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Abstract

This article assesses the problem of computational complexity in psychology and proposes a new solution to it which rejects syntactic cum causal aspects of the computational theory of mind but keeps the analysis in terms of mental content. The theory of computational complexity and Kolmogorov complexity are discussed. 
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1 computational complexity

Ever since the computational models of human psychology were first introduced it has been clear that they suffer from curious problems of complexity.  The pattern is surprisingly general, in that there are no nontrivial computational architectures or concrete models of human performance such that they would not suffer from this problem, provided only that it is sufficiently rigorous to allow simulations and inspection of their complexity. Arguably, either there exist some false but hidden assumptions concerning the human mind, or it is the case that the approach in terms of syntactic, mathematical models is, in part, wrong-headed.

We will begin with a short review of the computer metaphor and its application into psychology. The “computer metaphor” of the human mind (Boden, 1981, §1), originally invented for the purposes of attaining rigor in mathematics and mathematical logic through syntactic manipulation of concrete symbols, has shaped the psychology of the 20th century perhaps more than any other single innovation. The inventors of the theory of computation themselves were quite occupied with an analysis of human thinking (Turing, 1936, 1950), and many of the most profound and innovative results concerning the human mind have been obtained by using these techniques (Chomsky, 1957, Marr, 1982, Rumelhart & McClelland, 1986), so as to warrant Steven Pinker to claim that the computational theory of the mind:

has solved millennia-old problems in philosophy, kicked off the computer revolution, posed the significant questions of neuroscience, and provided psychology with a magnificently fruitful research agenda (Pinker, 1997, p. 77).

After Alan Turing’s seminal paper (1936) on the topic of “computational intelligence,” the first thoughts in this direction begin to emerge at the early forties and fifties, after the war (e.g. Hull, 1937; 1943, McCulloch & Pitts, 1943, Rochester, Holland, Haibt, & Duda, 1956, Turing, 1948/1968, Turing, 1950, Shannon, 1950b), but the idea really began to blossom in the sixties. Two prominent ideas shape the psychological landscape at that time. 

The first were the computational neural models and cybernetic models, forerunners of modern computational neuroscience and especially what is known as ‘connectionism’ (Ashby, 1940, Baernstein & Hull, 1931, Bradner, 1937, Bennett & Ward, 1933, Crozier, 1929, Ellson, 1935, Hebb, 1949, Kreuger & Hull, 1931, Lotka, 1925, McCulloch & Pitts, 1943, Minsky, 1954, Neumann, 1958, Rashevsky, 1938, Ross, 1938, Stephens, 1929, Tolman, 1939, Troland, 1928, Rosenblatt, 1958; 1962, Rosenblueth, Norbert, & Bigelow, 1943, Selfridge, 1959, Walton, 1930; Dewey, 1896 is an important precursor), build in much the spirit of the ‘cybernetic’ models of the mind (see Shannon, 1948, Wiener, 1948, Wisdom, 1951). Behaviorists had been exploring the same associative techniques with their more restricted methodology (Hull, 1943).

The second idea is the conception of the mind as a ‘symbol manipulation device,’ a notion brought into psychology directly from the ideas of Turing, Hilbert and Leibniz, among the others. The idea was to view the mind as a mechanism for storing and manipulating symbols and symbol structures (Chomsky, 1957, Craik, 1952, Feigenbaum & Feldman, 1963, Galanter & Gerstenhaber, 1956, Galanter & Smith, 1958, Gelernter & Rochester, 1958, Gelernter, 1959, Miller, Galanter, & Pribram, 1960, Newell, Shaw, & Simon, 1958a, Newell, Shaw, & Simon, 1958b, Newell & Simon, 1961, 1963, Turing, 1936). It was again the digital computer that remobilized the idea of ‘symbol manipulation:’ the early computers were used to compute numbers, while computers are not restricted to the manipulation of numbers; they can compute with formal symbols that could represent, or ‘stand for,’ almost anything of human concern. In short, computers were able to solve problems of almost any imaginable kind rather than just missile trajectories and cryptoarithmetic problems. 
First computational symbolic models of human thinking were constructed in the domain of well-defined games, such as chess ([Newell, 1955 #17172], [Newell, 1958 #2779], [Shannon, 1950 #2771]). It was soon noted that, if generalized to the level of human play, they would lead into combinatorial explosion. Much of the same was true of more ambitious projects, such as an attempt to cover what could said to constitute ‘human problem solving’ by recursive search methods ([Newell, 1963 #2199], [Newell, 1972 #2243]; see also [de Groot, 1965 #2238]). In fact, the whole mathematical theory of complexity spanned largely from these observations ([Hartmanis, 1965 #2763], [Hartmanis, 1971 #2538]); we will return to the theory of complexity short after. Philosopher Daniel Dennett ([, 1997 #2851]) summarized the present situation as follows:

As we ascend the scale of complexity from simple thermostat, through sophisticated robot, to human being, we discover that our efforts to design systems with the requisite behaviour increasingly run foul of the problem of combinatorial explosion ...  Things get out of hand very fast and, for instance, can lead to computer programs that will swamp the largest, fastest machines. Now somehow the brain has solved the problem of combinatorial explosion (p. 77).
Dennett continues in a footnote that “the fact that all language-of-thought models of mental representation so far proposed fall victim to combinatorial explosion in one way or another should temper one’s enthusiasm for engaging in what Fodor aptly calls ‘the only game in town’”. We will return to Fodor’s theory later, but accept this diagnosis at this point as, indeed, quite correct. Though there were several attempt to solve this problem, such as various heuristics and domain specific expert systems, no general solution has appeared up to day; it seems accurate to say that the project of AI is currently concentrated, not with understanding human intelligence, but more on solving particular problems with particular ad hoc solutions.

Of particular importance to the understanding the notion of complexity is the so-called frame problem ([Fodor, 2000 #17217], [McCarthy, 1969 #2454], [Pylyshyn, 1986 #2794]). If well-defined task-environments, such as chess, are computationally complex, so are most environments we encounter in every day. Very shortly put, the problem is to get a machine to solve some problem, given some facts of the environment are provided together with rules which tell how the environment is changed as a consequence of ones actions. In order for a robot to find a solution to some problem it needs to know which of the facts and the rules are relevant to the problem at hand. The problem is then that the robot cannot assume beforehand that some facts are irrelevant, because, for some reason to which we return later, any fact could be relevant to the solving of a given problem, much like in chess. But in order to assess whether a given fact is relevant or not, the combinatorial explosion follows since the only way to do detect relevancy is to begin to see (compute) if the fact would lead more closer to the solution. That is, the computer halts when, in trying to find a way to use a phone to call its friend, it begins to wonder whether it is relevant to light up a candle or to take a bath, and, after laborious computations, finally notices that they were not relevant, moving to a next fact (see [Fodor, 2000 #17217], pp. 37-38). If we restrict the relevancy beforehand, we get notoriously unreliable and stupid robots, and if not, then they are notoriously slow; human are, in contrast, both reliable and effective.

The combinatorial explosion seen here is similar to the one encountered with chess. Given some chess board, it is the case that any piece whatsoever could be relevant: this is inbuilt to the dynamics of the game. A single pawn, though often less valued than the queen, could be as relevant as the queen, and the computer must compute a lot in order to detect this.

Symbolic models aside, there is another computational strategy which, instead of relying upon recursion and symbolic languages, relies more on associations and causal connections. We call this approach as “connectionism.” True, the psychological roots of this theory trace back to the 16th empiricist philosophy of Hume, Locke and Berkeley and ever since it has been a key element of “associationist psychology” ([Thorndike, 1931 #3586], [Hebb, 1949 #1179]), but it entered to the computational era when Rosenblatt invented his Perceptron and proved that in certain conditions it could learn ([Rosenblatt, 1958 #2758], [Rosenblatt, 1962 #2460]). 

Soon after an initial burst of research activity and groovy enthusiasm it was discovered that the connectionist models suffer from exactly the same problem as the symbolic ones, namely, they were the too simple or took too much time in learning anything ([Nilsson, 1965 #2757], [Minsky, 1969 #2462]). Some new connectionist models were invented in to 80’s (Hopfield, 1982, Rumelhart & McClelland, 1986; see papers in Anderson & Rosenfeld, 1988), yet the problem of complexity persist today, or is even worse, contrary to some misconceptions: networks are hopelessly slow learners as was put by Stephen Judd: “It is widely acknowledged that as networks get larger and larger and deeper, their learning time grows prohibitively” so that “whenever things get scaled up, the news regarding training time is so bad that we can hardly measure it” (Judd, 1996, p. 123; see also Judd, 1990, 1996 Kolen & Goel, 1991, Minsky & Papert, 1990, Tesauro, 1987, Tesauro & Janssens, 1988, Redding, Kowalczyk, & Downs, 1993). We will not take it that connectionism, as it currently stands, constitutes a solution to the problem of complexity.

In addition to the fact that connectionist models are complex learners, they are notoriously poor at playing chess or producing/understanding language, so we feel that a shift to connectionist modelling makes things rather worse than better; more below.

Due to the problems with complexity, some authors have begun to express scepticism concerning the whole usability of the computational approach (e.g. Boden, 1979, Chomsky, 2000, Chomsky, 1993, Fodor, 1983, Fodor, 1989 , de Groot, 1965, Dreyfus, 1972, McDermott, 1987, Miller et al., 1960, Pickering & Chater, 1995, Searle, 1980, Weizenbaum, 1976 among many others). Philosopher Hubert Dreyfus was one of the first who attacked the computational approach based on problems with complexity ([Dreyfus, 1972 #2292], [Dreyfus, 1990 #2519]). Fodor has argued along similar lines, claiming that the potentially insuperable difficulties with complexity concerning the modelling and understanding the functions of the central systems – thinking, reasoning, problem solving and the like – constitutes a limit of the computational theory of the mind ([Fodor, 1983 #937], [Fodor, 1989 #3058], [Fodor, 1995 #3321], [Fodor, 2000 #17217]). There are others how are equally sceptical, but it is also true that some optimism remains; the problem itself remains unsolved.

We will continue the debate concerning the scope and limits of the computational theory of the mind, insofar as it might be shaped by the problems with complexity. We will proceed by discussing the concept of complexity and complexity theory first (both computational complexity and Kolmogorov complexity), then its applicability to the human psychology. It is argued that some aspects of the human mind are too complex (in the sense of “complex” to be sharpened) to be computationally intractable. In section three we discuss various attempts to overcome these problems, mostly those which propose methods and ideologies that go beyond the computational theory. In section four, finally, we consider the possibility that a theory which acknowledges mental content (representations) but rejects computationalism might offer one viable alternative.

2 what is complexity?

In order to understand why the problem of complexity has emerged, we need to look more carefully to the notion of “complexity” itself. 

“Complexity” itself is a term with many intuitive connotations, some of which have been sharpened with formal tools. These more rigorous definitions, in turn, do not capture any one phenomenon of complexity, but several which are, however, closely related to each other. Before discussing the problem of complexity in psychology further, we clarify these different senses of complexity. It also turns out that many phenomena which are complex in the mathematical sense are simple to humans, and vice versa.

From an intuitive point of view, complexity means something like “difficult or laborious to understand.” This intuition, though it does not capture all what there is in the intuitive notion of complexity, corroborates with the more formal notion developed in the complexity theory. A problem is said to be “computationally complex” if it is the case that its solution takes a lot of computational resources, such as time or storage space. What was “difficult or laborious to understand” now becomes “what is difficult or laborious to compute.”

The first problem in sharpening this notion is that the amount of time, for instance, seems to depend on the algorithm: whereas one algorithm has stored the answer to its memory and answers thereafter immediately, another might enter into an endless computation. Both might still provide the correct answer. This means that such property as how much time a solution to some problem takes, assuming it is purposeful to study it, needs sharpening. 

In order to overcome this problem, we must view problems as consisting of infinite number of problem instances. The problem of finding the shortest path among some set of cities constitutes a problem in that sense if we try to provide a method that solves it in every possible case (i.e., gives the correct answer to every possible map). This rules out the abovementioned ‘table-lookup method,’ since, in virtue of the definition of “effective computation,” it is impossible to  store infinite number of answers to the memory of a computer. 

The problem still remains, however, that different algorithms might use different amount of time. Thus, computer scientists do not often speak of the complexity of an algorithm, but they are interested in the optimal algorithms, both because of their practical and theoretical value. What is the algorithm that solves the above problem (called “Travelling Salesman Problem”) in the most economical way? In order to study this question, one must analyse the complexity of the problem itself, not just the complexity of this and that algorithm.

We know that the amount of computational resources varies as a function of the problem instance, in this case as a function of the map. If there are only two cities, then the solution comes quickly; if there are thousand, it takes nearly infinitely long. Therefore, the complexity of a problem can be evaluated as a function of the size (or other parameter) of the problem instance. We measure how much computational work is needed as a function of the size of the problem instant.  

Finally, then, mathematicians thus express computational complexity in terms of functions which describe how much time or storage is needed, in the worst case, as a function of the size of the problem instant. The curvatures of such functions provide us what are characterized as “complexity classes”: if the amount of computations increases only linearly with respect of the size of the input, we speak about “linear class”, meaning very simple problems, such as ‘count the number of the cities in the map.’ If the amount of computations increases exponentially, as in the case of chess ([Stockmeyer, 1979 #2682]) or the Travelling Salesman, we speak about the “exponential class” and hence of very complex problems. In sum, complexity is measured in terms of classes of functions.

Returning to the psychological complexity problems mentioned in section 2, the problem with combinatorial explosion or scaling problem means that, assuming that some computational ‘toy model’ is sized up to a more realistic level, the news about the time this model would take in providing anything useful is phenomenally disappointing. For instance, some large class of connectionist networks can be shown to be extremely slow learners if made more larger. But, on the other hand, there must be some way to make them larger since, if compared to more realistic cases, their capacities to learn are extremely poor. 

Keeping these definitions in mind, it appears that although computational models in psychology suffer from complexity in roughly that sense (they need enormous amount of time, §1), this complexity cannot arise from the problems themselves, since the standard chess, for instance, is only a “finite instance.” There is only a finite number of board positions that the player must respond. Therefore, it is possible in principle to solve this problem by writing a gigantic table-lookup databank from where, for each position, the computer simply searches the reasonable move without computing anything. In other words, if the learning time of a network is too demanding, one could wire the network with the correct settings beforehand, it is just that this type of ‘brute force modelling’ appears to be very unappealing. Some authors have thus dismissed the complexity theory as irrelevant to human psychology (Anderson, 1990, pp. 38-40).

This conclusion might be only partly true, however. Even prima facie it must be too hasty since all interesting models we know do suffer from complexity. Indeed, there is a solid intuition that some finite instance are more complex and others. For example, a string consisting of 10.000 zeros is a simple if compared to the first 10.000 decimals of pii, and there might be even more complex strings which are nearly irregular or “random.” If this intuition is of any real use, then the simplicity of finite instances can be measured by determining how much the string can be compressed: if there are regularities, then there is a short algorithm for printing the string and capturing those regularities; if there are no regularities, then such small program does not exist. This is the intuition behind the formalism known as Kolmogorov complexity ([Chaitin, 1969 #2535], [Kolmogorov, 1965 #2534], [Solomonoff, 1964 #2533]; see also [Li, 1997 #2542]).

Now chess is not computationally complex since, if we take it to be a finite instance, we can write in principle a finite program that determines for every possible board position the next good move. But such a program is too large and could not be constructed in practise, nor could it be stored anywhere. We thus ask whether the information in that table-lookup x can be “compressed” somehow, i.e. whether it is simple or complex in terms of the Kolmogorov complexity. If the table-lookup is simple in terms of Kolmogorov complexity, there is a short algorithm, say some heuristic algorithm, which defines it; if it is not simple, there is no short algorithm.

It is obvious at once that the table-lookup is simple in terms of Kolmogorov complexity, because it can be implemented by writing an exhaustive search algorithm. We say that chess has a “simple pattern.” Yet now we come back to computational complexity, since this short algorithm, as mentioned in section 1, requires too much computational resources to be psychologically plausible. In chess and many other task-environments, as Luc Longpré ([, 1992 #17477]) pointed out, “the non-randomness [regularity] is so intricately buried that any space or time bounded process would fail to detect it” (p. 69). For a computer to detect a good move, it must evaluate millions of positions, while human experts seem to do only approximately 50, maintaining reasonable level of play (Newell & Simon, 1976). As we noted in the case of the frame-problem, the situation is the same, if not even worse, in the case of routine ordinary day problem solving.
Therefore, what we should concentrate here is whether the table-lookup can be compressed if we do not allow the computer to compute. Formally, we are considering what can be called resource-bounded Kolmogorov complexity ([Li, 1997 #2542], §8). This measures the complexity of a finite instance when the algorithm is not allowed to compute much. Here the chances are that, because the chess is a complex problem, there does not exists such a short algorithm. There is no “pattern” in the standard finite instance of chess if we use a machine that does not compute, and the only way to construct a computational theory of chess skill would be, unfortunately, to brutally write down a gigantic table-lookup. That skill, not to speak about our ability to solve problems that are not even this well-defined, hence consists of a vast set of irreducible information, maybe vast enough make it conceptual intractable or at least too intractable to permit interesting scientific generalizations, as was put by Anderson:

A theory must be sufficiently simple that it is conceptually tractable, so that one can understand it and reason about its implications . . . a theory which is so complex that it cannot be understood . . . is useless, regardless of whether there is any other adequate theory that is simpler . . . it is easy to become deluded about how complex a computer-based theory can become before it is intractable . . . The goal of a scientific theory is to reduce the complexity found in nature to a few general laws . . . If human behavior is not amenable to treatment in terms that are much simpler than the behavior, it is not really amenable to scientific analysis. (Anderson, 1976, p. 16-17.)

We suspect that because of the fifty years of experimenting with simple computational models of human performance has lead only into morass of complexity and scale-up problems, the true problem is not in the choice of architectures, or in the choice of some particular types of models, but in the fact that the cognitive processes that we have attempted to model might, in themselves, be too complex to be computationally tractable (Salo, xx). The evidence has been accumulating against the old empiricist theory that the principles and primitives of human psychology might emerge from some simple computational principles. On the contrary, we suspect that the human mind might be saturated with irreducible information, hence resisting characterization in terms of computational models. In what follows, we take this conclusion for granted, discussing different suggestions on how to proceed.

3 overcoming complexity

Most researchers aiming for computational models of human performance take it for granted that the solution to the problem involves seeking and testing a better heuristics, a better learning algorithm, or simply another computational model. We believe, however, that there are some aspects of human mentality which are, for the abovementioned reasons, computationally intractable. In this section we discuss those proposals which agree with this conclusion, yet they suggest a somewhat different lines of inquiry we will propose here.

3.1 Connectionism, Background and modularity

Some authors who have clearly recognized the complexity problems with classical symbolic models, such as Dreyfus, who often write as suggesting that the solution is to be found from connectionism ([Dreyfus, 1990 #2519;, 1990 #7019]). That position is in many ways problematic. 

First, as we already noted, the connectionist models are not better off with the problem of complexity; they are equally complex learners. Secondly, many learning problems can already be solved more easily with other architectures than connectionist networks. Thirdly, many cognitive phenomena, such as properties of language and thought, cannot be described elegantly with connectionist models. In the case of the study of language, for instance, there simply does not exist any serious connectionist alternative to the symbolic theories, as was put by Chomsky: “In the case of language, the evidence for connectionist models is, for the moment, about zero. The most trivial problems that have been addressed – like learning a few hundred words – have been total failures” ([Chomsky, 1993, p. 86).

Note, however, that we do not claim that the connectionist models could not solve the problem of complexity, only that what comes to current connectionist literature they do not constitute an interesting solution, and there is some reason to be sceptical about their forthcoming potential.
 We also want to emphasize the fact that the continuous failures of the connectionist literature to come in terms with complexity means that we lack some deep understanding of the brain, not because the models would be too simple if compared to the real neurons, but rather because nobody has any idea of how the putative details of real neurons could solve the problem of complexity.

Several cognitive scientists and philosophers have suggested that, often due to the failure of classical computational models, an introspective phenomenological analysis of some sort should be resurrected. Philosopher John Searle rejected the computational theory, first as insufficient to explain human intentionality or mental content ([Searle, 1980 #1342]),
  then more wholly as a completely unnecessary assumption ([Searle, 1993 #2337], [Searle, 1994 #3064]). He suggests that the computational theory must be replaced with neurobiological investigation and a phenomenological analysis of consciousness, there being no ‘intermediate level’ of computations and unconscious representations ([Searle, 1989 #2314]). Searle’s reasons for abandoning the computational theory were only implicitly connected with complexity, as he argued that we must take into account what he calls the “Background” of intentionality, a vast mass of implicit, holistic knowledge of what it is to lead a life as a human being, and more directly implied by his inability to see how a purely syntactic computational process could produce genuine intentionality. 

Dreyfus’ conclusions seem to be much the same, while he sees the complexity, not intentionality per se, as one of the central problems of the computational theory. According to Dreyfus the background of what it is to be as a human – ‘a form of life,’ to quote Wittgenstein – is important and not amenable to an analysis in terms of logical, formal systems. Rather, what is important is our embodiment as biological beings made of bone and flesh, driven by our biological needs and implicit, holistic and collective understanding of the human affairs (for similar proposals, see [Varela, 1996 #1324]).

Many linguists and philosophers interested in linguistic matters have argued that human language, especially language use, involves a quality of an instrument that can be perhaps only understood against the whole background of what it is to be a human being (e.g., Chomsky, 1995, Moravcsik, 1998, Wittgenstein, 1958). According to Jackendoff ([, 2002 #17594]), “language users need cognitive structures that permit them to understand the goals of communication” (p. 35) so that, as was put by Paul Bloom ([, 2000 #11365]), “[o]ur concept  of stockbroker isn’t a vector in some multidimensional perceptual state-space, then; it is instead rooted in our implicit understanding of society, money, jobs, and so on” (p. 151). It is no miracle that at some point the holistic nature of our thinking begins to trouble linguistic analysis (see [Fodor, 1983 #937] for a clear analysis of where to draw the line).

But no consciousness nor the vast databank of cultural or innate background provides a solution to the problem of complexity, though we do not deny the value of these observations. Instead, these proposals seem to represent mere hand-waving or, in some other cases, acknowledging of the fact that there might be boundaries that one cannot, at least with the present understanding of such matters, treat with scientific methods. What is computationally intractable might be generally intractable, not amenable to scientific method. The “Background,” surely a real and thought-worthy problem, might be too complex phenomenon for us to understand.

In his recent book Fodor ([, 2000 #17217]) argues that insofar as we attempt to model the more ‘central’ aspects of human cognition, such as thinking, we confront a form of holism of which currently nobody has any idea of how it works, or indeed how to approach it scientifically. Fodor, like we, rejects connectionism as a solution to these problems, but he thinks that the only theory we are then left is the computational theory of the mind, which, for the abovementioned reasons having to do with complexity, could not bring us into any better understanding of the central aspects of cognition. He suggests that we’d better study only the modular aspects, leaving the central ones untouched until somebody comes up with some completely new idea of how to study them. The same proposal was put forward already in the classical Modularity of the Mind ([Fodor, 1983 #937]).

The information processing in a module, according to Fodor, is not haunted by uncontrolled holism, but is more local, domain specific and reflexive, making it more amenable to computational explanation. This is not to say that the operation of a module would be, in its entire functioning, open for a computational explanation since it may well involve too much specific information to prevent generalizations, yet it must be admitted that Fodor is right in that some interesting computational theories of the functioning of various modules already do exists (see section 3.2).

We share Fodor’s concern with the problem of complexity and his scepticism on whether the computational theory of the mind would provide the right kind of toolbox for analysing the  operation of the central aspects of cognition, and whether a wholly new kind of approach would be required instead. We also believe that the computational theory of the mind already works quite well in the case of at least some modules, one prominent example being the analysis of linguistic competence (§ 3.2). Later we shall provide a proposal for analysing the study of complex, holistic central cognition.

3.2 Performance, competence and content

The complexity problems began easily to distract linguistic analysis if the subject matter is not carefully narrowed. For instance, trying to predict the antecedent nominal of the pronoun (such as him, he) in the following sentences (3-1)(a-b) is beyond any computational explanation due to the fact that it is determined by the whole background information we possess:

(3-1)

(a) The doctor said to the patient that he was sick

(b) The patient said to the doctor that he was sick

In both sentences we are likely to interpret the pronoun he to refer to the patient, although the patient occurs in a different syntactic position in the matrix sentences. This is because we know that it is the patient that often gets sick, not because we know the syntactic position of the patient in the sentences. Slight modifications to the predicates would cause different interpretations, not because of the syntactic structure of the sentences, but because of the holistic understanding of the functioning of the world. Thus, consider (3-2)(a-b):

(3-2)

(a) The patient said to the doctor that he was a sick bastard

(b) The patient admitted to the doctor that he was a sick bastard

In these cases the interpretation shifts due to the small changes.

Once this became obvious, a principled way of making the required restrictions on the domain of study were needed. One strategy was to separate the syntactic and semantic component – the so-called language faculty – from the pragmatic one (Katz & Fodor, 1963); the other is to dissociate human linguistic performance from competence ([Chomsky, 1965 #14908]). “Linguistic competence” refers to the linguistic knowledge an individual possesses inside his or her language module, “performance” refers to the use of that knowledge. It is clear by a casual inspection on many recent theories of linguistic competence that they do not suffer from problems of complexity comparable to models of performance. This is not true of all models,
 but it is true to the extent to merit discussion here. Either “knowledge” is already organized in our mind/brain in some simpler way if compared to the processes that use that knowledge, or what we mean here by the term “knowledge” just is what is more simple and conceptually tractable.

If theories of competence are theories of knowledge, and theories of knowledge do provide a cure to some of problems of complexity, we need to ask what this “knowledge” is constituted by. There exists a large literature on what do we mean, exactly, with such propositional attitude phrases as the subject “knows” the rules of grammar. Central to this matter is the status of mental contents.

The term “know” is, first of all, borrowed from commonsense psychology, like the concept of “force” in physics, and does not, as such, warrant any scientific use. Chomsky has argued that the usage of the term “know” in this connection ought to be understood as metaphorical, to be replaced with “cognize” or with something more neutral word. The evidence in favour of the hypothesis that the child possess some kind of “innate theory” of language is overwhelming, but it is not clear if the description in terms of propositional attitudes – knowing, representing, believing, etc. – is exactly right kind of way to capture such properties, especially if connected with the notion of externalist (wide) content:

The internalist study of language also speaks of ”representations” of various kinds, including phonetic and semantic representations […] But here too we need no ponder what is represented, seeking some objective construction from sounds or things. The representations are postulated mental entities, to be understood in the manner of a mental image of a rotating cube, whether it is the consequences of tachinstoscopic presentations or a real rotating cube, or stimulation of the retina in some other way; or imagined, for that matter […] there is no reason to seek any other relation to the world, as might be suggested by a well-known philosophical tradition and inappropriate analogies from informal usage. ([Chomsky, 2000 #3581], s. 160).

According to Chomsky, what we describe as ‘states of knowing the rules of grammar’ are in fact states of our brain, abstractly viewed.
 

Chomsky’s attitude is understandable, given the way how the his mentalist theory of grammar originally evolved. Chomsky showed that when the primitives and principles of the grammar were abstracted from the physico-acoustic surface properties of language(s), as studied by the behaviorists ([Harris, 1951 #3565]), a far more general and elegant theory was possible, hence Chomsky takes these abstractions, rather some extensions of pretheoretical commonsense vocabularies, to constitute the “mentalist entities” he and his colleagues refer to ([Lasnik, 2000 #17307], [Newmeyer, 1986 #17119]). Furthermore, there exists a set of diagnostic tests for a membership in any of these abstract linguistic categories, making the use of individuation in terms of mental content at least partly unnecessary or unrevealing.

On the other hand there are those, like Fodor, who take the approach in terms of propositional attitudes far more seriously. According to Fodor, when the child knows some rules of grammar, or possesses some another form of representation (‘a thought,’ for example), he has an irreducible propositional attitude towards its mental content. Mental contents are, according to Fodor’s theory, really real entities, such as external relations between the organisms’ mind/brain and the world ([Fodor, 1990 #1154], [Fodor, 1994 #2277], [Fodor, 1998 #2592]; see also [Fodor, 1987 #2442]). 

Other theoreticians construe mental content differently, for instance, by adding conceptual roles (such as prototypes) to the externalist relations, but most importantly to the present purposes, mental contents are not computational: a computer operates based on its local syntactic properties, whereas mental contents, if we now take them seriously, do not. 

This is all important to the present discussion if we take it for granted that the analysis in terms of competence (content) somehow survives the problems of complexity. We believe this is important. True, it does so in part because it restricts the domain of study, excluding the study of performance, but if we accept that the human mind is truly complex at least in some of its components, causing the problem of complexity problems to emerge when too simple (in terms of Kolmogorov complexity) models are used, then some such restrictions are necessary anyway. There is no such thing as the study of everything. But it might well be that the problems with computational complexity emerge, at least in part, because of the restriction to syntactic, computational algorithms; as is well known, computers are not sensitive to content, only to syntax.

In the next section we consider whether the analysis in terms of content could be applied to human performance in addition to competence so as to overcome the problem of computational complexity.

4 mental content: a functional approach

To summarize, the computational theory of the mind suffers from problems of complexity. We take this to constitute empirical evidence against the computational theory. The problem seems to be some kind of intractable holism: we have no theory of how the organism could employ all of its epistemic commitments, the Background, in assessing what’s relevant in a given situation and, moreover, it seems as if the causal texture of the world would be such as to require this. The Background itself seems literally complex to resist characterization in terms of any simple models, leading to troubles with complexity when such simple models, whether symbolic or connectionist, are postulated and tested.

Introspective, phenomenological analysis of consciousness seems hardly a likely candidate solution to this problem. But the analysis in terms of competence – knowledge and mental content – rather than performance seemed promising at least what comes to the modular aspects of cognition. The problem that remains is whether this strategy, taking mental contents and not syntactic computations, as the starting point of the analysis, could provide a viable alternative such that it could be applied to the analysis of performance and more central aspects of cognition as well. That is, we ask whether, if we altogether jettison the computational theory, an analysis in terms of mental content without computation could lead us to somewhere with the central aspects of cognition.

4.1 Competence in chess

The performance of a chess expert might be forever beyond our reach due to the complexity of the task, yet as in the case of language, it could be possible to formulate unconscious principles of the chess players’ competence. Trivially, for instance, chess players are following the rules of chess. But it might be that there are more abstract principles than that in operation, and it could be of some interest to know what they are despite of the fact that they could not provide a causal-computational explanation of the chess players’ skill.

Saariluoma ([, 1995 #1259]) has argued that chess experts might be following unconsciously four functional principles. They involve blockade. . . <explain them>

These principles are not computational or syntactic, but they are content specific: they can be applied only to chess, and have resulted only from a long practise with chess. They are thus also what can be called functional principles, enabling the player to engage into an effective play. We return to the analysis of “functionality”. But crucially, these content-specific principles do not resemble the heuristic search strategies assumed in the more computationally oriented models which try to compute the good moves, but they rather presuppose that the players have internalized highly chess-specific information and try to characterise that information in terms of mental contents on an abstract, idealized level. The four abstract principles that the chess player’s might use unconsciously are thus abstracted from the actual knowledge structures, whether they consists of declarative or procedural knowledge, yet highly automated skill, so that the level of contents as contents becomes important. We could speak of “second order competence”.

Nevertheless, it is clear that although the content-specific principles of chess might not be applied to other tasks, it is their immanent functionality that seems to characterise human knowledge in other areas and task domains as well. Functionality is an abstract principle, applied at the level of mental contents, that might help to explain why people behave in a way that they do, and why they make the kind of mistakes they do (Saariluoma & Maarttola etc.). But functionality, as we understand it, is a principle that is not computational or syntactic, but concerns the actual mental contents and hence the competence level.

Functional principles are different from computational or formal principles. First, they are often used in a highly content-specific way, whereas computational procedures are formal and syntactic. This means that they must be treated as contentful, not by designing yet another formal model, but for instance by analysing their contents as such (Saariluoma ). Contents, in turn, can be analysed in many ways, but one most common is the so-called Cartesian inference or conceptual-role semantics ([Block, 1986 #2732]), where we would like to emphasize the fact that the connections between concepts must often be functional, i.e., there must be a reason for their presence or absence (Saariluoma).

< tähän kirjallisuutta, pitäisikö yhdistää funktionaalisuus biologisena käsitteenä? >

5 conclusions

Mathematical modelling in psychology has confronted problems with complexity which, if we are right, could not be solved by inventing better models insofar as their information content is too low in terms of Kolmogorov complexity. However, when the complexity of the model increases, it becomes somewhat uninteresting from a scientific point of view, assuming that the purpose of science is to factor the phenomenon into several interacting law-like principles and generalizations. These conclusions are in agreement with more rationalist psychology which, instead of assuming that the properties of the mind emerge from the environment and the simple mental principles, takes it for granted that the biological organisms are truly complex by their very nature.

Several reaction to this situation was discussed. First, it was argued that the connectionist alternative to the classical computational theory of mind could not constitute a solution to the problem of complexity. Much of the same is true of introspective or phenomenological psychology: though analysis of consciousness might help us on some occasions, it seems not particularly suited for the analysis and removing of complexity.

Several authors have admitted that our cognition is saturated with something inherently complex which they call the Background. We take this to be true, although it seems that this is merely a restatement of the problem, not a particularly original solution. Fodor admits that our central cognition might not be amenable to causal and computational explanation due to its holistic nature, but he thinks that the modular aspects of our cognition are not holistic and, therefore, analysable in computational terms. Yet we saw that insofar as the modules could be analysed computationally, it is not their causal structure per se but competence, analysed in terms of propositional attitudes, that has received insightful analyses. 

We considered the possibility of jettisoning the computational theory but leaving the idea of analysing our competence in terms of content. That is, we considered the possibility of analysing mentality in terms of content as such, leaving the computational theory of mind. Chess players’ expertise was considered as an example where it has been noted that the players seem to follow few unconscious principles whose essence does not lie in their computational cum causal properties, but in their highly effective contents.

<more here>
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� We do not want to give the impression that it should be taken as entirely wrong-headed, since there exists nontrivial results and theories which depend crucially on computational investigation (� ADDIN ENRfu ��Chomsky, 1957�, � ADDIN ENRfu ��Marr, 1982�, � ADDIN ENRfu ��Rumelhart & McClelland, 1986�).


� Let us try to make these intuitions more precisely. We may fix some computational language or a ‘specification method’ as a recursive function f from programs (plus inputs) into their outputs (products) and, presupposing f, say that the size |p| in bits of the minimal program p which prints some x is the instance complexity of x.


Complexity(x) = min{|p| : f(p) = x}


If x can be generated by a small computer program, relative to the size of x itself, then x is regular and simple. Otherwise it is complex. An obvious defect with this working definition is that it depends on the choice of f. A given string x may be more simple in terms of LISP than PASCAL, and we do not want the measure to be relative to some particular specification method. In fact, for each x it is possible to find some specification method which has Complexity(x) = 0. However, obviously if we are allowing the specification method to vary freely, we need to include it into the complexity measure as well. If x is short when coded with LISP, then the complexity of x must include also the information about which programming language, namely LISP, it is coded with. What is, then, the complexity of the LISP interpreter? Written in PASCAL? 


A Universal Turing Machine (UTM) can be used to settle the matter. UTM is a universal specification method which can simulate any other specification method (computer and its input).  Suppose that the input of the UTM contains the code for the particular specification method f (e.g., LISP vs. PASCAL), its program p, and simulates p on f to print the given string x. Then we seek the most minimal combination of f and p:


ComplexityUTM(x) = {|pf|: UTM(p, f) = x}.


To be accurate, we also need information to tell p and f apart from each other, but we may omit this technicality here. It can now be proven that, when compared to any other specification method f the complexity computed by this method can differ from it only by a constant, depending only on the choice of f, namely, by the size of the code required to determine f. That is, the difference in complexity between the universal method and LISP, for instance, can be only a constant, hence in assessing the complexity of objects, strings or natural numbers, we can use the universal method. Hence we may take ComplexityUTM(x) to measure the complexity of any string, knowing that no other method would improve the result infinitely often. 


� For limitations of associationism, see [Bever, 1968 #3037], [Chomsky, 1957 #2867], [Chomsky, 1958 #3588], [Chomsky, 1963 #14904], [Fodor, 1988 #2228], [Miller, 1963 #3524], [Lasnik, 2000 #17307]. For attempts to overcome these difficulties, see � ADDIN ENRfu ��Butler, 1991�, � ADDIN ENRfu ��Chalmers, 1990�, � ADDIN ENRfu ��Fodor, 1997�, � ADDIN ENRfu ��Hadley, 1993�, [Hadley, 1997 #3481], � ADDIN ENRfu ��McLaughlin, 1993�, � ADDIN ENRfu ��Niklasson & van Gelder, 1994�, � ADDIN ENRfu ��Phillips, 1999�, � ADDIN ENRfu ��Pollack, 1990�, � ADDIN ENRfu ��Smolensky, 1995�, � ADDIN ENRfu ��van Gelder, 1990�, among others.


� Thus, according to Chomsky, “[t]here is a substantial literature asking what it would imply if neural-let (connectionist) models could account for the phenomena that have been explained in terms of computational ( representational systems […] Few biologists would be intrigued by the suggestion that unstructured systems with unknown properties might some day make it possible to account for development of organisms without appeal to complex constructions in terms of chemicals, the cell’s internal program, production of proteins, and so on.” (� ADDIN ENRfu ��Chomsky, 2000�, p. 104).


� Of special importance was Searle’s Chinese Room thought experiments which provoked enormous amount of literature, among many others see � ADDIN ENRfu ��Ben-Yami, 1993�, � ADDIN ENRfu ��Carleton, 1984�, � ADDIN ENRfu ��Cole, 1984�, � ADDIN ENRfu ��Collins, 1997�, � ADDIN ENRfu ��Copeland, 1993�, � ADDIN ENRfu ��Dennett, 1990�, � ADDIN ENRfu ��Double, 1983�, � ADDIN ENRfu ��Dyer, 1990b�, � ADDIN ENRfu ��Dyer, 1990a�, � ADDIN ENRfu ��Fisher, 1988�, � ADDIN ENRfu ��Harnad, 1989�, � ADDIN ENRfu ��Harnad, 1990�, � ADDIN ENRfu ��Harnad, 1994�, � ADDIN ENRfu ��Jacquette, 1989�, � ADDIN ENRfu ��Jacquette, 1990�, � ADDIN ENRfu ��Jahren, 1990�, � ADDIN ENRfu ��Maloney, 1987�, � ADDIN ENRfu ��Melnyk, 1996�, � ADDIN ENRfu ��Newton, 1988�, � ADDIN ENRfu ��Rey, 1992�, � ADDIN ENRfu ��Weiss, 1990�, � ADDIN ENRfu ��Wilks, 1982�). 


� In the minimalist program the problem of computational complexity has arisen in the study of competence as well, though interestingly just in those cases when the model includes some derivational rather than representational assumptions. Nevertheless, it has been a recent trend to seek principles which reduce the computational load ([Chomsky, 2000 #17547], [Chomsky, 2001 #17548], [Collins, 1997 #17607], [Epstein, 2002 #17600], [Kitahara, 1997 #17521]).


� Thus, “[i]n what sense is language a physical structure? We do not know for certain, but we believe that there are physical structures of the brain which are the basis for the computations and the representations that we describe in an abstract way. This relationship between unknown physical mechanisms and abstract properties is very common in the historiy of science. So, for example, in the nineteenth century chemists constructed abstract diagrams that were supposed to represent a complex moecule with carbon and hydrogen and oxygen attached in some fashion. But that’s a completely abstract representation. For example, the chemist couldn’t say what the particular aprts of the diagram referred to in the physical world. In fact, it wasn’t clear whether there were things corresponding to the parts of the diagram. Even now that we know better what carbon is, we recognize that it is something abstract. So, you can’t hit carbon. In fact, it’s a very abstract concept. But the point is that the chemists’ descriptions were part of an explatory theory. They were part of a theory from which you could predict what would happen if you sent an electric current through some physical object, for instance.” (� ADDIN ENRfu ��Chomsky, 1988�, s. 185-186.)


This does not rule out the possibility of describing and explaining these states in neurobiological terms, yet it is also true that such abstract theories, insofar as they are supported by a wealth of evidence, need not be false given that we would know their neural implementation (cf. [Churchland, 1981 #2265]).
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