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1 Variational Inequalities with Continuous Map-

pings

We consider the main idea of combined relaxation (CR) methods and implementable
algorithms for solving variational inequality problems with continuous single-valued
mappings.

1.1 Problem Formulation

Let U be a nonempty, closed and convex subset of the n-dimensional Euclidean space
Rn, G : U → Rn a continuous mapping. The variational inequality problem (VI) is the
problem of finding a point u∗ ∈ U such that

〈G(u∗), u − u∗〉 ≥ 0 ∀u ∈ U. (1)

It is well known that the solution of VI (1) is closely related with that of the following
problem of finding u∗ ∈ U such that

〈G(u), u− u∗〉 ≥ 0 ∀u ∈ U. (2)

Problem (2) may be termed as the dual formulation of VI (DVI). We will denote by
U∗ (respectively, by Ud) the solution set of problem (1) (respectively, problem (2)).

To obtain relationships between U ∗ and Ud, we need additional monotonicity type
properties of G.

Definition 1.1 Let W and V be convex sets in Rn, W ⊆ V , and let Q : V → Rn be
a mapping. The mapping Q is said to be

(a) strongly monotone on W if

〈Q(u) − Q(v), u − v〉 ≥ τ‖u − v‖2 ∀u, v ∈ W ;

(b) strictly monotone on W if

〈Q(u) − Q(v), u − v〉 > 0 ∀u, v ∈ W, u 6= v;

(c) monotone on W if

〈Q(u) − Q(v), u − v〉 ≥ 0 ∀u, v ∈ W ;

(d) pseudomonotone on W if

〈Q(v), u − v〉 ≥ 0 =⇒ 〈Q(u), u− v〉 ≥ 0 ∀u, v ∈ W ;
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(e) quasimonotone on W if f

〈Q(v), u − v〉 > 0 =⇒ 〈Q(u), u − v〉 ≥ 0 ∀u, v ∈ W ;

(f) explicitly quasimonotone on W if it is quasimonotone on W and

〈Q(v), u − v〉 > 0 =⇒ 〈Q(z), u − v〉 > 0 ∃z ∈ (0.5(u + v), u).

It follows from the definitions that the following implications hold:

(a) =⇒ (b) =⇒ (c) =⇒ (d) =⇒ (f) =⇒ (e).

The reverse assertions are not true in general.
Now we recall the relationships between solution sets of VI and DVI, which are

known as the Minty Lemma.

Proposition 1.1 (i) Ud is convex and closed.
(ii) Ud ⊆ U∗.
(iii) If G is pseudomonotone, U ∗ ⊆ Ud.

The existence of solutions of DVI plays a crucial role in constructing relatively sim-
ple solution methods for VI. We note that Proposition 1.1 (iii) does not hold in the
(explicitly) quasimonotone case. Moreover, problem (2) may even have no solutions in
the quasimonotone case. However, we can give an example of solvable DVI (2) with
the underlying mapping G which is not quasimonotone. Nevertheless, as it was shown
by Konnov [9], explicitly quasimonotone DVI is solvable under the usual assumptions.

1.2 Classical Iterations

One of most popular approaches for solving general problems of Nonlinear Analysis
consists of creating a sequence {uk} such that each uk+1 is a solution of some auxiliary
problem, which can be viewed as an approximation of the initial problem at the previous
point uk.

At the beginning we consider the simplest problem of solving the nonlinear equation

φ(t) = 0, (3)

where φ : R → R is continuously differentiable. Recall that the Newton method being
applied to this problem iteratively solves the linearized problem

φ(tk) + φ′(tk)(t − tk) = 0, (4)
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where tk is a current iteration point. Obviously, we obtain the well-known process

tk+1 := tk − φ(tk)/φ
′(tk), (5)

which, under certain assumptions, converges quadratically to a solution of (3). The
Newton method for VI (1):

〈G(uk) + ∇G(uk)(uk+1 − uk), v − uk+1〉 ≥ 0 ∀v ∈ U (6)

possesses the same properties. Most modifications of the Newton method consist of
replacing the Jacobian ∇G(uk) with a matrix Ak. One can then obtain various Newton–
like methods such as quasi–Newton methods, successive overrelaxation methods, etc.
In general, we can replace (6) with the problem of finding a point z̄ ∈ U such that

〈G(uk) + λ−1
k Tk(u

k, uk+1), v − uk+1〉 ≥ 0 ∀v ∈ U, (7)

where the family of mappings {Tk : V × V → Rn} such that, for each k = 0, 1, . . .,
(A1) Tk(u, ·) is strongly monotone with constant τ ′ > 0 for every u ∈ U ;
(A2) Tk(u, ·) is Lipschitz continuous with constant τ ′′ > 0 for every u ∈ V ;
(A3) Tk(u, u) = 0 for every u ∈ V .
For instance, we can choose

Tk(u, z) = Ak(z − u) (8)

where Ak is an n× n positive definite matrix. The simplest choice Ak ≡ I in (8) leads
to the well-known projection method.

However, all these methods require restrictive assumptions either G be strictly
monotone or its Jacobian be symmetric for convergence. We will describe a general
approach to constructing iterative solution methods, which involves a solution of the
auxiliary problem (7) in order to compute iteration parameters in the main process.
As a result, we prove convergence of such a process under rather mild assumptions.

1.3 Basic Properties of CR Methods

We first consider another approach to extending the Newton method (5). Suppose
f : Rn → R is a non-negative, continuously differentiable and convex function. Let us
consider the problem of finding a point u∗ ∈ Rn such that

f(u∗) = 0. (9)

Its solution can be found by the following gradient process

uk+1 := uk − (f(uk)/‖∇f(uk)‖2)∇f(uk). (10)
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Note that process (10) can be viewed as some extension of (5). Indeed, the next iterate
uk+1 also solves the linearized problem

f(uk) + 〈∇f(uk), u − uk〉 = 0.

Process (10) has quite a simple geometric interpretation. Set

Hk = {u ∈ Rn | 〈∇f(uk), u − uk〉 = −f(uk)}.

Note that the hyperplane Hk separates uk and the solution set of problem (9). It is
easy to see that uk+1 in (10) is the projection of uk onto the hyperplane Hk, so that
the distance from uk+1 to each solution of (9) has to decrease in comparison with that
from uk.

We now consider an extension of this approach to the case of VI (1).

Definition 1.2 Let W be a nonempty closed set in Rn. A mapping P : Rn → Rn is
said to be feasible and non-expansive (f.n.e.) with respect to W , if for every u ∈ Rn,
we have

P (u) ∈ W, ‖P (u) − w‖ ≤ ‖u − w‖ ∀w ∈ W.

We denote by F(W ) the class of all f.n.e. mappings with respect to W . We can take
the projection mapping πW (·) as P ∈ F(W ). However, if the definition of the set
U includes functional constraints, then the projection onto U cannot be found by a
finite procedure. Nevertheless, in that case there exist finite procedures of finding the
corresponding point P (u).

Let us consider an iteration sequence {uk} generated in accordance with the fol-
lowing rules:

uk+1 := Pk(ũ
k+1), ũk+1 := uk − γσkg

k, Pk ∈ F(U), γ ∈ (0, 2), (11)

〈gk, uk − u∗〉 ≥ σk‖gk‖2 ≥ 0 ∀u∗ ∈ Ud. (12)

It is easy to see that ũk+1 is the projection of uk onto the hyperplane

Hk(γ) = {v ∈ Rn | 〈gk, v − uk〉 = −γσk‖gk‖2},

and that Hk(1) separates uk and Ud. Although Hk(γ), generally speaking, does not
possess this property, the distance from ũk+1 to each point of Ud cannot increase and
the same is true for uk+1 since Ud ⊆ U . We now give the key property of the process
(11), (12), which specifies the above statement.

Lemma 1.1 Let a point uk+1 be chosen by (11), (12). Then we have

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 − γ(2 − γ)(σk‖gk‖)2 ∀u∗ ∈ Ud. (13)
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The following assertions follow immediately from (13).

Lemma 1.2 Let a sequence {uk} be constructed in accordance with the rules (11),
(12). Then:

(i) {uk} is bounded.

(ii)
∞
∑

k=0
γ(2 − γ)(σk‖gk‖)2 < ∞.

(iii) For each limit point u∗ of {uk} such that u∗ ∈ Ud we have

lim
k→∞

uk = u∗.

Note that the sequence {uk} has limit points due to (i). Thus, due to (iii), it suffices
to show that there exists a limit point of {uk} which belongs to Ud. However, process
(11), (12) is only a conceptual scheme, since it does not contain the rules of choosing
the parameters gk and σk satisfying (12). This approach was first proposed by Konnov
[1], where it was also noticed that iterations of most relaxation methods can be applied
to find these parameters (see also [5, 8] for more details).

1.4 An Implementable CR Method

The blanket assumptions are the following.

• U is a nonempty, closed and convex subset of Rn;

• V is a closed convex subset of Rn such that U ⊆ V ;

• G : V → Rn is a locally Lipschitz continuous mapping;

• U∗ = Ud 6= ∅.

Method 1.1. Step 0 (Initialization): Choose a point u0 ∈ U , a family of mappings
{Tk} satisfying (A1) – (A3) with V = U and a sequence of mappings {Pk}, where
Pk ∈ F(U) for k = 0, 1, . . . Choose numbers α ∈ (0, 1), β ∈ (0, 1), γ ∈ (0, 2), θ̃ > 0.
Set k := 0.

Step 1 (Auxiliary procedure):
Step 1.1 : Solve the auxiliary variational inequality problem of finding zk ∈ U

such that
〈G(uk) + Tk(u

k, zk), v − zk〉 ≥ 0 ∀v ∈ U (14)

and set pk := zk − uk. If pk = 0, stop.
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Step 1.2: Determine m as the smallest number in Z+ such that

uk + βmθ̃pk ∈ U, 〈G(uk + βmθ̃pk), pk〉 ≤ α〈G(uk), pk〉, (15)

set θk := βmθ̃, vk := uk + θkp
k. If G(vk) = 0, stop.

Step 2 (Main iteration): Set

gk := G(vk), σk := 〈G(vk), uk − vk〉/‖gk‖2, uk+1 := Pk(u
k − γσkg

k), (16)

k := k + 1 and go to Step 1.

According to the description, at each iteration we solve the auxiliary problem (7)
with λk = 1 and carry out an Armijo-Goldstein type linesearch procedure. Thus, our
method requires no a priori information about the original problem (1). In particular,
it does not use the Lipschitz constant for G.

Theorem 1.1 Let a sequence {uk} be generated by Method 1.1. Then:
(i) If the method terminates at Step 1.1 (Step 1.2) of the kth iteration, uk ∈ U∗

(vk ∈ U∗).
(ii) If {uk} is infinite, we have

lim
k→∞

uk = u∗ ∈ U∗.

Theorem 1.2 Let an infinite sequence {uk} be constructed by Method 1.1. Suppose
that G is strongly monotone. Then:

(i) the sequence {‖uk − πU∗(uk)‖} converges to zero in the rate O(1/
√

k);
(ii) if U = Rn, {‖uk − πU∗(uk)‖} converges to zero in a linear rate.

We now give conditions that ensure finite termination of the method. Namely, let
us consider the following assumption.

(A4) There exists a number µ′ > 0 such for each point u ∈ U , the following
inequality holds:

〈G(u), u − πU∗(u)〉 ≥ µ′ ‖u − πU∗(u)‖. (17)

Theorem 1.3 Let a sequence {uk} be constructed by Method 1.1. Suppose that (A4)
holds. Then the method terminates with a solution.

1.5 Modifications

In Step 1 of Method 1.1, we solved the auxiliary problem (14), which corresponds to
(7) with λk = 1, and afterwards found the stepsize along the ray uk + θ(zk − uk).
However, it is clear that one can satisfy condition (15) by sequential solving problem
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(7) with various λk. We now describe a CR method which involves a modified linesearch
procedure.

Method 1.2. Step 0 (Initialization): Choose a point u0 ∈ U , a family of mappings
{Tk} satisfying (A1) – (A3) with V = U and a sequence of mappings {Pk}, where
Pk ∈ F(U) for k = 0, 1, . . . Choose numbers α ∈ (0, 1), β ∈ (0, 1), γ ∈ (0, 2), θ̃ > 0.
Set k := 0.

Step 1 (Auxiliary procedure):
Step 1.1 : Find m as the smallest number in Z+ such that

〈G(zk,m), zk,m − uk〉 ≤ α〈G(uk), zk,m − uk〉, (18)

where zk,m is a solution of the auxiliary problem of finding z̄ ∈ U such that

〈G(uk) + (θ̃βm)−1Tk(u
k, z̄), u − z̄〉 ≥ 0 ∀u ∈ U. (19)

Step 1.2: Set θk := βmθ̃, vk := zk,m. If uk = vk or G(vk) = 0, stop.
Step 2 (Main iteration): Set

gk := G(vk), σk := 〈G(vk), uk − vk〉/‖gk‖2, (20)

uk+1 := Pk(u
k − γσkg

k), (21)

k := k + 1 and go to Step 1.

Method 1.2 possesses the same convergence properties as those of Method 1.1.
We now describe a CR method which uses a different rule of computing the descent

direction.

Method 1.3. Step 0 (Initialization): Choose a point u0 ∈ V , a family of mappings
{Tk} satisfying (A1) – (A3), and choose a sequence of mappings {Pk}, where Pk ∈
F(V ), for k = 0, 1, . . . Choose numbers α ∈ (0, 1), β ∈ (0, 1), γ ∈ (0, 2), θ̃ > 0. Set
k := 0.

Step 1 (Auxiliary procedure):
Step 1.1 : Find m as the smallest number in Z+ such that

〈G(uk) − G(zk,m), uk − zk,m〉 ≤ (1 − α)(θ̃βm)−1〈Tk(u
k, zk,m), zk,m − uk〉, (22)

where zk,m is a solution of the auxiliary problem of finding z̄ ∈ U such that (19) holds.
Step 1.2: Set θk := βmθ̃, vk := zk,m. If uk = vk or G(vk) = 0, stop.

Step 2 (Main iteration): Set

gk := G(vk) − G(uk) − θ−1
k Tk(u

k, vk), (23)

σk := 〈gk, uk − vk〉/‖gk‖2, (24)

uk+1 := Pk(u
k − γσkg

k), (25)

k := k + 1 and go to Step 1.
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Theorem 1.4 Let a sequence {uk} be generated by Method 1.2. Then:
(i) If the method terminates at the kth iteration, vk ∈ U∗.
(ii) If {uk} is infinite, we have

lim
k→∞

uk = u∗ ∈ U∗.

Theorem 1.5 Let an infinite sequence {uk} be generated by Method 1.3. If G is
strongly monotone, then {‖uk − πU∗(uk)‖} converges to zero in a linear rate.

Theorem 1.6 Let a sequence {uk} be constructed by Method 1.3. Suppose that (A4)
holds. Then the method terminates with a solution.

1.6 CR Method for Nonlinearly Constrained Problems

In this section, we consider the case of VI (1) subject to nonlinear constraints. More
precisely, we suppose that

U = {u ∈ Rn | hi(u) ≤ 0 i = 1, . . . , m},
where hi : Rn → R, i = 1, . . . , m are Lipschitz continuously differentiable and convex
functions, there exists a point ū such that hi(ū) < 0 for i = 1, . . . , m.

Since the functions hi, i = 1, . . . , m need not be affine, the auxiliary problems at
Step 1 of the previous CR methods cannot in general be solved by finite algorithms.
Therefore, we need a finite auxiliary procedure for this case. Such a CR method can
be described as follows. Set

Iε(u) = {i | 1 ≤ i ≤ m, hi(u) ≥ −ε}.

Method 1.4. Step 0 (Initialization): Choose a point u0 ∈ U , sequences {εl} and {ηl}
such that

{εl} ↘ 0, {ηl} ↘ 0. (26)

Also, choose a sequence of mappings {Pk}, where Pk ∈ F(U) for k = 0, 1, . . . Choose
numbers α ∈ (0, 1), β ∈ (0, 1), γ ∈ (0, 2), θ ∈ (0, 1], and µi > 0 for i = 1, . . . , m. Set
l := 1, k := 0.

Step 1 (Auxiliary procedure):
Step 1.1 : Find the solution (τk,l, p

k,l) of the problem

min → τ (27)

subject to

〈G(uk), p〉 ≤ τ,

〈∇hi(u
k), p〉 ≤ µiτ i ∈ Iεl

(uk), (28)

|ps| ≤ 1 s = 1, . . . , n.
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Step 1.2: If τk,l ≥ −ηl, set vk := uk, uk+1 := uk, gk := 0, σk := 0, k := k + 1,
l := l + 1 and go to Step 1. (null step)

Step 1.3: Determine m as the smallest number in Z+ such that

uk + βmθ̃pk,l ∈ U, 〈G(uk + βmθ̃pk,l), pk,l〉 ≤ α〈G(uk), pk,l〉, (29)

set θk := βmθ̃, vk := uk + θkp
k,l. (descent step)

Step 2 (Main iteration): Set

gk := G(vk), σk := 〈G(vk), uk − vk〉/‖gk‖2, uk+1 := Pk(u
k − γσkg

k), (30)

k := k + 1 and go to Step 1.

It is easy to see that the auxiliary procedure in Step 1 is an analogue of an iteration
of the Zoutendijk feasible direction method.

Theorem 1.7 Let a sequence {uk} be generated by Method 1.4. Then

lim
k→∞

uk = u∗ ∈ U∗.

The procedure for implementing a f.n.e. mapping Pk is for example the following
(see [12]). Set

I+(u) = {i | 1 ≤ i ≤ m, hi(u) > 0}.

Procedure P. Data: A point v ∈ Rn.
Output: A point p.
Step 0: Set w0 := v, j := 0.
Step 1: If wj ∈ U , set p := wj and stop.
Step 2: Choose i(j) ∈ I+(wj), qj ∈ ∂hi(j)(w

j), set

wj+1 := wj − 2hi(j)(w
j)qj/‖qj‖2, (31)

j := j + 1 and go to Step 1.

Procedure P is a variant of the reflection method generalizing the relaxation method
for solving linear inequalities. Indeed, the points wj and wj+1 in (31) are symmetric
with respect to the hyperplane

Hj = {u ∈ Rn | 〈qj, u − wj〉 = −hi(j)(w
j)},

which separates wj and U . For other approaches to construct f.n.e. mappings see [11].
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2 Variational Inequalities with Multivalued Map-

pings

We will consider combined relaxation (CR) methods for solving variational inequalities
which involve a multivalued mapping. This approach was suggested and developed in
[2, 3, 6, 10].

2.1 Problem Formulation

Let U be a nonempty, closed and convex subset of the n-dimensional Euclidean space
Rn, G : U → Π(Rn) a multivalued mapping. The generalized variational inequality
problem (GVI for short) is the problem of finding a point u∗ ∈ U such that

∃g∗ ∈ G(u∗), 〈g∗, u − u∗〉 ≥ 0 ∀u ∈ U. (1)

The solution of GVI (1) is closely related with that of the corresponding dual generalized
variational inequality problem (DGVI for short), which is to find a point u∗ ∈ U such
that

∀ u ∈ U and ∀g ∈ G(u) : 〈g, u− u∗〉 ≥ 0. (2)

We denote by U ∗ (respectively, by Ud) the solution set of problem (1) (respectively,
problem (2)).

Definition 2.1 Let W and V be convex sets in Rn, W ⊆ V , and let Q : V → Π(Rn)
be a multivalued mapping. The mapping Q is said to be

(a) a K-mapping on W , if it is u.s.c. on W and has nonempty convex and compact
values;

(b) u-hemicontinuous on W , if for all u ∈ W , v ∈ W and α ∈ [0, 1], the mapping
α 7→ 〈T (u + αw), w〉 with w = v − u is u.s.c. at 0+.

Now we give an extension of the Minty Lemma for the multivalued case.

Proposition 2.1
(i) The set Ud is convex and closed.
(ii) If G is u-hemicontinuous and has nonempty convex and compact values, then

Ud ⊆ U∗.
(iii) If G is pseudomonotone, then U ∗ ⊆ Ud.

The existence of solutions to DGVI will play a crucial role for convergence of CR
methods for GVI. Note that the existence of a solution to (2) implies that (1) is
also solvable under mild assumptions, whereas the reverse assertion needs generalized
monotonicity assumptions.
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2.2 CR Method for the Generalized Variational Inequality
Problem

We now consider a method for solving GVI (1). The blanket assumptions of this section
are the following:

• U is a subset of Rn, which is defined by

U = {u ∈ Rn | h(u) ≤ 0}, (3)

where h : Rn → R is a convex, but not necessarily differentiable, function;

• the Slater condition is satisfied, i.e., there exists a point ū such that h(ū) < 0;

• G : U → Π(Rn) is a K-mapping;

• U∗ = Ud 6= ∅.

Let us define the mapping Q : Rn → Π(Rn) by

Q(u) =
{

G(u) if h(u) ≤ 0,
∂h(u) if h(u) > 0.

(4)

Method 2.1. Step 0 (Initialization): Choose a point u0 ∈ U , bounded positive
sequences {εl} and {ηl}. Also, choose numbers θ ∈ (0, 1), γ ∈ (0, 2), and a sequence of
mappings {Pk}, where Pk ∈ F(U) for k = 0, 1, . . . Set k := 0, l := 1.

Step 1 (Auxiliary procedure) :
Step 1.1 : Choose q0 from Q(uk), set i := 0, pi := qi, w0 := uk.
Step 1.2: If

‖pi‖ ≤ ηl, (5)

set yl := uk+1 := uk, k := k + 1, l := l + 1 and go to Step 1. (null step)
Step 1.3: Set wi+1 := uk − εlp

i/‖pi‖, choose qi+1 ∈ Q(wi+1). If

〈qi+1, pi〉 > θ‖pi‖2, (6)

then set vk := wi+1, gk := qi+1, and go to Step 2. (descent step)
Step 1.4: Set

pi+1 := Nr conv{pi, qi+1}, (7)

i := i + 1 and go to Step 1.2.
Step 2 (Main iteration): Set σk := 〈gk, uk − vk〉/‖gk‖2,

uk+1 := Pk(u
k − γσkg

k),
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k := k + 1 and go to Step 1.

According to the description, at each iteration, the auxiliary procedure in Step 1
is applied for direction finding. In the case of a null step, the tolerances εl and ηl

decrease since the point uk approximates a solution within εl, ηl. Hence, the variable
l is a counter for null steps and the variable j(·) is a counter for descent steps. In the
case of a descent step we must have σk > 0. Therefore, the point ũk+1 = uk − γσkg

k is
the projection of the point uk onto the hyperplane

Hk(γ) = {v ∈ Rn | 〈gk, v − uk〉 = −γσk‖gk‖2}.

Clearly, Hk(1) separates uk and Ud. Hence, the distance from ũk+1 to each point of Ud

cannot increase when γ ∈ (0, 2) and that from uk+1 does so due to the properties of
Pk. Thus, our method follows the general CR framework.

We will call one increase of the index i an inner step, so that the number of inner
steps gives the number of computations of elements from Q(·) at the corresponding
points.

Theorem 2.1 Let a sequence {uk} be generated by Method 2.1 and let {εl} and {ηl}
satisfy the following relations:

{εl} ↘ 0, {ηl} ↘ 0. (8)

Then:
(i) The number of inner steps at each iteration is finite.
(ii) It holds that

lim
k→∞

uk = u∗ ∈ U∗.

As Method 2.2 has a two-level structure, each iteration containing a finite number
of inner steps, it is more suitable to derive its complexity estimate, which gives the
total amount of work of the method. We use the distance to u∗ as an accuracy function
for our method, i.e., our approach is slightly different from the standard ones. More
precisely, given a starting point u0 and a number δ > 0, we define the complexity of the
method, denoted by N(δ), as the total number of inner steps t which ensures finding
a point ū ∈ U such that

‖ū − u∗‖/‖u0 − u∗‖ ≤ δ.

Therefore, since the computational expense per inner step can easily be evaluated for
each specific problem under examination, this estimate in fact gives the total amount
of work. We thus proceed to obtain an upper bound for N(δ).
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Theorem 2.2 Suppose G is monotone and there exists u∗ ∈ U∗ such that

for every u ∈ U and for every g ∈ G(u),
〈g, u− u∗〉 ≥ µ‖u − u∗‖, (9)

for some µ > 0. Let a sequence {uk} be generated by Method 2.1 where

εl = νlε′, ηl = η′, l = 0, 1, . . . ; ν ∈ (0, 1). (10)

Then, there exist some constants ε̄ > 0 and η̄ > 0 such that

N(δ) ≤ B1ν
−2(ln(B0/δ)/ ln ν−1 + 1), (11)

where 0 < B0, B1 < ∞, whenever 0 < ε′ ≤ ε̄ and 0 < η′ ≤ η̄, B0 and B1 being
independent of ν.

It should be noted that the assertion of Theorem 2.2 remains valid without the
additional monotonicity assumption on G if U = Rn.

Thus, our method attains a logarithmic complexity estimate, which corresponds to
a linear rate of convergence with respect to inner steps. We now establish a similar
upper bound for N(δ) in the single-valued case.

Theorem 2.3 Suppose that U = Rn and that G is strongly monotone and Lipschitz
continuous. Let a sequence {uk} be generated by Method 2.2 where

εl = νlε′, ηl = νlη′, l = 0, 1, . . . ; ε′ > 0, η′ > 0; ν ∈ (0, 1). (12)

Then,
N(δ) ≤ B1ν

−6(ln(B0/δ)/ ln ν−1 + 1), (13)

where 0 < B0, B1 < ∞, B0 and B1 being independent of ν.

2.3 CR Method for Multivalued Inclusions

To solve GVI (1) , we propose to apply Method 2.1 to finding stationary points either
of the mapping P being defined as follows

P (u) =











G(u) if h(u) < 0,
conv{G(u)

⋃

∂h(u)} if h(u) = 0,
∂h(u) if h(u) > 0.

(14)

Such a method need not include feasible non-expansive operators and is based on the
following observations.

First we note P in (14) is a K-mapping. Next, GVI (1) is equivalent to the multi-
valued inclusion

0 ∈ P (u∗). (15)

We denote by S∗ the solution set of problem (15).
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Theorem 2.4 It holds that
U∗ = S∗.

In order to apply Method 2.2 to problem (15) we have to show that its dual problem
is solvable. Namely, let us consider the problem of finding a point u∗ of Rn such that

∀u ∈ Rn, ∀t ∈ P (u), 〈t, u − u∗〉 ≥ 0, (16)

which can be viewed as the dual problem to (15). We denote by S∗

(d) the solution set
of this problem.

Lemma 2.1
(i) S∗

(d) is convex and closed.
(ii) S∗

(d) ⊆ S∗.
(iii) If P is pseudomonotone, then S∗

(d) = S∗.

Note that P need not be pseudomonotone in general. Nevertheless, in addition to
Theorem 2.4, it is useful to obtain the equivalence result for problems (2) and (16).

Proposition 2.2 Ud = S∗

(d).

Therefore, we can apply Method 2.1 with replacing G, U , and Pk by P , Rn, and I
respectively, to the multivalued inclusion (15) under the blanket assumptions. We call
this modification Method 2.2.

Theorem 2.5 Let a sequence {uk} be generated by Method 2.2 and let {εl} and {ηl}
satisfy (8). Then:

(i) The number of inner steps at each iteration is finite.
(ii) It holds that

lim
k→∞

uk = u∗ ∈ S∗ = U∗.
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