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0.1 Abstract

In this paper, we outline some results in theory of variational inequalities with the
emphasis on monotonicity properties of cost mappings. Their relationships with other
problems of Nonlinear Analysis and some applications are also discussed.
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1 Variational Inequalities with Continuous Map-

pings

We first consider the main results in theory of variational inequality problems with
continuous single-valued mappings and their relationships with other general problems
of Nonlinear Analysis.

1.1 Problem Formulation

Let U be a nonempty, closed and convex subset of the n-dimensional Euclidean space
Rn, G : U → Rn a continuous mapping. The variational inequality problem (VI) is the
problem of finding a point u∗ ∈ U such that

〈G(u∗), u − u∗〉 ≥ 0 ∀u ∈ U. (1.1)

It is well known that the solution of VI (1.1) is closely related with that of the following
problem of finding u∗ ∈ U such that

〈G(u), u− u∗〉 ≥ 0 ∀u ∈ U. (1.2)

Problem (1.2) may be termed as the dual formulation of VI (DVI). We will denote by
U∗ (respectively, by Ud) the solution set of problem (1.1) (respectively, problem (1.2)).

To obtain relationships between U ∗ and Ud, we need additional monotonicity type
properties of G.

Definition 1.1 Let W and V be convex sets in Rn, W ⊆ V , and let Q : V → Rn be
a mapping. The mapping Q is said to be

(a) strongly monotone on W if

〈Q(u) − Q(v), u − v〉 ≥ τ‖u − v‖2 ∀u, v ∈ W ;
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(b) strictly monotone on W if

〈Q(u) − Q(v), u − v〉 > 0 ∀u, v ∈ W, u 6= v;

(c) monotone on W if

〈Q(u) − Q(v), u − v〉 ≥ 0 ∀u, v ∈ W ;

(d) pseudomonotone on W if

〈Q(v), u − v〉 ≥ 0 =⇒ 〈Q(u), u− v〉 ≥ 0 ∀u, v ∈ W ;

(e) quasimonotone on W if f

〈Q(v), u − v〉 > 0 =⇒ 〈Q(u), u − v〉 ≥ 0 ∀u, v ∈ W ;

(f) explicitly quasimonotone on W if it is quasimonotone on W and

〈Q(v), u − v〉 > 0 =⇒ 〈Q(z), u − v〉 > 0 ∃z ∈ (0.5(u + v), u).

It follows from the definitions that the following implications hold:

(a) =⇒ (b) =⇒ (c) =⇒ (d) =⇒ (f) =⇒ (e).

The reverse assertions are not true in general.
Now we recall the relationships between solution sets of VI and DVI, which are

known as the Minty Lemma.

Proposition 1.1
(i) Ud is convex and closed.
(ii) Ud ⊆ U∗.
(iii) If G is pseudomonotone, U ∗ ⊆ Ud.

The existence of solutions of DVI plays a crucial role in constructing relatively simple
solution methods for VI. We note that Proposition 1.1 (iii) does not hold in the (explic-
itly) quasimonotone case. Moreover, problem (1.2) may even have no solutions in the
quasimonotone case. However, we can give an example of solvable DVI (1.2) with the
underlying mapping G which is not quasimonotone. Nevertheless, as it was shown by
Konnov (1998), explicitly quasimonotone DVI is solvable under the usual assumptions.
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1.2 Variational Inequalities and Related Problems

VI’s are closely related with many general problems of Nonlinear Analysis, such as
complementarity, fixed point and optimization problems. The simplest example of VI
is the problem of solving a system of equations. It is easy to see that if U = Rn in
(1.1), then VI (1.1) is equivalent to the problem of finding a point u∗ ∈ Rn such that

G(u∗) = 0.

If the mapping G is affine, i.e., G(u) = Mu + q, then the above problem is equivalent
to the classical system of linear equations

Mu∗ = −q. (1.3)

Let U be a convex cone in Rn. The complementarity problem (CP for short) is to find
a point u∗ ∈ U such that

G(u∗) ∈ U ′, 〈G(u∗), u∗〉 = 0, (1.4)

where U ′ is the dual cone to U , i.e.,

U ′ = {v ∈ Rn | 〈u, v〉 ≥ 0 ∀u ∈ U}.

This problem can be viewed as a particular case of VI, as stated below.

Proposition 1.2 Let U be a convex cone. Then problem (1.1) is equivalent to problem
(1.4).

Among various classes of CP’s, the following ones are most investigated. The
standard complementarity problem corresponds to the case where U = Rn

+ in (1.4) and
the linear complementarity problem (LCP for short) corresponds to the case where
U = Rn

+ and G is affine, i.e., G(u) = Mu + q in (1.4).
Next, let U be again an arbitrary convex closed set in Rn and let T be a continuous

mapping from U into itself. The fixed point problem is to find a point u∗ ∈ U such that

u∗ = T (u∗). (1.5)

This problem can be also converted into a VI format.

Proposition 1.3 If the mapping G is defined by

G(u) = u − T (u), (1.6)

then problem (1.1) coincides with problem (1.5).
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Moreover, we can obtain the condition which guarantees the monotonicity of G.

Definition 1.2 A mapping Q : Rn → Rn is said to be non-expansive on V if for each
pair of points u, v ∈ V , we have

‖Q(u) − Q(v)‖ ≤ ‖u − v‖.

Proposition 1.4 If T : U → U is non-expansive, then the mapping G, defined in
(1.6), is monotone.

Now, we consider the well-known optimization problem. Let f : U → R be a real-
valued function. Then we can define the following optimization problem of finding a
point u∗ ∈ U such that

f(u∗) ≤ f(u) ∀u ∈ U,

or briefly,
min → {f(u) | u ∈ U}. (1.7)

We denote by Uf the solution set of this problem.
Recall the definitions of convexity type properties for functions.

Definition 1.3 Let W and V be convex sets in Rn such that W ⊆ V , and let ϕ : V →
R be a differentiable function. The function ϕ is said to be

(a) strongly convex on W with constant τ > 0 if for each pair of points u, v ∈ W
and for all α ∈ [0, 1], we have

ϕ(αu + (1 − α)v) ≤ αϕ(u) + (1 − α)ϕ(v) − 0.5α(1 − α)τ‖u − v‖2;

(b) strictly convex on W if for all distinct u, v ∈ W and for all α ∈ (0, 1),

ϕ(αu + (1 − α)v) < αϕ(u) + (1 − α)ϕ(v);

(c) convex on W if for each pair of points u, v ∈ W and for all α ∈ [0, 1], we have

ϕ(αu + (1 − α)v) ≤ αϕ(u) + (1 − α)ϕ(v);

(d) pseudoconvex on W if for each pair of points u, v ∈ W and for all α ∈ [0, 1], we
have

〈∇ϕ(v), u − v〉 ≥ 0 implies ϕ(u) ≥ ϕ(v);

(e) quasiconvex on W if for each pair of points u, v ∈ W and for all α ∈ [0, 1], we
have

ϕ(αu + (1 − α)v) ≤ max{ϕ(u), ϕ(v)};
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(f) explicitly quasiconvex on W if it is quasiconvex on W and for all distinct u, v ∈ W
and for all α ∈ (0, 1), we have

ϕ(αu + (1 − α)v) < max{ϕ(u), ϕ(v)}.

The function ϕ : V → R is said to be strongly concave with constant τ (respectively,
strictly concave, pseudoconcave, quasiconcave, explicitly quasiconcave) on W , if the
function −ϕ is strongly convex with constant τ (respectively, strictly convex, convex,
pseudoconvex, quasiconvex, explicitly quasiconvex) on W .

It follows directly from the definitions that the following implications hold:

(a) =⇒ (b) =⇒ (c) =⇒ (f) =⇒ (e).

The reverse assertions are not true in general. We can also include the pseudocon-
vexity in the above relations. The implications (c) =⇒ (d) and (d) =⇒ (f) are also
true. We now state the relationships between (generalized) convexity of functions and
(generalized) monotonicity of their gradients.

Proposition 1.5 Let W be an open convex subset of V . A differentiable function
f : V → R is strongly convex with constant τ (respectively, strictly convex, convex,
pseudoconvex, quasiconvex, explicitly quasiconvex) on W , if and only if its gradient map
∇f : U → Rn is strongly monotone with constant τ (respectively, strictly monotone,
monotone, pseudomonotone, quasimonotone, explicitly monotone) on W .

We now give the well-known optimality condition for problem (1.7).

Theorem 1.1 Suppose that f : U → R is a differentiable function. Then:
(i) Uf ⊆ U∗, i.e., each solution of (1.7) is a solution of VI (1.1), where

G(u) = ∇f(u); (1.8)

(ii) if f is pseudoconvex and G is defined by (1.8), then U ∗ ⊆ Uf .

Thus, optimization problem (1.7) can be reduced to VI (1.1) with the (generalized)
monotone underlying mapping G if the function f in (1.7) possesses the corresponding
(generalized) convexity property. However, VI which expresses the optimality condition
in optimization enjoys additional properties in comparison with the usual VI. For
instance, if f is twice continuously differentiable, then its Hessian matrix ∇2f = ∇G
is symmetric. Conversely, if the mapping ∇G : Rn → Rn × Rn is symmetric, then for
any fixed v there exists the function

f(u) =

1
∫

0

〈G(v + τ(u − v)), u − v〉dτ
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such that (1.8) holds. It is obvious that the Jacobian ∇G in (1.1) is in general asymmet-
ric. Next, consider the case of convex optimization problem (1.7). In other words, let
the function f be convex and differentiable. Then, according to Theorem 1.1, (1.7) is
equivalent to (1.1) with G being defined in (1.8). Due to Proposition 1.5, the mapping
∇f is monotone. Besides, for each u ∈ U\U ∗, we have

〈∇f(u), u− u∗〉 > 0; (1.9)

i.e., −∇f(u) makes an acute angle with any vector u∗ − u at each non optimal point
u ∈ U . In the general case this property does not hold. Namely, consider problem
(1.1) with G being monotone. Then, at each u ∈ U\U ∗, we only have

〈G(u), u − u∗〉 ≥ 0

due to Proposition 1.1, i.e., the angle between −G(u) and u − u∗ need not be acute.
We now give the classical example of such a problem.

Example 1.1 Let U = R2, G(u) = (u2,−u1)
T . Then G is monotone, U ∗ = {(0, 0)T},

but for any u /∈ U ∗ we have

〈G(u), u− u∗〉 = u2u1 − u1u2 = 0,

i.e., the property similar to (1.9) does not hold. It should be also noted that the
Jacobian

∇G(u) =

(

0 1
−1 0

)

is asymmetric, so that there is no function f satisfying (1.8).

Saddle point problems are closely related to optimization as well as to noncooper-
ative game problems. Let X be a convex closed set in Rl and let Y be a convex closed
set in Rm. Suppose that L : Rl × Rm → R is a differentiable convex-concave function,
i.e., L(·, y) is convex for each y ∈ Y and L(x, ·) is concave for each x ∈ X. The saddle
point problem is to find a pair of points x∗ ∈ X, y∗ ∈ Y such that

L(x∗, y) ≤ L(x∗, y∗) ≤ L(x, y∗) ∀x ∈ X, ∀y ∈ Y. (1.10)

Set n = l + m, U = X × Y and define the mapping G : Rn → Rn as follows:

G(u) = G(x, y) =

(

∇xL(x, y)
−∇yL(x, y)

)

. (1.11)

From Theorem 1.1 we now obtain the following equivalence result.
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Corollary 1.1 Problems (1.10) and (1.1), (1.11) are equivalent.

It should be noted that G in (1.11) is also monotone.
Saddle point problems are proved to be a useful tool for “eliminating” functional

constraints in optimization. Let us consider the optimization problem

min → {f0(x) | x ∈ D}, (1.12)

where
D = {x ∈ X | fi(x) ≤ 0 i = 1, . . . , m}, (1.13)

fi : Rl → R, i = 0, . . . , m are convex differentiable functions,

X = {x ∈ Rl | xj ≥ 0 ∀j ∈ J}, J ⊆ {1, . . . , l}. (1.14)

Then we can define the Lagrange function associate to problem (1.12) – (1.14) as
follows:

L(x, y) = f0(x) +
m
∑

i=1

yifi(x). (1.15)

To obtain the relationships between problems (1.12) – (1.14) and (1.10), (1.15), we need
certain constraint qualification conditions. Namely, consider the following assumption.

(C) Either all the functions fi, i = 1, . . . , m are affine, or there exists a point x̄
such that fi(x̄) < 0 for all i = 1, . . . , m.

Proposition 1.6 (i) If (x∗, y∗) is a saddle point of the function L in (1.15) with
Y = Rm

+ , then x∗ is a solution to problem (1.12) – (1.14).
(ii) If x∗ is a solution to problem (1.12) – (1.14) and condition (C) holds, then

there exists a point y∗ ∈ Y = Rm
+ such that (x∗, y∗) is a solution to the saddle point

problem (1.10), (1.15).

By using Corollary 1.2 we now see that optimization problem (1.12) – (1.14) can
be replaced by VI (1.1) (or equivalently, by CP (1.4) since X is a convex cone), where
U = X × Y , Y = Rm

+ , f(x) = (f1(x), . . . , fm(x))T , and

G(u) =

(

∇f0(x) +
∑m

i=1 yi∇fi(x)
−f(x)

)

(1.16)

with G being monotone.

2 Variational Inequalities with Multivalued Map-

pings

We now consider the main results in theory of variational inequality problems with
continuous multivalued mappings and their relationships with other general problems
of Nonlinear Analysis.
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2.1 Problem Formulation

Let U be a nonempty, closed and convex subset of the n-dimensional Euclidean space
Rn, G : U → Π(Rn) a multivalued mapping. The generalized variational inequality
problem (GVI for short) is the problem of finding a point u∗ ∈ U such that

∃g∗ ∈ G(u∗), 〈g∗, u − u∗〉 ≥ 0 ∀u ∈ U. (2.1)

The solution of GVI (2.1) is closely related with that of the corresponding dual gener-
alized variational inequality problem (DGVI for short), which is to find a point u∗ ∈ U
such that

∀ u ∈ U and ∀g ∈ G(u) : 〈g, u− u∗〉 ≥ 0. (2.2)

We denote by U ∗ (respectively, by Ud) the solution set of problem (2.1) (respectively,
problem (2.2)).

Definition 2.1 Let W and V be convex sets in Rn, W ⊆ V , and let Q : V → Π(Rn)
be a multivalued mapping. The mapping Q is said to be

(a) a K-mapping on W , if it is u.s.c. on W and has nonempty convex and compact
values;

(b) u-hemicontinuous on W , if for all u ∈ W , v ∈ W and α ∈ [0, 1], the mapping
α 7→ 〈T (u + αw), w〉 with w = v − u is u.s.c. at 0+.

Recall some definitions of monotonicity type properties for multivalued mappings.

Definition 2.2 Let W and V be convex sets in Rn, W ⊆ V , and let Q : V → Π(Rn)
be a multivalued mapping. The mapping Q is said to be

(a) strongly monotone on W with constant τ > 0 if for each pair of points u, v ∈ W
and for all q′ ∈ Q(u), q′′ ∈ Q(v), we have

〈q′ − q′′, u − v〉 ≥ τ‖u − v‖2;

(b) strictly monotone on W if for all distinct u, v ∈ W and for all q ′ ∈ Q(u),
q′′ ∈ Q(v), we have

〈q′ − q′′, u − v〉 > 0;

(c) monotone on W if for each pair of points u, v ∈ W and for all q ′ ∈ Q(u),
q′′ ∈ Q(v), we have

〈q′ − q′′, u − v〉 ≥ 0;

(d) pseudomonotone on W if for each pair of points u, v ∈ W and for all q ′ ∈ Q(u),
q′′ ∈ Q(v), we have

〈q′′, u − v〉 ≥ 0 implies 〈q′, u − v〉 ≥ 0;
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(e) quasimonotone on W if for each pair of points u, v ∈ W and for all q ′ ∈ Q(u),
q′′ ∈ Q(v), we have

〈q′′, u − v〉 > 0 implies 〈q′, u − v〉 ≥ 0;

(f) explicitly quasimonotone on W if it is quasimonotone on W and for all distinct
u, v ∈ W and for all q′ ∈ Q(u), q′′ ∈ Q(v), the relation

〈q′′, u − v〉 > 0

implies
〈q, u − v〉 > 0 for some q ∈ Q(z), z ∈ (0.5(u + v), u).

From the definitions we obviously have the following implications:

(a) =⇒ (b) =⇒ (c) =⇒ (d) =⇒ (e) and (f) =⇒ (e).

The reverse assertions are not true in general.
Now we give an extension of the Minty Lemma for the multivalued case.

Proposition 2.1 (i) The set U d is convex and closed.
(ii) If G is u-hemicontinuous and has nonempty convex and compact values, then

Ud ⊆ U∗.
(iii) If G is pseudomonotone, then U ∗ ⊆ Ud.

The existence of solutions to DGVI will play a crucial role for convergence of CR
methods for GVI. Note that the existence of a solution to (2.2) implies that (2.1) is
also solvable under mild assumptions, whereas the reverse assertion needs generalized
monotonicity assumptions.

2.2 Generalized Variational Inequalities and Related Prob-
lems

The relationships between GVI’s and other general problems of Nonlinear Analysis,
which involve multivalued mappings, are in general the same as in the single-valued
case. Namely, in the case of U = Rn, GVI (2.1) reduces to the following multivalued
inclusion problem: Find u∗ ∈ Rn such that

0 ∈ G(u∗).

Next, suppose that U is a convex cone in Rn and consider the following generalized
complementarity problem (GCP for short): Find u∗ ∈ U such that

∃g∗ ∈ G(u∗), g∗ ∈ U ′, 〈g∗, u∗〉 = 0. (2.3)

This problem is in fact a particular case of GVI (2.1).
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Proposition 2.2 Let U be a convex cone. Then problem (2.1) is equivalent to problem
(2.3).

Let U be again an arbitrary convex closed set in Rn and let T be a multivalued
mapping from U into itself. The multivalued fixed point problem associated to the
mapping T can be defined as follows: Find u∗ ∈ U such that

u∗ ∈ T (u∗). (2.4)

The fixed point problem (2.4) can be also converted into a GVI format as stated below
in the multivalued version of Proposition 1.3.

Proposition 2.3 If the mapping G is defined by G(u) = u−T (u), then problem (2.1)
coincides with problem (2.4).

The relationships between the optimization problem (1.7) and GVI (2.1) is the same
as those in the differentiable case, with the substitution of the gradient of f with its
subdifferential.

Definition 2.3 A bifunction Φ : U × U → R
⋃

{+∞} is called an equilibrium bifunc-
tion, if Φ(u, u) = 0 for each u ∈ U .

Let U be a nonempty, closed and convex subset of Rn and let Φ : U×U → R
⋃

{+∞}
be an equilibrium bifunction. The equilibrium problem (EP for short) is the problem
of finding a point u∗ ∈ U such that

Φ(u∗, v) ≥ 0 ∀v ∈ U. (2.5)

EP gives a suitable and general format for various problems in Game Theory, Math-
ematical Physics, Economics and other fields. It is easy to see that EP (2.5) can be
viewed as some extension of GVI (2.1). In fact, set

Φ(u, v) = sup
g∈G(u)

〈g, v − u〉. (2.6)

Then each solution of (2.1) is a solution of (2.5), (2.6). The reverse assertion is true
if G has convex and compact values. Further, by analogy with the dual variational
inequality (2.2), we can define the following dual equilibrium problem: Find v∗ ∈ U
such that

Φ(u, v∗) ≤ 0 ∀u ∈ U. (2.7)

We denote by U 0 and U0
(d) the solution sets of problems (2.5) and (2.7), respec-

tively. The following existence result for EP was obtained by Ky Fan and extended by
H. Brézis, L. Nirenberg and G. Stampacchia.
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Proposition 2.4 Let Φ : U × U → R
⋃

{+∞} be an equilibrium bifunction such that
Φ(·, v) is u.s.c. for each v ∈ U and Φ(u, ·) is quasiconvex for each u ∈ U . Suppose also
that at least one of the following assumptions hold:

(a) U is bounded;
(b) there exists a nonempty bounded subset W of U such that for every u ∈ U \ W

there is v ∈ W with Φ(u, v) < 0.
Then EP (2.5) has a solution.

In order to obtain relationships between U 0 and U0
(d), one usually needs monotonicity

type conditions on Φ, which can be viewed as some extensions of those in Definition
2.2.

Definition 2.4 Let W and V be convex sets in Rn, W ⊆ V , and let Φ : V × V →
R
⋃

{+∞} be an equilibrium bifunction. The bifunction Φ is said to be
(a) strongly monotone on W with constant τ > 0 if for each pair of points u, v ∈ W ,

we have
Φ(u, v) + Φ(v, u) ≤ −τ‖u − v‖2;

(b) strictly monotone on W if for all distinct u, v ∈ W , we have

Φ(u, v) + Φ(v, u) < 0;

(c) monotone on W if for each pair of points u, v ∈ W , we have

Φ(u, v) + Φ(v, u) ≤ 0;

(d) pseudomonotone on W if for each pair of points u, v ∈ W , we have

Φ(u, v) ≥ 0 implies Φ(v, u) ≤ 0;

(e) quasimonotone on W if for each pair of points u, v ∈ W , we have

Φ(u, v) > 0 implies Φ(v, u) ≤ 0;

(f) explicitly quasimonotone on W if it is quasimonotone on W and for all distinct
u, v ∈ W , the relation

Φ(u, v) > 0

implies
Φ(z, u) < 0 for some z ∈ (0.5(u + v), v).
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It is easy to see that properties (a) – (f) coincide with the corresponding properties
(a) – (f) in Definition 2.2 provided (2.6) holds and G has convex and compact values.
Besides, from the definitions above we obviously have the following implications:

(a) =⇒ (b) =⇒ (c) =⇒ (d) =⇒ (e) and (f) =⇒ (e).

The reverse assertions are not true in general.
The following assertion is an extension of the Minty Lemma for EP’s.

Proposition 2.5 Let Φ : U × U → R
⋃

{+∞} be an equilibrium bifunction.
(i) If Φ(u, ·) is quasiconvex and l.s.c. for each u ∈ U , then U 0

(d) is convex and closed.
(ii) If Φ(·, v) is u.s.c. for each v ∈ U , Φ(u, ·) is explicitly quasiconvex for each

u ∈ U , then U0
(d) ⊆ U0.

(iii) If Φ is pseudomonotone, then U 0 ⊆ U0
(d).

Also, monotonicity properties enable one to obtain uniqueness results of solutions
for EP.

Proposition 2.6 Let Φ : U × U → R
⋃

{+∞} be an equilibrium bifunction.
(i) If Φ is strictly monotone, then EP (2.5) has at most one solution.
(ii) If Φ(·, v) is u.s.c. for each v ∈ U , Φ(u, ·) is convex and l.s.c. for each u ∈ U ,

and Φ is strongly monotone, then EP (2.5) has a unique solution.

It is clear that the saddle point problem (1.10) is a particular case of EP. In fact,
it suffices to set

Φ(u, v) = L(x′, y) − L(x, y′), u = (x, y)T , v = (x′, y′)T (2.8)

and U = X × Y in (2.5). Note that Φ is obviously monotone and concave-convex in
that case. In addition, if L : X×Y → R is (strictly) strongly convex in x and (strictly)
strongly concave in y, then Φ in (2.8) will be (strictly) strongly concave-convex. Next,
the problem of solving a zero-sum two-person game is also a particular case of EP
(2.5). Moreover, we can consider the general case of an m-person noncooperative
game. Recall that such a game consists of m players, each of which has a strategy set
Xi ⊆ Rni and a utility function fi : U → R, where

U = X1 × . . . × Xm.

A point u∗ = (x∗

1, . . . , x
∗

m)T ∈ U is said to be a Nash equilibrium point for this game, if

fi(x
∗

1, . . . , x
∗

i−1, yi, x
∗

i+1, . . . , x
∗

m)T ) ≤ fi(u
∗) ∀yi ∈ Xi, i = 1, . . . , m.
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Set

Ψ(u, v) = −
m
∑

i=1

fi(x1, . . . , xi−1, yi, xi+1, . . . , xm), (2.9)

u = (x1, . . . , xm)T , v = (y1, . . . , ym)T ,

and
Φ(u, v) = Ψ(u, v) − Ψ(u, u), (2.10)

then EP (2.5) becomes equivalent to the problem of finding Nash equilibrium points.
We can make use of GVI to formulate optimality conditions for EP. Let us consider

EP (2.5) and set
G(u) = ∂Φv(u, v)|v=u . (2.11)

We now present relationships between monotonicity type properties of Φ and G in
(2.11).

Proposition 2.7 Suppose that Φ : V × V → R
⋃

{+∞} is an equilibrium bifunc-
tion such that Φ(u, ·) is convex and subdifferentiable for each u ∈ U . If Φ is strongly
monotone with constant τ (respectively, strictly monotone, monotone, pseudomono-
tone, quasimonotone, explicitly quasimonotone) on U , then so is G in (2.11).

Note that the reverse assertions are not true in general. Applying this result to the
saddle point problem (1.10) and using (2.8), we now see that the mapping G in (2.11)
will be monotone if L is convex-concave. This is also the case if we consider the convex
optimization problem (1.7), (1.13), (1.14).

Theorem 2.1 Let W be an open convex set in Rn such that U ⊆ W . Let Φ : W×W →
R
⋃

{+∞} be an equilibrium bifunction and let the mapping G be defined by (2.11).
(i) If Φ(u, ·) is quasiconvex and regular for each u ∈ W , then

U0 ⊆ U∗, U0
(d) ⊆ Ud.

(ii) If Φ(u, ·) is pseudoconvex and l.s.c. for each u ∈ W , then

U0 = U∗, U0
(d) ⊆ Ud.

3 Applications

In this section, we consider some applications of VIs to economic and transportation
equilibrium problems.
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3.1 Economic Equilibrium Problems

A number of economic models are adjusted to investigating the conditions which bal-
ance supply and demand of commodities, i.e., they are essentially equilibrium models.
As a rule, the concept of economic equilibrium can be written in terms of a com-
plementarity relation between the price and the excess demand for each commodity.
Therefore, most existing economic equilibrium models can be written as complemen-
tarity (or variational inequality) problems. To illustrate this assertion, we now describe
one of the most general economic models originated by L. Walras.

So, it is assumed that our economy deals in n commodities and that there are m
economics agents dealing with these commodities. Let M = {1, . . . , m}. We divide M
into two subsets Ms and Mc which correspond to sectors (producers) and consumers,
respectively. Given a price vector p ∈ Rn

+, the jth sector determines its supply set
Sj(p) ⊆ Rn

+ and the ith consumer determines its demand set Di(p) ⊆ Rn
+. Set

S(p) =
∑

j∈Ms

Sj(p), D(p) =
∑

i∈Mc

Di(p).

Then we can define the excess demand mapping

E(p) = D(p) − S(p).

A vector p∗ is said to be an equilibrium price if it satisfies the following conditions:

p∗ ∈ Rn
+; ∃q∗ ∈ E(p∗) : −q∗ ∈ Rn

+, 〈q∗, p∗〉 = 0. (3.1)

We denote by P ∗ the whole set of equilibrium prices. If we now set

G(p) = −E(p),

then problem (3.1) obviously coincides with GCP (2.3) or equivalently, with the fol-
lowing GVI: find p∗ ∈ Rn

+ such that

∃g∗ ∈ G(p∗), 〈g∗, p − p∗〉 ≥ 0 ∀p ∈ Rn
+; (3.2)

see Proposition 2.2. Therefore, one can derive the existence and uniqueness conditions
for problem directly from those for general VIs. Moreover, a number of additional
existence and uniqueness results, essentially exploiting features of economic equilibrium
models, have been obtained. On the other hand, there are a few approaches to compute
economic equilibria. Most works are devoted to Scarf’s simplicial labeling method,
its modifications and extensions. Such methods are applicable for general economic
equilibrium problems, however, need considerable additional storage, hence, they are
implementable for rather small problems. Another approach is based on Newton’s type
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methods. However, to ensure convergence, such methods, as well as the well-known
tâtonnement process

pk+1 = πRn

+
(pk + λkq

k), qk ∈ E(pk), λk > 0. (3.3)

need additional assumptions on E (or G). Indeed, the mapping E is not in general
integrable, hence, such methods may fail even if G = −E is not strictly monotone. In
particular, process (3.3) is convergent if the following assumption hold:

∀p ∈ Rn
+\P

∗, ∀g ∈ G(p) : 〈g, p − p∗〉 > 0, (3.4)

where p∗ is any equilibrium point. Assumption (3.4) can be treated as a variant of the
revealed preference condition. Let us consider the problem of finding a point p∗ ∈ Rn

+

such that
∀p∗ ∈ Rn

+, ∀g ∈ G(p) : 〈g, p − p∗〉 ≥ 0, (3.5)

i.e., the dual problem to (3.2). It is clear that (3.5) is essentially weaker than (3.4),
however, all the CR methods are convergent if there is a solution to problem (3.5). On
the other hand, these methods are much more simpler than the simplicial type meth-
ods. Therefore, we intend to consider possible applications of CR methods to several
economic equilibrium models. These models have been well documented in literature.
In fact, if (3.5) (or (3.4)) holds, it is suitable to compute economic equilibrium in these
models with the help of CR methods.

3.2 Transportation Equilibrium Problems

Flow equilibrium problems in transportation and communication systems constitute
rather a new but broad and rapidly developing area of applications of variational in-
equalities. An essential feature of such problems consists mainly in the fact that they
are determined on an oriented graph, each its arc being associated with some flow (for
instance, traffic) and some expense (for instance, the time of motion, the time of delay,
or cost ets), which depends on the values of arc flows. It is expected that increas-
ing the value of flow for some arc increase the expense for this arc and perhaps for
several neighbour arcs, which in turn implies redistribution of flows resulting in some
equilibrium state.

There are a number of various formulations of transportation equilibrium problems.
In this paper, we consider one of the most popular models, in which all the values of flow
between origin-destination pairs are fixed. This model can be reduced to a variational
inequality having a specific structure of constraints.

Let us given a graph with a finite set of nodes V and a set of oriented arcs D
which join the nodes so that an arc d = (i → j) has the origin i and the destination j.
Next, among all the pairs of nodes of the graph we extract a subset of pairs W of the
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form w = (i → j), where i is the origin node and j is the destination node. Besides,
each pair w ∈ W is associated with a positive number bw which gives the flow demand
from i to j. Denote by Pw the set of paths in the graph which connect the origin and
destination, for the pair w ∈ W . Also, denote by xp the path flow for the path p.
Then, the feasible set of flows X can be defined as follows:

X = {x |
∑

p∈Pw

xp = bw, xp ≥ 0 p ∈ Pw; w ∈ W}, (3.6)

i.e.
X =

∏

w∈W

Xw,

where
Xw = {x |

∑

p∈Pw

xp = bw, xp ≥ 0 p ∈ Pw}.

If we set m to be the number of origin-destination pairs and lw to be the number of
paths joining the nodes of the pair w, then the total number of variables in this problem
equals

n = l1 × . . . × lm.

If the flow vector x is known, we can determine the value of the arc flow ud for each
arc d ∈ D:

ud =
∑

w∈W

∑

p∈Pw

αpdxp,

where

αpd =
{

1 if the arc d belongs to the path p,
0 otherwise.

If the values of arc flows are known, one can determine the value of expenses (costs)
for each arc as follows:

td = Td(u), (3.7)

which in general depends on flows for other arcs and uses some mapping T that is
defined in the space of flows. Then one can compute the value of expenses for each
path p as follows:

gp = Gp(x) =
∑

d∈D

αpdtd. (3.8)

The feasible flow vector x∗ ∈ X is said to be an equilibrium vector if it satisfies the
following conditions:

∀q ∈ Pw, x∗

q > 0 =⇒ Gq(x
∗) = min

p∈Pw

Gp(x
∗) for all w ∈ W. (3.9)

In other words, positive values of flow for any origin-destination pairs must corre-
spond to paths with minimal costs. It is well known that the conditions (3.6) and (3.9)
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can be equivalently rewritten in the form of the variational inequality: Find a point
x∗ ∈ X such that

〈G(x∗), x − x∗〉 ≥ 0 ∀x ∈ X, (3.10)

where the inner product is defined in the n-dimensional space of paths joining all the
nodes from W . Note that the fact of increasing (nondecreasing) delays along with
increasing flows usually provides the monotonicity of the given mapping G, although
there are such problems with nonmonotone cost mappings. It should be noted that the
mapping G, defined by (3.7) and (3.8), is a potential one, i.e. presents the gradient
of a scalar function, only under additional assumptions. Namely, in (3.7), delays for
the arc d have not to be dependent on the flows for other arcs, or, equivalently, td =
Td(ud). In general, problem (3.6), (3.10) is not equivalent to an optimization problem,
hence its solution cannot be found with analogs of the corresponding optimization
methods. Therefore, to solve the variational inequality (3.6), (3.10) we can make use
of iterative methods which are convergent under rather general assumptions, such as
the CR methods.
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