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ABSTRACT


Computational models of human cognition are often discussed in terms of their relatively broad paradigms. For example, there exists much literature concerning the pros and cons of connectionist versus classical symbolic models. On the other hand, there is some evidence that even more abstract properties might be relevant, as there are deficits, such as the problem of ‘combinatorial explosion,’ that trouble both types of models, whether connectionist or symbolic. It is argued in this paper that one such abstract, yet relevant parameter is the ‘absolute information content’ of the model, measured in terms of Kolmogorov complexity. This might be relevant since, explicitly or implicitly, most computational paradigms are designed around the idea of producing complex-looking structures from innovative simple principles, such as recursion (classical models) or homogeneous networks (connectionism), implying that they are extremely simple in terms of their Kolmogorov complexity. It is argued that this strategy might not succeed. If these conclusions are true, then the human mind is truly complex, lacking one crucial feature to which many cognitive scientists have based all their wishes, namely, that the complexity somehow ‘emerges’ from a right set of simple principles. 
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1 Introduction


Computational models of human cognition are often discussed in terms of the relatively broad paradigms. For example, there exists much literature concerning the pros and cons of connectionist versus classical symbolic models. Although the differences between such paradigms are already rather abstract, it is precisely by virtue of this abstractness that one can capture in a most effective way their differences, limitations and capacities. On the other hand, there is some evidence that even more abstract properties might be relevant, as there are deficits that haunt both types of models, whether connectionist or symbolic. To mention one especially pertinent problem, both kind of models tend to be either 1) applicable to a very narrow problem domain or, 2) to be vastly complex computationally. Human cognitive processes, in contrast, do not suffer from either in many domains. These problems are certainly related to each other in a way that can be best described as the scaling problem: whenever a larger problem domain is involved, computational models become too complex computationally regardless of the more specific paradigm chosen. 


The pressing question is of course to determine how to scale the models and solve the scaling problem. How we attempt to tackle this problem depends, in turn, on where we presuppose the problem to be. One may assume that we just miss the correct heuristic algorithm, correct set of parameters, or the correct network topology. When the correct set of explicit axioms are in place, scalable cognitive processes emerge. For example, using the correct learning algorithm with the correct network topology would avoid the computational complexity of learning. 


Another choice is to argue that the limitations are not in the particular algorithms, but in some more abstract level that concerns more or less all computational models. This stance is characteristic of Dreyfus (1974) and Fodor (2000), for instance. I will argue in this paper that the latter stance is indeed correct regarding the scaling problem, and that the difficulties have to do with rather abstract properties of all computational models. More particularly, I will argue that it is the absolute information content of those models, not the specific designs or paradigms, that is insufficient and thereby causes the scaling problem to occur.


In section 2, I will first show how the rejection of the behavioristic stimulus-response psychology involved arguments suggesting that there is substantial irregularity involved in mental processing. In chapter 3, I will show how to translate and generalize these observations to a more exact language with the help of Kolmogorov-complexity. In section 4, I consider the consequences from the perspective of “information processing.” Namely, if the stimulus states are truly random or irregular in the sense of Kolmogorov complexity, then there cannot, by the definition of “irregular,” exist any simple algorithmic solution for the mapping of those states (say, acoustic features) into the corresponding mental states (say, phonemes). On the other hand, it is easily seen that all computational models currently explored, whether symbolic, connectionist or dynamic, assume exactly the contrary: the information content of the model is very low, apart from the misleading appearance. For instance, although a typical neural network model appears to be a ‘complex’ web of nodes, this is very misleading: its true information content is very low, since all of the nodes are based on the same extremely simple code describing the prototype of formal neuron. Similarly, in a typical symbolic model, one uses recursion: the same code over and over again with ingenious use of empty memory.


I also argue that this might provide an explanation for the fact that such models are computationally complex, and that the problem domains in which human are engaged effectively require much more ‘brute information’ as implicated in the current computational models. Finally, it seems that it is not just the psychophysical functions which are complex, but also many higher-level processes such as thinking:  the case of chess expertise is considered as an example.


2 Some empirical background: randomness in psychophysics


In the 50’s, the collapse of the empiricist and behaviorist research programme paved the way to the new mentalist inquiries. I will discuss some of the relevant history of this process, at the risk of repeating of what is generally assumed and basically well known. This provides one of the best-documented routes to the phenomenon of ‘irregularity’ in cognitive processes, while it is irregularity or even randomness in its various forms and implications that we will be concerned throughout the paper.


American structuralists, influenced by Bloomfield’s positivist conception of (the science of) language, explored the possibility of capturing the notion of ‘phoneme,’ or any ‘linguistically relevant object,’ by using linguistic stimuli, phonetic transcriptions, or even physical properties of utterances ( in fact, anything that was ‘directly observable,’ or was thought to be so at that time. That undertaking is nontrivial: there is no trivial mapping from sounds into the ‘phonological structure of the language.’ For instance, there is no reduction of phonemes into local physical properties of sound. This is why taxonomists were structuralists as well: a phoneme for a language L was assumed to depend on the properties of language L as a whole.� 


As a corollary, it was hoped that finding and defining linguistic elements from a corpus would be automated in terms of a mechanical ‘discovery procedure.’ A discovery procedure is a mechanical method which, given a corpus as input, gives a ‘linguistically relevant’ taxonomy of elements and their relations for that corpus (or language) as output. It was reasoned, on par with the pursuit of the discovery procedure, that a child, when learning a language, must learn it from the stimulus available, thus ‘discover its structure.’� The discovery procedure and associated learning mechanism(s) represent an ‘empiricist learning algorithm’ so that, when demonstrated with some success, it would show how the traditional ‘empiricist principles’ and doctrines could actually work, at least in this case of human language(s). From the perspective of computation, a discovery procedure is an algorithm targeted to find regularities from the linguistic data and, based on such information, to extrapolate the linguistics rules, principles and primitives in order to gain a full mastery of the language.


However, it was eventually, though also surprisingly, admitted that this project cannot succeed. In hindsight the reason is easy to explain: the actual physical or acoustical realization of ‘linguistic elements’ result from numerous factors, so that it becomes impossible to define them by relying upon their ‘observable properties.’ For instance, the actual realization of a phoneme can be determined by at least the following independent ingredients:


independent phonological rules


rules of stress and intonation


rules of morphology and syntax


rules of articulatory mechanisms and co-articulatory effects


meanings (minimal pairs)


To illustrate, consider such words as sit-divinity and divine-car. In the latter pair, the sound [A] corresponds to the letters a and i. Assuming that the orthography is missing something, we conclude that divine is to be analysed as being close to divAin and as being unrelated to divinity expect for the initial sounds, and related to cAr. Yet these complications miss the fact that the ‘vowel shift’ is predictable based on general rules, and is not idiosyncratic to divine-divinity (i.e. profane-profanity, serene-serenity, explain-explanatory, various-variety, Canada-Canadian).� But assuming more abstract phonemes with independent phonological rules and other factors (i-v above) this state of affairs becomes predictable. Linguists were thus able to collapse the complexity of the theory at the cost of assuming abstract phonemes and abstract principles that regulate their realization in actual speech sounds.


Given that the lower-level and higher-level taxonomies are assumed as independent levels of linguistic representations, two possibilities remain:


i.	we may stick with reductive definitions, leading us to a situation where the theory of language use becomes more and more complex due to the exceptions resulting from the mismatch between the lower- and higher-level taxonomies and missed generalisations thereof; or


ii.	we may gain simplicity by jettisoning reductive definitions, relying upon abstract, more or less ‘tentative elements’ that relate to actual sound only indirectly, though by general rules.


Suppose we adopt “Strategy i”. The theory is either poor in its explanatory power, or leads to severe problems - and in the end also to anomalies - if applied to the actual use of language. A more likely procedure would be to follow “Strategy ii.” Pursuing (ii), linguists set up, first, a ‘tentative set of elements’ (i.e. phonemes) and try to capture their relations to actual sounds, and to the more abstract elements they are constituents of, by general rules and other postulated interactions entering into the phenomenon we are studying (1-5 earlier).� But then the physical properties ‘associated’ with the mental entities like phonemes become more and more irregular and random: the cognitive states, as they clearly mediate behaviour somehow, cannot be reduced to any regularity in the stimulus, as was put by Howard Lasnik:


But what is a word? What is an utterance? These notions are already quite abstract [...] The big leap is what everyone takes for granted. It’s widely assumed that the big step is going from sentences to transformation, but this in fact isn’t a significant step. The big step is going from “noise” [irregularity] to “word.” (Lasnik, 2000, p. 3.)


There are obscuring random factors that blur the connection between what the subject hears and what appears in his or her ears. Yet these problems are entirely general, spanning through the domain of what we may pre-theoretically speak of as ‘the mental,’ or which falls naturally under the title of ‘mentalistic inquiries.’ Julian Hochberg was one of those who tried to find psychophysical laws to connect percepts with physical invariances in the environment, but he abandoned the project because 


(1) […] we don’t have a single physical dimension of stimulation by which to define the stimulus configuration to which a subject is responding, or by which we can decide what it is that two different patterns, which both produce the same form percepts, have in common [and] (2) because the subject can perceive very different form in response to the same physical stimulus, and which form he perceives critically determines the other answers he gives to questions about shape, motion, size, depth, and so on. (� ADDIN ENRfu ��Hochberg, 1968�, pp. 312-313.) 


That is, the science of what is perceived and how the organism comes to behave in response to such stimuli is not the science of the physical conditions imposed upon his or her senses. Rather, as these lower and higher taxonomies of properties cross-classify each other, we are forced to rely upon tentative theoretical constructs, such as ‘percepts,’ and leave their exact characterization for a science-to-come to explore.


We may even say that physical, directly observable sensory states are, because they are irregular, more or less random vis-à-vis the ‘percepts,’ as was  suggestedby Zenon Pylyshyn: ‘if we attempt to describe human behaviour in terms of physical properties of the environment, we soon come to the conclusion that, except for tripping, falling, sinking, bouncing of walls, and certain autonomic reflexes, human behaviour is essentially random’ (Pylyshyn, 1984, p. 12). According to Fodor, it is because required physical invariants are absent in the impoverished sensory organs that ”perception cannot, in general, be thought of as the categorization of physical invariants, however abstractly such invariance may be described” (Fodor, 1975, p. 48, footnote 15). The taxonomies based on sensory stimulations are not necessary, not even sufficient, to allow useful generalizations about behavior and actual language use, though here we must remember that the speaker/hearer must still be able to somehow correlate ‘random noise’ to linguistic/mentalistic categories– the notorious problem to which I return presently. 


3. Complexity, empiricism and randomness


In this section I want to consider the phenomenon of ‘randomness’ and its relation to reduction more closely. My reasons for wanting to do this will become clear later; suffice it at this point to note that the issue of randomness and complexity is directly relevant to the issue of computation and, in a similar vein, to issues of ‘information processing.’ Furthermore, the issue of ‘complexity’ has certainly played a role in shaping the discussion of the very nature of social scientific laws (e.g. Clark, 1998, McIntyre, 1993, Sambrook & Whiten, 1997, Rescher, 1988), so any conceptual clarification on the matter could be potentially helpful. 


Suppose that we have two kinds of information readily available: pairs consisting of physical sensory properties (Q) and the corresponding ‘perceptual classification’ of that physical stimulus-in-a-context (P). If the above observations (§2) are anywhere near the truth, it must be the case that these pairs do not possess significant ‘regularity.’ For example, an arbitrary collection of noises can correspond to the perception of phoneme /m/. Borrowing some philosophical jargon, the higher-level property p1 corresponds to a ‘disjunctive property’ q1 ( q2 ( . . . (see � ADDIN ENRfu ��Fodor, 1974�). Looking at the matter from a slightly different perspective, suppose we fix p1 and collect various sensory stimuli that appear to be as paired with p1. We expect them to contain no physical invariance(s). The high-level properties are not ‘projectible’ to the lower-level ones, or they do not have a ‘model’ at the lower level (in the sense of being logically constructible at the lower level).


Let us consider more carefully the notion of ‘randomness’ or ‘lack of invariances’ we are supposed to be observing.  What does it mean if some object lacks regularity or involves ‘disjunctive properties’? There exists a long tradition in hunting down the correct properties of this notion, omitted here (but see Li & Vitányi, 1997). The most satisfactory notion of randomness, and most important for the present purposes, can be formulated with the help of Kolmogorov complexity. Kolmogorov complexity measures the ‘absolute information content’ of a finite object so that a ‘complex’ or ‘random’ object is one which is its own shortest description and thus cannot be ‘compressed’ based on any regularity.


Suppose that in describing sequences of strings of 0s and 1s, or whatever alphabet we choose to use, we use computers and their programs. Computers plus their programming languages, henceforth called ‘specification methods,’ are understood as recursive functions f1, . . . from programs p into outputs x. Let | ( | measure, in bits, the length of those programs. Fixing f, we may follow the above idea and define the complexity of x, Cf(x), as follows:  


Cf(x) = min{ | p | : f(p) = x }.


Thus, we search for the minimal program that can produce x. Intuitively, if p is much shorter than x, we say that there is a compression of x in terms of p. It is hoped that this measure will screen out the regularities in x and, if there is no such compression, we may call x ‘random’ or ‘irregular’. The idea is intuitively appealing, since the existence of a much shorter computer program for producing x captures the rules and regularities in x that ‘random’ entities, perhaps by definition, must lack entirely. Randomness, in our sense, is then a property of data, not of process (of ‘chance’). Thus, string
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is not ‘random,’ since there exists a very short computer program that prints it, namely:
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This program is a ‘compression’ of the string, capturing its regularities. The same is true of the decimals of (, which are not random by the proposed test: they can be computed by using small computer program (although ( is random by many other tests).


Returning to the formal properties of this notion, trying to shape the notion of ‘randomness’ along these lines, it appears that there might be other specification methods, computers and computer languages, that can compress even x further. We do not want randomness to be relative to a particular specification method, yet it is meaningful to ask if the above string would be more random with respect to LISP than FORTRAND. In other words, is there a minimal element for C(x), free of the choice of the specification method?


It is easy to develop a measure that takes these choices into account. Suppose that we have specification methods f1, . . . fn  available, one being LISP interpreter, the other being FORTRAND interpreter, and so on. We may choose which programming language to prefer. Then we can develop a new specification method, g, that makes the choice and computes string x. The input of g consists of information concerning method f, clearly a constant, c (say, log n), plus the program, p. We then obtain a new specification method with the property that for any x and f, Cf(x) ( Cg(x) + c. That is, the complexity method g outputs for any string exceed those given by any of the fs only by constant c, an asymptotically vanishing price to pay for the fact that we can use several specification methods in seeking regularities in the data. Seen from a more intuitive point of view, we establish a ‘compromise’ between finding the absolute minimal specification method plus the specification of that methods itself, seeking the alternative that is the least expensive with respect to this measure. No other method in our initial stock can improve this result infinitely often. 


We may go further and imagine a situation in which any computational specification technique, that is, any possible (imaginable, constructible) computing language, is used. There are an infinite number of such techniques, as there is an infinite number of recursive functions. But suppose that, despite this obstacle, we choose to develop a specification method, comparable to g above, that is capable of making the choice between them. For this purpose we can use the universal Turing machine f0 (i.e. a function f0 such that for any n and p, f0(n, p) = fn(p)). Thus, with the help of this new powerful specification method, we can define a new notion of complexity, 


C0(x) = min{| p |: f0(n, p) = x},


obtaining, analogously to the previous case,


C0(x) ( Cn(x) + cn,


where c can be set to 2| n | + 1, depending only upon fn. This extra cost is due to the coding of the specification method, depending only on the method chosen. This is the invariance theorem of Kolmogorov complexity, its mathematical cornerstone, established independently during the 60’s by R. Solomonoff (� ADDIN ENRfu ��1964�), A. N. Kolmogorov (� ADDIN ENRfu ��1965�), and G. Chaitin (� ADDIN ENRfu ��1969�). This theorem establishes the fact that our intuitive idea of measuring complexity in terms of shortest descriptions has just the desirable mathematical properties we expect it to have: complexity is invariant with respect of the specification method used, as long as the specification method is computable.


I will not discuss further here the interesting mathematical properties of this measure. Suffice it to say that it is closely related, in an interesting way, to many other mathematical notions, such as Shannon’s information theory, proof-theory, computability theory, machine learning, probability theory, and, indeed, many others (see Li & Vitányi, 1997). Moreover, it is also related to some fundamental physical measures and hence subject to explanations in physics, such as entropy and information (see Zurek, 1990). Some authors have also claimed that it is relevant to human cognition (more below). But in any case, I postulate that, concerning the notion of randomness, Kolmogorov complexity is “about as fundamental and objective as any criterion can be” (Rissanen, 1990, p. 118).


Let us return to cognitive science and the case of unsuccessful reduction and associated, abandoned empiricism discussed earlier (§2). What is established, if these empirical arguments are true, seems to be related to the complexity-property captured by K(olmogorov)-complexity above, or to some relevant variant of it. It was argued that there are no invariances in the set of stimuli correlating with, or defining, a given mentalistic state. Assume that the notion of ‘invariance’ is restricted to computable invariances (which is entirely reasonable); then the lack of such invariances can be identified by the fact that there is no computer program, in the sense given above, which can compress the set of stimuli sampled together with the ‘mental state,’ or whatever the abstract property we target in our explanations is. For this reason the set can be said to be necessarily ‘disjunctive’: each member must be stated as such, in the absence of any common (defining) invariance. That is, Kolmogorov complexity seems to capture exactly an important aspect of what happened when the stimulus-response psychology collapsed: certain kinds of complexity or irregularity prevented that program from succeeding. 


Consider this assumption from the perspective of ‘information processing.’ We assumed that the stimuli are characterised by its K-complexity vis-à-vis the ‘mental state’ it is ‘correlated’ with, the notion of ‘mental state’ taken still in a pre-theoretical sense but understood as being, for example, a perceptual hypothesis concerning the world beyond the sensory organs. The relevant set of stimuli being K-complex means, by definition, that a simple algorithm to make the required computations and correlations does not exist. 


It might even be that ‘information processing’ is itself a somewhat unfortunate term here, connoting to the idea, explicitly argued by the behaviorists and Gibson, and implicitly by many others, that the sensory channels could end up with rational hypothesis by literally manipulating the information present in the senses, whereas a truer picture should take the sensory channels to be essentially sources of disturbing noise that the system must somehow deal with in inferring what’s behind one’s eyes or ears. These two perspectives on the functioning of the senses might imply, though they are metaphorical, radically different strategies for a more rigorous empirical research.


Simplifying, this conclusion is inescapable in the following conceptual sense. Defining the autonomy of the mental as a lack of sensory invariance sounds to me like it is being defined as a lack of computational invariance that could be found from the stimulus properties. The latter is just a more formal statement of what is said empirically in the former. But then it all comes down to whether there is an algorithmic solution for ‘perceptual classification,’ since, if there is, we can withdraw to behaviorism; yet if this is not going to happen, there cannot exist such an algorithm. In other words, on a certain abstract but arguably relevant level of analysis, all computationalists are still behaviorists: it is their simple program code that describes a putative connection between a simple stimulus regularity and a response. Skinner would have called this a S-R –law (Skinner, 1953, pp. 34-35).


Some authors have explicitly denied the present thesis, namely, that the human mind is, in an important sense, confronted with complexity, noise, or irregularity, by proposing that one of the fundamental cognitive principles would be to search for simplicity in terms of K-complexity (Chater, 1996, 1999). Chater argues that the world around us is ‘immensely complex’ yet, oddly enough, ‘highly patterned,’ whereas the ability to ‘find such patterns in the world is [...] of central importance throughout cognition’ (Chater, 1999, p. 273). Such ‘patterns are found by following a fundamental principle: Choose the pattern that provides the simplest explanation of the available data.’ Chater then captures the relevant notion of simplicity in terms of K-complexity, arriving at virtually the opposite thesis proposed here. But the matter is naturally empirical. We have seen some evidence from the properties of language and the rejection of behaviorism (§2) that a cognitive agent could not succeed in learning a language by following the principle(s) proposed by Chater, and that the matter could be rather the opposite. It is in fact the standard argument against empiricism and behaviorism to show that, were a child to choose the simplest hypothesis, he or she would fail in a way that is against the empirical facts (see Crain & Lillo-Martin, 1999).


On the other hand, those who have assumed the autonomy thesis introduced in section 2, together with the associated rejection of empiricism, have of course been referring to ‘complexity’ in capturing the empirical consequences of the issue. It was suggested much earlier already against behaviorism that ‘we may now draw the conclusion that the causation of behavior is immensely more complex than was assumed in the generalizations of the past,’ since a ‘number of internal and external factors act upon complex central nervous structures’ (Tinbergen, 1951, p. 74, my emphasis). Furthermore, ‘the program [of behaviorism] seems increasingly hopeless as empirical research reveals how complex the mental structures of organisms, and the interactions of such structures, really are’ (Fodor, 1975, p. 52, my emphasis).  In the present case I argue that the ‘complexity’ is K-complexity, thus meaning complexity in an information theoretical sense.�


Finally, consider the important insight concerning complexity in social sciences provided by McIntyre (1993) that ‘one cannot say that at any level the phenomena are too complex for us to find laws, for complexity just is a function of the level of inquiry that we are using.’ The claim is that whether a rational inquiry is blocked by complexity depends upon the chosen level of description. I am not denying that claim. K-complexity is applied to a putative level of description: the behaviorist and taxonomist descriptions on the other hand, the mentalist descriptions on the other. Complexity is a consequence of the wrong choice; the semantics of making and constructing one particular choice and teasing out the formal structure based on the preferred choice is another matter. I also agree with McIntyre in that complexity does not prevent one from finding simplicity, given that the level of description is correct: modern mentalism in linguistics seems to support exactly this claim.


4 Kolmogorov complexity and computational complexity


If what I have argued so far is true, then there are some consequences worth of taking a closer look. Looking at most computational models entertained in cognitive science, whether connectionist models, dynamical models, algorithms for pattern recognition, and so on, they seem to be ‘K-simple algorithms’ that try to induce (or ‘adapt to’ or ‘self-organize to’) invariances in their ‘sample space.’ Consider, for example, a typical associationist model. The model consists of a number of nodes, connected to each other via connections that allow information to ‘flow’ in the network. This flow is controlled by specific weights, attached to the connections, plus various properties of the nodes themselves. I spare the reader the details, since they are widely known. A typical network nevertheless looks as follows:
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Figure 1. A typical connectionist model


Although the entire network looks like a complex entity, it is extremely simple in terms of its K-complexity, hiding its simplicity (and triviality) within its complex but misleading appearance. The information that spans the whole network consists of two parts: the extremely simple code specifying the computations in the formal neuron, the node (or better, each node), the other to copy this node everywhere, plus setting up the initial pseudo-random (that is, K-simple), connections between the nodes. In fact, this seems to be the very idea, and presumably also one part of the attraction of such models (and maybe empiricist models in general): hooking up a complex-looking system with the lowest possible amount of information. Yet if mentality, understood here as opposed to stimulus-response behaviorism, consists, in part, of high information content, or disparity between the ‘data’ and ‘perceptual hypotheses,’ these models are indeed not to be expected to do, or explain, much. Even if they look like complex systems, they capture only simple invariances.


This is not to be intended as a critique of connectionism, specifically. What are called ‘symbolic models’ or ‘Classical models,’ at least what comes to those involved in modelling human performance, as opposed to competence (see below), do not often fare better in this respect, since they just embody other means to save information in order to attain K-simplicity. Recursion is one favorite and ingenious procedure. By using recursion with memory for bookkeeping one can do a lot by writing a simple code which, in an admittedly ingenious manner, is able to ‘use itself’ to define further computations and properties. 


It is also possible, in principle, to provide the required information for a model in each paradigm without rejecting the whole approach. For instance, one could code information to the weights between the nodes in a connectionist network, or to the activation values (if they are real numbers), or use a large databank in the case of a symbolic model. But that never happens, the present point being that is should happen. 


For, interestingly, both models, ‘symbolic’ and ‘connectionist,’ are usually hopeless from a psychological point of view, a fact that has been known for long, but which has not, I believe, received enough attention in print (but see, for example, � ADDIN ENRfu ��Fodor, 2000�). These models are always computationally complex.  Being computationally complex means ‘computationally deep’: to check whether some property or invariance holds for a item in the data set, one must compute a lot, often exhaustively in the worst case. Typically the increase of computation is an exponential function of the increase of the size of the data, soon rendering the actual process hopeless, as was put by Dennett:


As we ascend the scale of complexity from simple thermostat, through sophisticated robot, to human being, we discover that our efforts to design systems with the requisite behaviour increasingly run foul of the problem of combinatorial explosion. Increasing some parameter by, say, ten percent(ten percent more inputs or more degrees of freedom in the behaviour to be controlled or more words to be recognized or whatever(tends to increase the internal complexity of the system being designed by order of magnitude. Things get out of hand very fast and, for instance, can lead to computer programs that will swamp the largest, fastest machines. Now somehow the brain has solved the problem of combinatorial explosion (Dennett, 1997, p. 77).


I view it as an interesting hypothesis to speculate whether the drastic failure of computational models in terms of their computational complexity and the scaling problem is actually a consequence of their underlying empiricist philosophy of getting complex-looking models ‘emerging’ out of only very few bits of information? Consider the situation these models are required to handle as it is seen through K-complexity: a simple model is required to do something that, by its nature, requires a lot of information and irreducible complexity. What are the possible consequences? Such models are predestined to fail, perhaps exactly so that the lack of informational complexity is traded into a overflow of computational complexity.�


Let us consider these arguments from the perspective of well-defined problem domain, that of chess. Chess is a computationally complex game (� ADDIN ENRfu ��Stockmeyer & Chandra, 1979�): computing the ‘next good’ move consumes considerable amounts of computational resources. Suppose that we take the stimuli to consist of pairs (q, p( of board positions in a chess game. We take the response to consist of a judgement of whether p would represent a good and possible move, with respect to initial position q. Now, let us suppose that this computational ability is studied by Martian scientists who have no knowledge of chess. All they have at their disposal is a sample of good moves, and hence a sample of the extension of the concept of ‘good move.’ They ask whether there exists a simple invariance, formulated by relying upon the stimulus pairs (q, p(i, that defines the extension of the concept ‘good move.’ If they find an invariance, it is possible to reason that it is this property to which the players are ‘responding.’ If the Martians are clever, they can indeed find an extremely simple (in terms of K-complexity) invariance behind all the moves, namely, the one that performs a more or less exhaustive search within the limits of the rules of chess, looking either to win, or to find ‘good positions’ (comparable to any chess program with at least moderate skill). The invariance in question is, although very parsimonious, ‘computationally deep,’ requiring computational resources in order to be ‘defined’ over the sample of good moves; or to borrow a phrase from Luc Longpré, ‘the non-randomness is so intricately buried that any space or time bounded process would fail to detect it’ (Longpré, 1992, p. 69).


Having found such a deep invariance, Martians would wonder how the human mind could respond so rapidly, given that the property it is responding to is computationally deep. In fact, they would find that humans entertain only a few hypotheses. Furthermore, it would soon become apparent that, when given certain ‘untypical’ chess boards, the concept of ‘good move’ entertained by human subjects would not correspond with the one defined by the exhaustive search methods. (As is well known, human performance would cease in such conditions, while the computational method could maintain its level of play easily.)


From the perspective of Kolmogorov complexity: when the amount of hypotheses (computations) that are allowed to be considered in the game is made realistic from a psychological point of view (say, restricted to 50 as opposed to the hundreds of millions computed by computers), the set of ‘good moves’ will, with near certainty, assuming only that the nontrivial character of chess is maintained in the instance that we are actually playing on, look more and more random (see � ADDIN ENRfu ��Li & Vitányi, 1990�, §7). In other words, since the invariance is computationally deep, players cannot detect it if they do not compute; and since they do not compute, they must be responding to what would appear more or less to be ‘noise,’ that is, a good deal of randomness in terms of K-complexity. It follows that computationally shallow chess cannot be played by using ‘computational tricks.’ That is, there are no ingenious ‘heuristic models’ to explain how the players select the relevant move, considering just a few alternatives – and no scientific interest whatsoever in finding one, contrary to the prevailing view among those partaking in computational theorising (cf. � ADDIN ENRfu ��Newell, Shaw, & Simon, 1958�, � ADDIN ENRfu ��Newell & Simon, 1963�, 1972). Players are responding to mere noise insofar as their computations are shallow, at most mimicking a computationally deep invariance on a selected array of positions, but not in others. Indeed, empirical evidence to this claim can be found by considering the construction of actual chess playing programs, which, when they succeed in beating human players, either compute enormous amount of positions, require extensive database of brute information, or indeed just both.�   


 Summarizing, it had seem impossible to implement ‘rational inference,’ whether perceptual or a higher level, characteristic of human intelligence, using computational techniques. The problem is that, in fixing beliefs based on an agent’s epistemological commitments, rationality seems to require a considerable amount of holism-cum-context-sensitivity: the processes seems to be sensitive to the whole background of beliefs and desires, whereas, as is well-known, ‘[c]lassical architectures know of no reliable way to recognize such properties short of exhaustive searchers of the background of epistemic commitments’ (Fodor, 2000, p. 38). That is, rationality is purchased by lots of information (background knowledge) plus deep computation in exploring it.  


In his latest book, Fodor (2000) argues that the problem of abductive inference renders the whole computational theory of the mind suspect, at least as far as the non-modular components of human cognition are concerned. He writes that the problem originates in the locality of computational processes versus the context-sensitivity of the corresponding cognitive processes. The ‘local formal properties’ of a thought – its so-called ‘logical form’ – does not suffice to determine its causal-cum-inferential role in the system. That is the problem of ‘locality’; in fact, presumably the same problem that we observed in the case of chess, viz. that the property of ‘good move’ cannot be defined without extensive use of computations on the formal properties of a chess board. We may say that the property of being a good move is ‘context-sensitive’ because it depends not on the local properties of the board position, but on the location of this board position in the space of possible games and their outcomes. As a consequence, we need to explore this space, the ‘context’ of a single board. As Fodor correctly notes, this, in general, characterizes practically any routine inference in our normal environment: what we do infer, and ought to infer, depends not on the ‘logical form’ of the single thought, but rather on its place in the vast web of our epistemological commitments as a whole. The notion ‘logical form of thought’ is thus simply the wrong kind of idealisation in that case.


5 Conclusions


Empirical evidence has made the empiricist picture of the mind less and less attractive over the last 50 years or so, being replaced with a more rationalist one that emphasises the role of innate structure instead of environmentally induced complexity. I have argued that one important aspect of this difference might come to abstract Kolmogorov complexity, which, as it is based on exact mathematical formulation and instant generalizability, is applied to all computational modelling, hopefully explaining why such models have failed regardless of the paradigm used, and will fail in the future unless the hidden empiricist premises are rejected. 


If these speculations are not completely off the mark, then the human mind is truly complex, lacking one crucial feature to which many cognitive scientists have based all their wishes, namely, that the complexity somehow ‘emerges’ from a right set of simple principles. How and why physical laws kick off a process that could generate information and complexity remains to be seen (see Chaitin, 1979, Bennett, 1988a, b, McShea, 1991, Sambrook, & Whiten, 1997, Zurek, 1990, among others). Given the fact that DNA in our genes does not seem to involve that much information at all, one would wonder if there is something in the nature, in the ontogeny of an human being, that produces true information, and whether there is something that can crystallize it to use (Griffiths & Gray, 1994, Oyama, 2000)?


Almost miraculously, there are areas of interest, most of them the modular aspects of cognition, where general and elegant principles have been found within a ‘single level of analysis’ despite the apparent complexity between levels.  According to my standards of scientific explanation, this is especially true in the case of knowledge (competence), but not so in the use of that knowledge (performance). Such abstract knowledge of chess rules would be easily extracted from observing the play, but it is the effective use of that knowledge which remains a mystery.
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� To operationalize this structuralist, reductive and positivist enterprise, linguists have relied upon powerful analytical and statistical notions, such as free variation and complementary distribution (� ADDIN ENRfu ��Harris, 1951�, 1955, 1957).


� The structuralists themselves were not always explicitly engaged in the study of learning, though the connection between the discovery procedure and language learning is obvious.


� Consider such pairs as latter / ladder. The difference between these words looks entirely mysterious for the reductionist. There is merely a slight difference in the length of the second vowel. 


� Putting option (i) aside, consider these facts from the perspective of the learner who is obviously pursuing the full mastery of language use, thus (ii). If s/he applies a ‘general learning algorithm’ to the physical stimulus available, presupposing no linguistic categories and no prior knowledge of such structures, s/he will find the physical properties, but fail to gain mastery of the higher-level entities and the general rules that determine the behavior of the system. In Chomsky’s words, ‘[w]e must ask how the child acquires knowledge of this [theory and its principles], a feat that is particularly remarkable since, as already noted, much of the evidence that leads the linguistic to posit this principle is drawn from the study of percepts and is thus not even available to the child’ (Chomsky, 1981, p. 300). A ‘general learner’ would find language entirely mysterious. In other words, the rejection of reductive structuralism leads to a theory where linguistic elements and the principles that govern their constitution and lead to behavioural consequences were based on irreducible ‘percepts,’ not properties of the ‘directly observed’ stimuli. But a child approaching the task of learning a language could not observe such ‘percepts’ by means of stimuli available to him or her (unless by telepathy, or by an ability see inside other peoples’ mind). Notably, what the child has available is the behavior of the entities surrounding him or her as filtered through an extremely narrow band of information channels, such as eyes, ears and touch.


Consider an argument put forward recently by Fiona Cowie (1999). She argues that the poverty of stimulus arguments, explained above, are ‘at worst outright false, and at best highly dubious’ (Cowie, 1999, p. 177). Why is that so? Not because Cowie would have found, after all, a way to define even a single phoneme without recourse to percepts and properties that are not available to learners, to say something of morphemes, syntactic, or semantic concepts. There are no such proposals in her book, although one would have hoped to find one. Instead, Cowie sees the matter other way around: ‘for many years, Chomskyans made no serious attempt to provide empirical validation of their claims about what information is and is not available in the [primary linguistic data] and what errors children do and do not make’ (Cowie, 1999, p. 190, my emphasis). But this sounds as if the actual collapse of empiricist and reductive position does not count as evidence or ‘empirical validation.’ This cannot be the right diagnosis, whether Cowie’s or anybody else’s; the mentalist movement was and is first and foremost an empirical undertaking. 


Interestingly, Cowie favors a model where ‘children can use statistical information about the acoustical properties of language without being reducible to those acoustical properties,’ being thereby ‘perfectly well able to acquire the ‘abstract’ syntactic concepts that they need to form such hypotheses through statistical analysis of the speech they hear around them’´(Cowie, 1999, pp. 190, 193, respectively). But this seems dubious: if to-be-learned linguistic properties cannot be defined by means of the properties of the stimulus, then they cannot be ‘abstracted’ in any rigorous sense of ‘rational abstraction’ from the stimulus properties without assuming that the hypotheses were already available to the learner. Only a wild guess and some kind of pseudo-inferential steps could ensure the mastery of a concept in such an environment.


� Returning again to the case of reduction of the notion of phoneme, as noted in item (i), on page � PAGEREF phoneme \h ��6�, it is possible to try to construct a theory of language use, and hence of its higher-level properties, by mimicking them ‘on the lower-level deck’ by allowing countless exceptions and complex, context-sensitive definitions to enter as part of the theory, often in such a manner as not to guarantee any converging into a finite theory due to the fact that the obscuring factors are ultimately independent of the true abstract principles. In fact, this is what threatened to happen with the American structuralists. The reductive theory becomes K-complex in its content and, for the empiricist who still insists that it could be ‘learned,’ also impossible to learn by any known rational method of induction. Of course, what could, from a theoretical point of view, be ‘learned’ from it is not the same entity as what is provided by the insightful, albeit abstract, theory of ‘percepts’; it can only be a complex and leaky mimicry of the underlying reality.


� One way to understand the relation between the lack of information and computational complexity is to observe that when the model lacks the required information, the missing information must still be transferred from some external source to the model. For example, in a fairly popular but also highly ‘empiricist’ scenario the model numerates hypotheses while the environment provides feedback, resulting inefficient and computationally complex hill-climbing. That process can be made efficient only if the learning encompasses a prior information of the correct hypothesis. Yet if the hypothesis is itself complex, then either the prior information must be in the model already, or it must be provided from some external source via some more direct means. In either case, the complexity does not ‘emerge from simple principles.’


� Here it must be noted that computational complexity and Kolmogorov complexity are different aspects of ‘complexity,’ though they are related to each other (e.g., Watanabe, 1992). Computational complexity is defined as the slope of the function from the size of the given problem instant (e.g., a chess position) to the amount of computation that is required to solve that instant (e.g., the detect a good move) in the worst case, and it is well-defined only for an infinite problem instances. That is, computational complexity tells us how much computational resources a given problem is required to take as a function of the size of the problem instant. If the problem consists only of finite amount of instances, then it can be solved trivially by a ‘table-lookup method’ where each instance is directly paired with its solution. Kolmogorov complexity, in turn, characterizes the complexity of such finite objects by determining how much the lookup table can be further compressed. Importantly, besides these two measures there are other properties that one can and have associated with the term ‘complexity,’ but they do not seem important to the empirically interesting type of randomness investigated in section two. 








