X(m+n)=jX(m)=1], n>2 (34)

for any m for which the conditional probabilities are defined. The following results describe the qualitative properties
of the Markov chain that are relevant in describing the traffic migration processes.

Theorem 3.1. If the Markov chain starts in state ¢, then the probability of returning to i at least v times equals
(0] O
Corollary 3.1. Assume the Markov chain starts in state i. If f(i,¢) = 1, then probability of returning to i infinitely
often is 1. If f(i,1) < 1, the probability of returning to i infinitely often is 0.

Proof. The random event
A = { the Markov chain returns to ¢ infinitely often } (35)
is the intersection of the decreasing sequence of random events
{ the Markov chain returns to ¢ at least » times}, r > 1 (36)
Therefore, the probability of A is equal to

i [£( )] z{ éj ijiﬁiii 1 o



p(n,i,j) =Y f(m,i, j)p(n —m,j, j) (38)

Proof. Intuitively we may argue as follows. To be in state j at the nth step, the Markov chain should reach that
state for the first time at some time m, 1 <m < n. After that happens, it should return to j in n — m steps. The
rigorous proof uses the strong Markov property. We have

p(n,i,j) = PrZ[X(n) = .7] = Pri[Tj <mn, X(n) = .7] (39)

since the random event {X(n) = j} implies the random event {r; < n}
= Pr[r;=m, X(n) =] (40)
m=1
Because {r; < n} is the union of disjoint random events {r; =m},1 <m <n

p(n,i,j): ZPri[Tj:m’ X(Tj+n_m):j] (41)

m=1
Since {r; =m} ={r;+n—m=n}

n

p(n,i,j) = Z Pri[r; = m]Pr; [ X (75 + n—m) = j|r; = m] (42)
i,j) = Z Pri[r; = m|Pr; [ X (1 + n—m) = j|X(7;) = j, 77 = m] (43)

By Corollary 3.1 of Theorem 3.1, then we have

p(n,i,j) =Y f(m,i, j)p(n —m,j, j) (44)

Theorem 3.3. (Doeblin’s formula). For any states i and j, we have

> p(n,i,j)

fig) = lim == (45)
o0 Z_:lp(njj)
Proof. Equation (38) yields
n=1 n=1m=1 m=1 n=m

Thus,

(1+§_p<n,j,j>) i Z > (14 Z n.i.9)) Zf(m,i,j>, (47)

for all s’ < s. Since 1 4+ > p(n,j,j) dominates

n=1
Y pn—mj)=1+> pn,jj) (48)
n=m n=1
and

i)Y pn=mj ) (49)

m=1 n=m



i i

s s—s'+m s—s’ s
((Fomind) Yo pln=mgiin) = (143 png ) 3 Flm,i ). (50)
m=1 n=m n=1 m=1
dividing by 1+ > p(n,j,j) and letting first s — oo, then s’ = oo, yields the equation (45). O
n=1

Remark 3.3. The above results are useful towards estimating theoretically the transition rates of the discrete
Markov chain which is modulating the basic Poisson process. An extension of theses results inthe spirit of properties
presented in Section 3.1 would be of major interest. O

4. Input-Output Representation of Statistical Behaviour

Let us consider an extended experiment that can be formulated as follows. Assume that for each commodity w € W,
we have the set of possible values for vector A, € R” denoted by L£;, C R”. The estimated set of parameters is
Lin C R™. Similarly, ﬁdep C R”™ is the set of intensity parameters for the output traffic. The goal 1s to find the
dependency relation between the sets ﬁm and ﬁdep. Let Am € ﬁm and Adep € ﬁdep.

Adep = f(Azn) (51)
We concentrate on constructing linear relations as follows
Aip = Gurshi, (52)
where the equality holds in the least squares sense [5], that is,
_ . PP ST
Gus = arg_min Y [Awp - Gl (53)

Ain€lin,Adep€Lacp

Finding the matrix Gpg will encode the dependencies between the statistical representations of the input and
output traffic. Instead of proposing the model for the switching system and then estimating the model parameters,
we consider models for input and the output traffic and in the extended experiment, the changes in the output
parameters will reflect changes in the input parameters that are subject of statistical estimation [2].

The matrix Gpg can be used further in some other ways. First, the explicit usage is in the prediction of the
output parameters for given vectors of input parameters which in fact may not belong to the set Lin of extended
experiment. In this case, it can be seen as an extrapolation, or as interpolation if a given vector is included into
Lin. In both cases, this extended experiment may be treated as a learning process during which the matrix Gpg is
being constructed. In the next stage, Gpg 1s used without modifications as a given model for dependencies between

the input and the output. The matrix Grs can be estimated as off-line linear regression over the sets ﬁm and ﬁdep.

The second possible usage of Gpg is in solving the inverse problem of finding the values of the input parameters
corresponding to given output parameters. This problem can be solved in the context of adaptive control (or
regulation) of the switching system in order to achieve a desired level of performance with respect to given regulation
criteria, which in the most situations can be expressed as a desired set of output traffic parameters.

5. Derivation of GLR Test

In this section we derive GLR algorithm that is effectively used under the Poisson distribution hypothesis for
the basic stochastic process of traffic generation [1]. We consider a parametric family of Poisson distributions
P = {Pra}yce,© C R". Let as usual, V¥ be a data sample of size N. The goal is to distinguish the distance
between two hypothesis

Hy = {L="Pr}
Hi = {L=Pn,} (54)

Since the Poisson process can be represented as the sum of 1.i.d. exponentially distributed random variables, its
density 1s given by

e ()t

pa(t) = Ae =1V

t>0 (55)



construvction of GLR method and it is deﬁneci ;iS follows

PN j (yjN)

56
PG (V) 0

SY (Ao, A1) = In
where py ; », ()/N) ¢t = 1,2 1s the joint p.d.f. for part of the data sample for time steps 5,7+ 1,..., N.

Remark 5.1. In the notation of joint p.d.f., there are subscripts N and j that explicitly denote the dependency
p.d.f. of time interval of considered part of N-size sample ViV, O

Under the independence assumption of observations, equation (56) becomes

Prn o

S (Ao, A1) In 57

o Z_; P, Au(y &7

Let us derive the expression for joint p.d.f of Y. We have
N —)\y (z 1)
pNia(Y) ) = H/\e (=)
> G-D+j+-+N N
= AN J+1 (zZ:J ) A ! Hy(l_l)
(7 — Dt . NI = ’

= A% (58)

where in the last relation, the following notations are used

m o= J[sY (59)
0 = Nl (NN = 1) (= 1) ~2) (60)

g = Zyz (61)

The maximum of PN,j,A(ij) with respect to the parameter A can be easily obtained after solving the equation

Ipn A (V)

=0 (62)

Let us explicitly solve the equation (62) which can be rewritten as

Ipn A (V)

— (a=1) ,=AB _ yap,—XAp —
£ [ e AYBe™ =0 (63)

Consequently,

N —1
AN, 3, 0Y) = argsuplpn ;2 ()] = O‘T (64)

In order to formulate GLR method in the case of unknown parameter A; after change, the equation (56) of the
log-likelihood ratio should be rewritten as

pN,j,Al(yN)
SN(X) = Insu [73 65
J ( 0) >\1p pN,j,AD(ij) ( )
which using (64) can be written as follows
N
P i) (Vi)
SN (A :ln[ R 66
i o) PN e (V) (96)



700 = [([Te B (T 2

N-j ¢(N=0)* \(G-1)+i++N
n [( A ) Je A ]

Ao e(N—=4)Xa /\(()j—l)+j+~~+N
N A ~
= W—j+ 31 ( ) (N = (A = Ao) (67)
i=j—1

where \ = ;\(N, 7, YY) and is given by (64). Finally, the GLR statistics are given by

9x(ST) = max S7(Ao), k>0 (68)
JE[L,k]

The stopping time of GLR test can be written as

gt = glgg{gk(slf)thLR} (69)

The threshold hgrr i1s an adjustable parameter of the proposed test. The choice of this threshold is based on the
investigation of asymptotic behaviour of the likelihood ratio. Let a be a size of test gx(SY) when the asymptotic
distribution of —21n gx(ST) under hypothesis Hg is x%(1). The following relation determines the in-control state of
2

—2In g, (ST) < xi_o(1) (70)
where y7_, (1) is the (1 — a)-th quantile of the y?-distribution with 1 degree of freedom.

Remark 5.2. The same asymptotic behaviour of gk(Sf) can be observed in the vector case of parameter. In this
case

L| —2Ingg(ST)| = x*(1), when L(S}) = Py, (71)

where [ is the dimension of parameter space. O

6. Concluding Remarks

In this paper we have shown the main concepts from the telecommunication networks traffic theory and system
modelling and their interplay that are useful in order to describe in an unified manner the input-output transfer
processes occurring in the switching systems. Some experimental studies are to be considered in the future towards
validating the theoretical framework that has been developed.
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